mirror of
https://github.com/DreamSourceLab/DSView.git
synced 2025-01-13 13:32:53 +08:00
152 lines
5.5 KiB
Python
152 lines
5.5 KiB
Python
|
##
|
||
|
## This file is part of the libsigrokdecode project.
|
||
|
##
|
||
|
## Copyright (C) 2014 Torsten Duwe <duwe@suse.de>
|
||
|
## Copyright (C) 2014 Sebastien Bourdelin <sebastien.bourdelin@savoirfairelinux.com>
|
||
|
##
|
||
|
## This program is free software; you can redistribute it and/or modify
|
||
|
## it under the terms of the GNU General Public License as published by
|
||
|
## the Free Software Foundation; either version 2 of the License, or
|
||
|
## (at your option) any later version.
|
||
|
##
|
||
|
## This program is distributed in the hope that it will be useful,
|
||
|
## but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
## GNU General Public License for more details.
|
||
|
##
|
||
|
## You should have received a copy of the GNU General Public License
|
||
|
## along with this program; if not, write to the Free Software
|
||
|
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
##
|
||
|
|
||
|
import sigrokdecode as srd
|
||
|
|
||
|
class Decoder(srd.Decoder):
|
||
|
api_version = 2
|
||
|
id = 'pwm'
|
||
|
name = 'PWM'
|
||
|
longname = 'Pulse-width modulation'
|
||
|
desc = 'Analog level encoded in duty cycle percentage.'
|
||
|
license = 'gplv2+'
|
||
|
inputs = ['logic']
|
||
|
outputs = ['pwm']
|
||
|
channels = (
|
||
|
{'id': 'data', 'name': 'Data', 'desc': 'Data line'},
|
||
|
)
|
||
|
options = (
|
||
|
{'id': 'polarity', 'desc': 'Polarity', 'default': 'active-high',
|
||
|
'values': ('active-low', 'active-high')},
|
||
|
)
|
||
|
annotations = (
|
||
|
('duty-cycle', 'Duty cycle'),
|
||
|
('period', 'Period'),
|
||
|
)
|
||
|
annotation_rows = (
|
||
|
('duty-cycle', 'Duty cycle', (0,)),
|
||
|
('period', 'Period', (1,)),
|
||
|
)
|
||
|
binary = (
|
||
|
('raw', 'RAW file'),
|
||
|
)
|
||
|
|
||
|
def __init__(self):
|
||
|
self.ss_block = self.es_block = None
|
||
|
self.first_transition = True
|
||
|
self.first_samplenum = None
|
||
|
self.start_samplenum = None
|
||
|
self.end_samplenum = None
|
||
|
self.oldpin = None
|
||
|
self.num_cycles = 0
|
||
|
self.average = 0
|
||
|
|
||
|
def metadata(self, key, value):
|
||
|
if key == srd.SRD_CONF_SAMPLERATE:
|
||
|
self.samplerate = value
|
||
|
|
||
|
def start(self):
|
||
|
self.startedge = 0 if self.options['polarity'] == 'active-low' else 1
|
||
|
self.out_ann = self.register(srd.OUTPUT_ANN)
|
||
|
self.out_binary = self.register(srd.OUTPUT_BINARY)
|
||
|
self.out_average = \
|
||
|
self.register(srd.OUTPUT_META,
|
||
|
meta=(float, 'Average', 'PWM base (cycle) frequency'))
|
||
|
|
||
|
def putx(self, data):
|
||
|
self.put(self.ss_block, self.es_block, self.out_ann, data)
|
||
|
|
||
|
def putp(self, period_t):
|
||
|
# Adjust granularity.
|
||
|
if period_t == 0 or period_t >= 1:
|
||
|
period_s = '%.1f s' % (period_t)
|
||
|
elif period_t <= 1e-12:
|
||
|
period_s = '%.1f fs' % (period_t * 1e15)
|
||
|
elif period_t <= 1e-9:
|
||
|
period_s = '%.1f ps' % (period_t * 1e12)
|
||
|
elif period_t <= 1e-6:
|
||
|
period_s = '%.1f ns' % (period_t * 1e9)
|
||
|
elif period_t <= 1e-3:
|
||
|
period_s = '%.1f μs' % (period_t * 1e6)
|
||
|
else:
|
||
|
period_s = '%.1f ms' % (period_t * 1e3)
|
||
|
|
||
|
self.put(self.ss_block, self.es_block, self.out_ann, [1, [period_s]])
|
||
|
|
||
|
def putb(self, data):
|
||
|
self.put(self.num_cycles, self.num_cycles, self.out_binary, data)
|
||
|
|
||
|
def decode(self, ss, es, data):
|
||
|
|
||
|
for (self.samplenum, pins) in data:
|
||
|
data.itercnt += 1
|
||
|
# Ignore identical samples early on (for performance reasons).
|
||
|
if self.oldpin == pins[0]:
|
||
|
continue
|
||
|
|
||
|
# Initialize self.oldpins with the first sample value.
|
||
|
if self.oldpin is None:
|
||
|
self.oldpin = pins[0]
|
||
|
continue
|
||
|
|
||
|
if self.first_transition:
|
||
|
# First rising edge
|
||
|
if self.oldpin != self.startedge:
|
||
|
self.first_samplenum = self.samplenum
|
||
|
self.start_samplenum = self.samplenum
|
||
|
self.first_transition = False
|
||
|
else:
|
||
|
if self.oldpin != self.startedge:
|
||
|
# Rising edge
|
||
|
# We are on a full cycle we can calculate
|
||
|
# the period, the duty cycle and its ratio.
|
||
|
period = self.samplenum - self.start_samplenum
|
||
|
duty = self.end_samplenum - self.start_samplenum
|
||
|
ratio = float(duty / period)
|
||
|
|
||
|
# This interval starts at this edge.
|
||
|
self.ss_block = self.start_samplenum
|
||
|
# Store the new rising edge position and the ending
|
||
|
# edge interval.
|
||
|
self.start_samplenum = self.es_block = self.samplenum
|
||
|
|
||
|
# Report the duty cycle in percent.
|
||
|
percent = float(ratio * 100)
|
||
|
self.putx([0, ['%f%%' % percent]])
|
||
|
|
||
|
# Report the duty cycle in the binary output.
|
||
|
#self.putb([0, bytes([int(ratio * 256)])])
|
||
|
|
||
|
# Report the period in units of time.
|
||
|
period_t = float(period / self.samplerate)
|
||
|
self.putp(period_t)
|
||
|
|
||
|
# Update and report the new duty cycle average.
|
||
|
self.num_cycles += 1
|
||
|
self.average += percent
|
||
|
self.put(self.first_samplenum, self.es_block, self.out_average,
|
||
|
float(self.average / self.num_cycles))
|
||
|
else:
|
||
|
# Falling edge
|
||
|
self.end_samplenum = self.ss_block = self.samplenum
|
||
|
|
||
|
self.oldpin = pins[0]
|