252 lines
9.1 KiB
Python
Raw Normal View History

##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2012-2014 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
import sigrokdecode as srd
2018-05-27 17:10:57 +08:00
from common.srdhelper import bcd2int
def reg_list():
l = []
for i in range(8 + 1):
l.append(('reg-0x%02x' % i, 'Register 0x%02x' % i))
return tuple(l)
class Decoder(srd.Decoder):
api_version = 2
id = 'rtc8564'
name = 'RTC-8564'
longname = 'Epson RTC-8564 JE/NB'
desc = 'Realtime clock module protocol.'
license = 'gplv2+'
inputs = ['i2c']
outputs = ['rtc8564']
annotations = reg_list() + (
('read', 'Read date/time'),
('write', 'Write date/time'),
('bit-reserved', 'Reserved bit'),
('bit-vl', 'VL bit'),
('bit-century', 'Century bit'),
('reg-read', 'Register read'),
('reg-write', 'Register write'),
)
annotation_rows = (
('bits', 'Bits', tuple(range(0, 8 + 1)) + (11, 12, 13)),
('regs', 'Register access', (14, 15)),
('date-time', 'Date/time', (9, 10)),
)
2018-05-27 17:10:57 +08:00
def __init__(self):
self.state = 'IDLE'
self.hours = -1
self.minutes = -1
self.seconds = -1
self.days = -1
self.weekdays = -1
self.months = -1
self.years = -1
self.bits = []
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
def putx(self, data):
self.put(self.ss, self.es, self.out_ann, data)
def putd(self, bit1, bit2, data):
self.put(self.bits[bit1][1], self.bits[bit2][2], self.out_ann, data)
def putr(self, bit):
self.put(self.bits[bit][1], self.bits[bit][2], self.out_ann,
[11, ['Reserved bit', 'Reserved', 'Rsvd', 'R']])
def handle_reg_0x00(self, b): # Control register 1
pass
def handle_reg_0x01(self, b): # Control register 2
ti_tp = 1 if (b & (1 << 4)) else 0
af = 1 if (b & (1 << 3)) else 0
tf = 1 if (b & (1 << 2)) else 0
aie = 1 if (b & (1 << 1)) else 0
tie = 1 if (b & (1 << 0)) else 0
ann = ''
s = 'repeated' if ti_tp else 'single-shot'
ann += 'TI/TP = %d: %s operation upon fixed-cycle timer interrupt '\
'events\n' % (ti_tp, s)
s = '' if af else 'no '
ann += 'AF = %d: %salarm interrupt detected\n' % (af, s)
s = '' if tf else 'no '
ann += 'TF = %d: %sfixed-cycle timer interrupt detected\n' % (tf, s)
s = 'enabled' if aie else 'prohibited'
ann += 'AIE = %d: INT# pin output %s when an alarm interrupt '\
'occurs\n' % (aie, s)
s = 'enabled' if tie else 'prohibited'
ann += 'TIE = %d: INT# pin output %s when a fixed-cycle interrupt '\
'event occurs\n' % (tie, s)
self.putx([1, [ann]])
def handle_reg_0x02(self, b): # Seconds / Voltage-low bit
vl = 1 if (b & (1 << 7)) else 0
self.putd(7, 7, [12, ['Voltage low: %d' % vl, 'Volt. low: %d' % vl,
'VL: %d' % vl, 'VL']])
s = self.seconds = bcd2int(b & 0x7f)
self.putd(6, 0, [2, ['Second: %d' % s, 'Sec: %d' % s, 'S: %d' % s, 'S']])
def handle_reg_0x03(self, b): # Minutes
self.putr(7)
m = self.minutes = bcd2int(b & 0x7f)
self.putd(6, 0, [3, ['Minute: %d' % m, 'Min: %d' % m, 'M: %d' % m, 'M']])
def handle_reg_0x04(self, b): # Hours
self.putr(7)
self.putr(6)
h = self.hours = bcd2int(b & 0x3f)
self.putd(5, 0, [4, ['Hour: %d' % h, 'H: %d' % h, 'H']])
def handle_reg_0x05(self, b): # Days
self.putr(7)
self.putr(6)
d = self.days = bcd2int(b & 0x3f)
self.putd(5, 0, [5, ['Day: %d' % d, 'D: %d' % d, 'D']])
def handle_reg_0x06(self, b): # Weekdays
for i in (7, 6, 5, 4, 3):
self.putr(i)
w = self.weekdays = bcd2int(b & 0x07)
self.putd(2, 0, [6, ['Weekday: %d' % w, 'WD: %d' % w, 'WD', 'W']])
def handle_reg_0x07(self, b): # Months / century bit
c = 1 if (b & (1 << 7)) else 0
self.putd(7, 7, [13, ['Century bit: %d' % c, 'Century: %d' % c,
'Cent: %d' % c, 'C: %d' % c, 'C']])
self.putr(6)
self.putr(5)
m = self.months = bcd2int(b & 0x1f)
self.putd(4, 0, [7, ['Month: %d' % m, 'Mon: %d' % m, 'M: %d' % m, 'M']])
def handle_reg_0x08(self, b): # Years
y = self.years = bcd2int(b & 0xff)
self.putx([8, ['Year: %d' % y, 'Y: %d' % y, 'Y']])
def handle_reg_0x09(self, b): # Alarm, minute
pass
def handle_reg_0x0a(self, b): # Alarm, hour
pass
def handle_reg_0x0b(self, b): # Alarm, day
pass
def handle_reg_0x0c(self, b): # Alarm, weekday
pass
def handle_reg_0x0d(self, b): # CLKOUT output
pass
def handle_reg_0x0e(self, b): # Timer setting
pass
def handle_reg_0x0f(self, b): # Down counter for fixed-cycle timer
pass
def decode(self, ss, es, data):
cmd, databyte = data
# Collect the 'BITS' packet, then return. The next packet is
# guaranteed to belong to these bits we just stored.
if cmd == 'BITS':
self.bits = databyte
return
# Store the start/end samples of this I²C packet.
self.ss, self.es = ss, es
# State machine.
if self.state == 'IDLE':
# Wait for an I²C START condition.
if cmd != 'START':
return
self.state = 'GET SLAVE ADDR'
self.ss_block = ss
elif self.state == 'GET SLAVE ADDR':
# Wait for an address write operation.
# TODO: We should only handle packets to the RTC slave (0xa2/0xa3).
if cmd != 'ADDRESS WRITE':
return
self.state = 'GET REG ADDR'
elif self.state == 'GET REG ADDR':
# Wait for a data write (master selects the slave register).
if cmd != 'DATA WRITE':
return
self.reg = databyte
self.state = 'WRITE RTC REGS'
elif self.state == 'WRITE RTC REGS':
# If we see a Repeated Start here, it's probably an RTC read.
if cmd == 'START REPEAT':
self.state = 'READ RTC REGS'
return
# Otherwise: Get data bytes until a STOP condition occurs.
if cmd == 'DATA WRITE':
r, s = self.reg, '%02X: %02X' % (self.reg, databyte)
self.putx([15, ['Write register %s' % s, 'Write reg %s' % s,
'WR %s' % s, 'WR', 'W']])
handle_reg = getattr(self, 'handle_reg_0x%02x' % self.reg)
handle_reg(databyte)
self.reg += 1
# TODO: Check for NACK!
elif cmd == 'STOP':
# TODO: Handle read/write of only parts of these items.
d = '%02d.%02d.%02d %02d:%02d:%02d' % (self.days, self.months,
self.years, self.hours, self.minutes, self.seconds)
self.put(self.ss_block, es, self.out_ann,
[9, ['Write date/time: %s' % d, 'Write: %s' % d,
'W: %s' % d]])
self.state = 'IDLE'
else:
pass # TODO
elif self.state == 'READ RTC REGS':
# Wait for an address read operation.
# TODO: We should only handle packets to the RTC slave (0xa2/0xa3).
if cmd == 'ADDRESS READ':
self.state = 'READ RTC REGS2'
return
else:
pass # TODO
elif self.state == 'READ RTC REGS2':
if cmd == 'DATA READ':
r, s = self.reg, '%02X: %02X' % (self.reg, databyte)
self.putx([15, ['Read register %s' % s, 'Read reg %s' % s,
'RR %s' % s, 'RR', 'R']])
handle_reg = getattr(self, 'handle_reg_0x%02x' % self.reg)
handle_reg(databyte)
self.reg += 1
# TODO: Check for NACK!
elif cmd == 'STOP':
d = '%02d.%02d.%02d %02d:%02d:%02d' % (self.days, self.months,
self.years, self.hours, self.minutes, self.seconds)
self.put(self.ss_block, es, self.out_ann,
[10, ['Read date/time: %s' % d, 'Read: %s' % d,
'R: %s' % d]])
self.state = 'IDLE'
else:
pass # TODO?