188 lines
6.1 KiB
Python
Raw Normal View History

##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2020 Analog Devices Inc.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
slave_address = {
0x00: ['GND', 'GND', 'GND', 'G'],
0x01: ['FLOAT', 'FLOAT', 'FLOAT', 'F'],
0x02: ['VCC', 'VCC', 'VCC', 'V'],
}
commands = {
0x00: ['Write Input Register', 'Write In Reg', 'Wr In Reg', 'WIR'],
0x01: ['Update DAC', 'Update', 'U'],
0x03: ['Write and Power Up DAC', 'Write & Power Up', 'W&PU'],
0x04: ['Power Down DAC', 'Power Down', 'PD'],
0x0F: ['No Operation', 'No Op', 'NO'],
}
addresses = {
0x00: ['DAC A', 'A'],
0x01: ['DAC B', 'B'],
0x0F: ['All DACs', 'All'],
}
input_voltage_format = ['%.6fV', '%.2fV']
class Decoder(srd.Decoder):
api_version = 3
id = 'ltc26x7'
name = 'LTC26x7'
longname = 'Linear Technology LTC26x7'
desc = 'Linear Technology LTC26x7 16-/14-/12-bit rail-to-rail DACs.'
license = 'gplv2+'
inputs = ['i2c']
outputs = []
tags = ['IC', 'Analog/digital']
options = (
{'id': 'chip', 'desc': 'Chip', 'default': 'ltc2607',
2022-10-21 11:10:28 +08:00
'values': ('ltc2607', 'ltc2617', 'ltc2627'), 'idn':'dec_ltc26x7_opt_chip'},
{'id': 'vref', 'desc': 'Reference voltage (V)', 'default': 1.5, 'idn':'dec_ltc26x7_opt_vref'},
)
annotations = (
('slave_addr', 'Slave address'),
('command', 'Command'),
('address', 'Address'),
('dac_a_voltage', 'DAC A voltage'),
('dac_b_voltage', 'DAC B voltage'),
)
annotation_rows = (
('addr_cmd', 'Address/command', (0, 1, 2)),
('dac_a_voltages', 'DAC A voltages', (3,)),
('dac_b_voltages', 'DAC B voltages', (4,)),
)
def __init__(self):
self.reset()
def reset(self):
self.state = 'IDLE'
self.ss = -1
self.data = 0x00
self.dac_val = 0
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
def convert_ternary_str(self, n):
if n == 0:
return [0, 0, 0]
nums = []
while n:
n, r = divmod(n, 3)
nums.append(r)
while len(nums) < 3:
nums.append(0)
return list(reversed(nums))
def handle_slave_addr(self, data):
if data == 0x73:
ann = ['Global address', 'Global addr', 'Glob addr', 'GA']
self.put(self.ss, self.es, self.out_ann, [0, ann])
return
ann = ['CA2=%s CA1=%s CA0=%s', '2=%s 1=%s 0=%s', '%s %s %s', '%s %s %s']
addr = 0
for i in range(7):
if i in [2, 3]:
continue
offset = i
if i > 3:
offset -= 2
mask = 1 << i
if data & mask:
mask = 1 << offset
addr |= mask
addr -= 0x04
ternary_values = self.convert_ternary_str(addr)
for i in range(len(ann)):
ann[i] = ann[i] % (slave_address[ternary_values[0]][i],
slave_address[ternary_values[1]][i],
slave_address[ternary_values[2]][i])
self.put(self.ss, self.es, self.out_ann, [0, ann])
def handle_cmd_addr(self, data):
cmd_val = (data >> 4) & 0x0F
self.dac_val = (data & 0x0F)
sm = (self.ss + self.es) // 2
self.put(self.ss, sm, self.out_ann, [1, commands[cmd_val]])
self.put(sm, self.es, self.out_ann, [2, addresses[self.dac_val]])
def handle_data(self, data):
self.data = (self.data << 8) & 0xFF00
self.data += data
if self.options['chip'] == 'ltc2617':
self.data = (self.data >> 2)
self.data = (self.options['vref'] * self.data) / 0x3FFF
elif self.options['chip'] == 'ltc2627':
self.data = (self.data >> 4)
self.data = (self.options['vref'] * self.data) / 0x0FFF
else:
self.data = (self.options['vref'] * self.data) / 0xFFFF
ann = []
for format in input_voltage_format:
ann.append(format % self.data)
self.data = 0
if self.dac_val == 0x0F: # All DACs (A and B).
self.put(self.ss, self.es, self.out_ann, [3 + 0, ann])
self.put(self.ss, self.es, self.out_ann, [3 + 1, ann])
else:
self.put(self.ss, self.es, self.out_ann, [3 + self.dac_val, ann])
def decode(self, ss, es, data):
cmd, databyte = data
self.es = es
# State machine.
if self.state == 'IDLE':
# Wait for an I²C START condition.
if cmd != 'START':
return
self.state = 'GET SLAVE ADDR'
elif self.state == 'GET SLAVE ADDR':
# Wait for an address write operation.
if cmd != 'ADDRESS WRITE':
return
self.ss = ss
self.handle_slave_addr(databyte)
self.ss = -1
self.state = 'GET CMD ADDR'
elif self.state == 'GET CMD ADDR':
if cmd != 'DATA WRITE':
return
self.ss = ss
self.handle_cmd_addr(databyte)
self.ss = -1
self.state = 'WRITE DATA'
elif self.state == 'WRITE DATA':
if cmd == 'DATA WRITE':
if self.ss == -1:
self.ss = ss
self.data = databyte
return
self.handle_data(databyte)
self.ss = -1
elif cmd == 'STOP':
self.state = 'IDLE'
else:
return