391 lines
15 KiB
Python
Raw Normal View History

##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2019 Comlab AG
## Copyright (C) 2020 Gerhard Sittig <gerhard.sittig@gmx.net>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
# This implementation started as a "vector slicer", then turned into the
# "numbers and states" decoder, because users always had the freedom to
# connect any logic signal to either of the decoder inputs. That's when
# slicing vectors took second seat, and just was not needed any longer
# in the strict sense.
#
# TODO
# - Find an appropriate number of input channels, and maximum enum slots.
# - Re-check correctness of signed integers. Signed fixed point is based
# on integers and transparently benefits from fixes and improvements.
# - Local formatting in individual decoders becomes obsolete when common
# support for user selected formatting gets introduced.
# - There is overlap with the 'parallel' decoder. Ideally the numbers
# decoder could stack on top of parallel, but parallel currently is
# severely limited in its number of input channels, and dramatically
# widening the parallel decoder may be undesirable.
# update: 2022.9.8, the wait() function returns variables is error.
from common.srdhelper import bitpack
import json
import sigrokdecode as srd
import struct
'''
OUTPUT_PYTHON format:
Packet:
[<ptype>, <pdata>]
This is a list of <ptype>s and their respective <pdata> values:
- 'RAW': The data is a tuple of bit count and bit pattern (a number,
assuming unsigned integer presentation of the input data bit pattern).
- 'NUMBER': The data is the conversion result of the bit pattern.
- 'ENUM': The data is a tuple of the raw number and its mapped text.
'''
# TODO Better raise the number of channels to 32. This allows access to
# IEEE754 single precision numbers, and shall cover most busses, _and_
# remains within most logic analyzers' capabilities, and keeps the UI
# dialog somewhat managable. What's a good default for the number of
# enum slots (which translate to annotation rows)? Notice that 2 to the
# power of the channel count is way out of the question. :)
_max_channels = 16
_max_enum_slots = 32
class ChannelError(Exception):
pass
class Pin:
CLK, BIT_0 = range(2)
BIT_N = BIT_0 + _max_channels
class Ann:
RAW, NUM = range(2)
ENUM_0 = NUM + 1
ENUM_OVR = ENUM_0 + _max_enum_slots
ENUMS = range(ENUM_0, ENUM_OVR)
WARN = ENUM_OVR + 1
@staticmethod
def enum_indices():
return [i for i in range(Ann.ENUMS)]
@staticmethod
def get_enum_idx(code):
if code in range(_max_enum_slots):
return Ann.ENUM_0 + code
return Ann.ENUM_OVR
def _channel_decl(count):
return tuple([
2022-10-31 14:36:50 +08:00
{'id': 'bit{}'.format(i), 'name': 'Bit{}'.format(i), 'desc': 'Bit position {}'.format(i)
#, 'idn':'dec_numbers_and_state_Bit{}'.format(i)
}
for i in range(count)
])
def _enum_cls_decl(count):
return tuple([
('enum{}'.format(i), 'Enumeration slot {}'.format(i))
for i in range(count)
] + [('enumovr', 'Enumeration overflow')])
def _enum_rows_decl(count):
return tuple([
('enums{}'.format(i), 'Enumeration slots {}'.format(i), (Ann.ENUM_0 + i,))
for i in range(count)
] + [('enumsovr', 'Enumeration overflows', (Ann.ENUM_OVR,))])
class Decoder(srd.Decoder):
api_version = 3
id = 'numbers_and_state'
name = 'Numbers and State'
longname = 'Interpret bit patters as numbers or state enums'
desc = 'Interpret bit patterns as different kinds of numbers (integer, float, enum).'
license = 'gplv2+'
inputs = ['logic']
outputs = ['numbers_and_state']
tags = ['Encoding', 'Util']
optional_channels = (
2022-10-21 11:10:28 +08:00
{'id': 'clk', 'name': 'Clock', 'desc': 'Clock', 'idn':'dec_numbers_and_state_chan_clk'},
) + _channel_decl(_max_channels)
options = (
{'id': 'clkedge', 'desc': 'Clock edge', 'default': 'rising',
2022-10-21 11:10:28 +08:00
'values': ('rising', 'falling', 'either'), 'idn':'dec_numbers_and_state_opt_clkedge'},
{'id': 'count', 'desc': 'Total bits count', 'default': 0, 'idn':'dec_numbers_and_state_opt_count'},
{'id': 'interp', 'desc': 'Interpretation', 'default': 'unsigned',
2022-10-21 11:10:28 +08:00
'values': ('unsigned', 'signed', 'fixpoint', 'fixsigned', 'ieee754', 'enum'), 'idn':'dec_numbers_and_state_opt_interp'},
{'id': 'fracbits', 'desc': 'Fraction bits count', 'default': 0, 'idn':'dec_numbers_and_state_opt_fracbits'},
{'id': 'mapping', 'desc': 'Enum to text map file',
2022-10-21 11:10:28 +08:00
'default': 'enumtext.json', 'idn':'dec_numbers_and_state_opt_mapping'},
{'id': 'format', 'desc': 'Number format', 'default': '-',
2022-10-21 11:10:28 +08:00
'values': ('-', 'bin', 'oct', 'dec', 'hex'), 'idn':'dec_numbers_and_state_opt_format'},
)
annotations = (
('raw', 'Raw pattern'),
('number', 'Number'),
) + _enum_cls_decl(_max_enum_slots) + (
('warning', 'Warning'),
)
annotation_rows = (
('raws', 'Raw bits', (Ann.RAW,)),
('numbers', 'Numbers', (Ann.NUM,)),
) + _enum_rows_decl(_max_enum_slots) + (
('warnings', 'Warnings', (Ann.WARN,)),
)
def __init__(self):
self.reset()
def reset(self):
pass
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
self.out_python = self.register(srd.OUTPUT_PYTHON)
def putg(self, ss, es, cls, data):
self.put(ss, es, self.out_ann, [cls, data])
def putpy(self, ss, es, ptype, pdata):
self.put(ss, es, self.out_python, (ptype, pdata))
def grab_pattern(self, pins):
'''Get a bit pattern from potentially incomplete probes' values.'''
# Pad and trim the input data, to achieve the user specified
# total number of bits. Map all unassigned signals to 0 (low).
# Return raw number (unsigned integer interpreation).
bits = pins + (None,) * self.bitcount
bits = bits[:self.bitcount]
bits = [b if b in (0, 1) else 0 for b in bits]
pattern = bitpack(bits)
return pattern
def handle_pattern(self, ss, es, pattern):
fmt = '{{:0{}b}}'.format(self.bitcount)
txt = fmt.format(pattern)
self.putg(ss, es, Ann.RAW, [txt])
self.putpy(ss, es, 'RAW', (self.bitcount, pattern))
try:
value = self.interpreter(ss, es, pattern)
except:
value = None
if value is None:
return
self.putpy(ss, es, 'NUMBER', value)
try:
formatted = self.formatter(ss, es, value)
except:
formatted = None
if formatted:
self.putg(ss, es, Ann.NUM, formatted)
if self.interpreter == self.interp_enum:
cls = Ann.get_enum_idx(pattern)
self.putg(ss, es, cls, formatted)
self.putpy(ss, es, 'ENUM', (value, formatted))
def interp_unsigned(self, ss, es, pattern):
value = pattern
return value
def interp_signed(self, ss, es, pattern):
if not 'signmask' in self.interp_state:
self.interp_state.update({
'signmask': 1 << (self.bitcount - 1),
'signfull': 1 << self.bitcount,
})
is_neg = pattern & self.interp_state['signmask']
if is_neg:
value = -(self.interp_state['signfull'] - pattern)
else:
value = pattern
return value
def interp_fixpoint(self, ss, es, pattern):
if not 'fixdiv' in self.interp_state:
self.interp_state.update({
'fixsign': self.options['interp'] == 'fixsigned',
'fixdiv': 2 ** self.options['fracbits'],
})
if self.interp_state['fixsign']:
value = self.interp_signed(ss, es, pattern)
else:
value = self.interp_unsigned(ss, es, pattern)
value /= self.interp_state['fixdiv']
return value
def interp_ieee754(self, ss, es, pattern):
if not 'ieee_has_16bit' in self.interp_state:
self.interp_state.update({
'ieee_fmt_int_16': '=H',
'ieee_fmt_flt_16': '=e',
'ieee_fmt_int_32': '=L',
'ieee_fmt_flt_32': '=f',
'ieee_fmt_int_64': '=Q',
'ieee_fmt_flt_64': '=d',
})
try:
fmt = self.interp_state.update['ieee_fmt_flt_16']
has_16bit_support = 8 * struct.calcsize(fmt) == 16
except:
has_16bit_support = False
self.interp_state['ieee_has_16bit'] = has_16bit_support
if self.bitcount == 16:
if not self.interp_state['ieee_has_16bit']:
return None
buff = struct.pack(self.interp_state['ieee_fmt_int_16'], pattern)
value, = struct.unpack(self.interp_state['ieee_fmt_flt_16'], buff)
return value
if self.bitcount == 32:
buff = struct.pack(self.interp_state['ieee_fmt_int_32'], pattern)
value, = struct.unpack(self.interp_state['ieee_fmt_flt_32'], buff)
return value
if self.bitcount == 64:
buff = struct.pack(self.interp_state['ieee_fmt_int_64'], pattern)
value, = struct.unpack(self.interp_state['ieee_fmt_flt_64'], buff)
return value
return None
def interp_enum(self, ss, es, pattern):
if not 'enum_map' in self.interp_state:
self.interp_state.update({
'enum_fn': self.options['mapping'],
'enum_map': {},
'enum_have_map': False,
})
try:
fn = self.interp_state['enum_fn']
# TODO Optionally try in several locations? Next to the
# decoder implementation? Where else? Expect users to
# enter absolute paths?
with open(fn, 'r') as f:
maptext = f.read()
maptable = {}
if fn.endswith('.js') or fn.endswith('.json'):
# JSON requires string literals on the LHS, so the
# table is written "in reverse order".
js_table = json.loads(maptext)
for k, v in js_table.items():
maptable[v] = k
elif fn.endswith('.py'):
# Expect a specific identifier at the Python module
# level, and assume that it's a dictionary.
py_table = {}
exec(maptext, py_table)
maptable.update(py_table['enumtext'])
self.interp_state['enum_map'].update(maptable)
self.interp_state['enum_have_map'] = True
except:
# Silently ignore failure. This happens while the user
# is typing the filename, and is non-fatal. If the file
# exists and is not readable or not valid or of unknown
# format, the worst thing that can happen is that the
# decoder implementation keeps using "anonymous" phrases
# until a mapping has become available. No harm is done.
# This decoder cannot tell intermediate from final file
# read attempts, so we cannot raise severity here.
pass
value = self.interp_state['enum_map'].get(pattern, None)
if value is None:
value = pattern
return value
def format_native(self, ss, es, value):
return ['{}'.format(value),]
def format_bin(self, ss, es, value):
if not self.format_string:
self.format_string = '{{:0{}b}}'.format(self.bitcount)
return [self.format_string.format(value)]
def format_oct(self, ss, es, value):
if not self.format_string:
self.format_string = '{{:0{}o}}'.format((self.bitcount + 3 - 1) // 3)
return [self.format_string.format(value)]
def format_dec(self, ss, es, value):
if not self.format_string:
self.format_string = '{:d}'
return [self.format_string.format(value)]
def format_hex(self, ss, es, value):
if not self.format_string:
self.format_string = '{{:0{}x}}'.format((self.bitcount + 4 - 1) // 4)
return [self.format_string.format(value)]
def decode(self):
channels = [ch for ch in range(_max_channels) if self.has_channel(ch)]
have_clk = Pin.CLK in channels
if have_clk:
channels.remove(Pin.CLK)
if not channels:
raise ChannelError("Need at least one bit channel.")
if have_clk:
clkedge = {
'rising': 'r',
'falling': 'f',
'either': 'e',
}.get(self.options['clkedge'])
wait_cond = {Pin.CLK: clkedge}
else:
wait_cond = [{ch: 'e'} for ch in channels]
bitcount = self.options['count']
if not bitcount:
bitcount = channels[-1] - Pin.BIT_0 + 1
self.bitcount = bitcount
self.interpreter = {
'unsigned': self.interp_unsigned,
'signed': self.interp_signed,
'fixpoint': self.interp_fixpoint,
'fixsigned': self.interp_fixpoint,
'ieee754': self.interp_ieee754,
'enum': self.interp_enum,
}.get(self.options['interp'])
self.interp_state = {}
self.formatter = {
'-': self.format_native,
'bin': self.format_bin,
'oct': self.format_oct,
'dec': self.format_dec,
'hex': self.format_hex,
}.get(self.options['format'])
self.format_string = None
bFirst = True
cur_cond = None
while True:
(clk, d0, d1, d2, d3, d4, d5, d6, d7,d8, d9,d10 ,d11 ,d12 ,d13 ,d14 ,d15) = self.wait(cur_cond)
pins = (clk, d0, d1, d2, d3, d4, d5, d6, d7,d8, d9, d10, d11, d12,d13 ,d14 ,d15)
if bFirst:
bFirst = False
ss = self.samplenum
prev_pattern = self.grab_pattern(pins[Pin.BIT_0:])
cur_cond = wait_cond
continue
es = self.samplenum
pattern = self.grab_pattern(pins[Pin.BIT_0:])
if pattern == prev_pattern:
continue
self.handle_pattern(ss, es, prev_pattern)
ss = es
prev_pattern = pattern