342 lines
13 KiB
Python
Raw Normal View History

##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2010-2014 Uwe Hermann <uwe@hermann-uwe.de>
## Copyright (C) 2016 DreamSourceLab <support@dreamsourcelab.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
# TODO: Look into arbitration, collision detection, clock synchronisation, etc.
# TODO: Implement support for 10bit slave addresses.
# TODO: Implement support for inverting SDA/SCL levels (0->1 and 1->0).
# TODO: Implement support for detecting various bus errors.
import sigrokdecode as srd
'''
OUTPUT_PYTHON format:
Packet:
[<ptype>, <pdata>]
<ptype>:
- 'START' (START condition)
- 'START REPEAT' (Repeated START condition)
- 'ADDRESS READ' (Slave address, read)
- 'ADDRESS WRITE' (Slave address, write)
- 'DATA READ' (Data, read)
- 'DATA WRITE' (Data, write)
- 'STOP' (STOP condition)
- 'ACK' (ACK bit)
- 'NACK' (NACK bit)
- 'BITS' (<pdata>: list of data/address bits and their ss/es numbers)
<pdata> is the data or address byte associated with the 'ADDRESS*' and 'DATA*'
command. Slave addresses do not include bit 0 (the READ/WRITE indication bit).
For example, a slave address field could be 0x51 (instead of 0xa2).
For 'START', 'START REPEAT', 'STOP', 'ACK', and 'NACK' <pdata> is None.
'''
# CMD: [annotation-type-index, long annotation, short annotation]
proto = {
'START': [0, 'Start', 'S'],
'START REPEAT': [1, 'Start repeat', 'Sr'],
'STOP': [2, 'Stop', 'P'],
'ACK': [3, 'ACK', 'A'],
'NACK': [4, 'NACK', 'N'],
'READ': [5, 'Read', 'R'],
'WRITE': [6, 'Write', 'W'],
'BIT': [7, 'Bit', 'B'],
'ADDRESS READ': [8, 'Address read', 'AR'],
'ADDRESS WRITE': [9, 'Address write', 'AW'],
'DATA READ': [10, 'Data read', 'DR'],
'DATA WRITE': [11, 'Data write', 'DW'],
}
class SamplerateError(Exception):
pass
class Decoder(srd.Decoder):
api_version = 2
id = '1:i2c'
name = '1:I²C'
longname = 'Inter-Integrated Circuit'
desc = 'Two-wire, multi-master, serial bus.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['i2c']
channels = (
{'id': 'scl', 'name': 'SCL', 'desc': 'Serial clock line'},
{'id': 'sda', 'name': 'SDA', 'desc': 'Serial data line'},
)
options = (
{'id': 'address_format', 'desc': 'Displayed slave address format',
'default': 'shifted', 'values': ('shifted', 'unshifted')},
)
annotations = (
('7', 'start', 'Start condition'),
('6', 'repeat-start', 'Repeat start condition'),
('1', 'stop', 'Stop condition'),
('5', 'ack', 'ACK'),
('0', 'nack', 'NACK'),
('12', 'read', 'Read'),
('11', 'write', 'Write'),
('108', 'bit', 'Data/address bit'),
('112', 'address-read', 'Address read'),
('111', 'address-write', 'Address write'),
('110', 'data-read', 'Data read'),
('109', 'data-write', 'Data write'),
('1000', 'warnings', 'Human-readable warnings'),
)
annotation_rows = (
('bits', 'Bits', (7,)),
('addr-data', 'Address/Data', (0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11)),
('warnings', 'Warnings', (12,)),
)
binary = (
('address-read', 'Address read'),
('address-write', 'Address write'),
('data-read', 'Data read'),
('data-write', 'Data write'),
)
def __init__(self):
self.samplerate = None
self.ss = self.es = self.ss_byte = -1
self.samplenum = None
self.bitcount = 0
self.databyte = 0
self.wr = -1
self.is_repeat_start = 0
self.state = 'FIND START'
self.oldscl = self.oldsda = -1
self.pdu_start = None
#self.pdu_bits = 0
self.bits = []
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
def start(self):
self.out_python = self.register(srd.OUTPUT_PYTHON)
self.out_ann = self.register(srd.OUTPUT_ANN)
self.out_binary = self.register(srd.OUTPUT_BINARY)
self.out_bitrate = self.register(srd.OUTPUT_META,
meta=(int, 'Bitrate', 'Bitrate from Start bit to Stop bit'))
if not self.samplerate:
raise SamplerateError('Cannot decode without samplerate.')
def putx(self, data):
self.put(self.ss, self.es, self.out_ann, data)
def putp(self, data):
self.put(self.ss, self.es, self.out_python, data)
#def putb(self, data):
# self.put(self.ss, self.es, self.out_binary, data)
def found_start(self, scl, sda):
self.ss, self.es = self.samplenum, self.samplenum
self.pdu_start = self.samplenum
#self.pdu_bits = 0
cmd = 'START REPEAT' if (self.is_repeat_start == 1) else 'START'
self.putp([cmd, None])
self.putx([proto[cmd][0], proto[cmd][1:]])
self.state = 'FIND ADDRESS'
self.bitcount = self.databyte = 0
self.is_repeat_start = 1
self.wr = -1
self.bits = []
# Gather 7 bits of address, 1 bit of rd/wr, plus the ACK/NACK bit.
def found_address(self, scl, sda):
# Address and data are transmitted MSB-first.
self.databyte <<= 1
self.databyte |= sda
# Remember the start of the first data/address bit.
if self.bitcount == 0:
self.ss_byte = self.samplenum
# Store individual bits and their start/end samplenumbers.
# In the list, index 0 represents the MSB (I²C transmits MSB-first).
self.bits.insert(0, [sda, self.samplenum, self.samplenum])
if self.bitcount > 0:
self.bits[1][2] = self.samplenum
if self.bitcount == 7:
self.bitwidth = self.bits[1][2] - self.bits[2][2]
self.bits[0][2] += self.bitwidth
# Return if we haven't collected all 8 + 1 bits, yet.
if self.bitcount < 7:
self.bitcount += 1
return
# The READ/WRITE bit is only in address bytes, not data bytes.
self.wr = 0 if (self.databyte & 1) else 1
if self.options['address_format'] == 'shifted':
self.databyte = self.databyte >> 1
cmd = 'ADDRESS WRITE' if self.wr else 'ADDRESS READ'
#bin_class = 1 if self.wr else 0
self.ss, self.es = self.ss_byte, self.samplenum
self.putp(['BITS', self.bits])
self.putp([cmd, self.databyte])
#self.putb([bin_class, bytes([self.databyte])])
for bit in reversed(self.bits):
self.put(bit[1], bit[2], self.out_ann, [7, ['%d' % bit[0]]])
self.putx([proto[cmd][0], ['%s: %02X' % (proto[cmd][1], self.databyte),
'%s: %02X' % (proto[cmd][2], self.databyte), '%02X' % self.databyte]])
cmd = 'WRITE' if self.wr else 'READ'
self.ss, self.es = self.samplenum, self.samplenum + self.bitwidth
w = ['Write', 'Wr', 'W'] if self.wr else ['Read', 'Rd', 'R']
self.putx([proto[cmd][0], w])
# Done with this packet.
self.bitcount = self.databyte = 0
self.bits = []
self.state = 'FIND ACK'
# Gather 8 bits of data plus the ACK/NACK bit.
def found_data(self, scl, sda):
# Address and data are transmitted MSB-first.
self.databyte <<= 1
self.databyte |= sda
# Remember the start of the first data/address bit.
if self.bitcount == 0:
self.ss_byte = self.samplenum
# Store individual bits and their start/end samplenumbers.
# In the list, index 0 represents the MSB (I²C transmits MSB-first).
self.bits.insert(0, [sda, self.samplenum, self.samplenum])
if self.bitcount > 0:
self.bits[1][2] = self.samplenum
if self.bitcount == 7:
self.bitwidth = self.bits[1][2] - self.bits[2][2]
self.bits[0][2] += self.bitwidth
# Return if we haven't collected all 8 + 1 bits, yet.
if self.bitcount < 7:
self.bitcount += 1
return
cmd = 'DATA WRITE' if self.wr else 'DATA READ'
#bin_class = 3 if self.wr else 2
self.ss, self.es = self.ss_byte, self.samplenum + self.bitwidth
self.putp(['BITS', self.bits])
self.putp([cmd, self.databyte])
#self.putb([bin_class, bytes([self.databyte])])
for bit in reversed(self.bits):
self.put(bit[1], bit[2], self.out_ann, [7, ['%d' % bit[0]]])
self.putx([proto[cmd][0], ['%s: %02X' % (proto[cmd][1], self.databyte),
'%s: %02X' % (proto[cmd][2], self.databyte), '%02X' % self.databyte]])
# Done with this packet.
self.bitcount = self.databyte = 0
self.bits = []
self.state = 'FIND ACK'
def get_ack(self, scl, sda):
self.ss, self.es = self.samplenum, self.samplenum + self.bitwidth
cmd = 'NACK' if (sda == 1) else 'ACK'
self.putp([cmd, None])
self.putx([proto[cmd][0], proto[cmd][1:]])
# There could be multiple data bytes in a row, so either find
# another data byte or a STOP condition next.
self.state = 'FIND DATA'
def found_stop(self, scl, sda):
# Meta bitrate
#elapsed = 1 / float(self.samplerate) * (self.samplenum - self.pdu_start + 1)
#bitrate = int(1 / elapsed * self.pdu_bits)
#self.put(self.ss_byte, self.samplenum, self.out_bitrate, bitrate)
cmd = 'STOP'
self.ss, self.es = self.samplenum, self.samplenum
self.putp([cmd, None])
self.putx([proto[cmd][0], proto[cmd][1:]])
self.state = 'FIND START'
self.is_repeat_start = 0
self.wr = -1
self.bits = []
def decode(self, ss, es, logic):
for (self.samplenum, pins) in logic:
(scl, sda) = pins
#self.pdu_bits += 1
logic.logic_mask = 0b11
logic.cur_pos = self.samplenum
logic.edge_index = -1
# State machine.
if self.state == 'FIND START':
# START condition (S): SDA = falling, SCL = high
if (self.oldsda == 1 and sda == 0) and scl == 1:
self.found_start(scl, sda)
logic.exp_logic = 0b01
logic.logic_mask = 0b01
logic.edge_index = 0
scl = 0
else:
logic.exp_logic = 0b01
logic.logic_mask = 0b11
logic.edge_index = 1
sda = 1
elif self.state == 'FIND ADDRESS':
# Data sampling of receiver: SCL = rising
if self.oldscl == 0 and scl == 1:
self.found_address(scl, sda)
# START condition (S): SDA = falling, SCL = high
elif (self.oldsda == 1 and sda == 0) and scl == 1:
self.found_start(scl, sda)
# STOP condition (P): SDA = rising, SCL = high
elif (self.oldsda == 0 and sda == 1) and scl == 1:
self.found_stop(scl, sda)
elif self.state == 'FIND DATA':
# Data sampling of receiver: SCL = rising
if self.oldscl == 0 and scl == 1:
self.found_data(scl, sda)
# START condition (S): SDA = falling, SCL = high
elif (self.oldsda == 1 and sda == 0) and scl == 1:
self.found_start(scl, sda)
# STOP condition (P): SDA = rising, SCL = high
elif (self.oldsda == 0 and sda == 1) and scl == 1:
self.found_stop(scl, sda)
elif self.state == 'FIND ACK':
# Data sampling of receiver: SCL = rising
if self.oldscl == 0 and scl == 1:
self.get_ack(scl, sda)
logic.exp_logic = 0b01
logic.logic_mask = 0b01
logic.edge_index = 0
scl = 0
# Save current SDA/SCL values for the next round.
self.oldscl, self.oldsda = scl, sda