mirror of
https://github.com/DreamSourceLab/DSView.git
synced 2025-01-13 13:32:53 +08:00
205 lines
7.6 KiB
Python
205 lines
7.6 KiB
Python
|
##
|
||
|
## This file is part of the libsigrokdecode project.
|
||
|
##
|
||
|
## Copyright (C) 2014 Sebastien Bourdelin <sebastien.bourdelin@savoirfairelinux.com>
|
||
|
##
|
||
|
## This program is free software; you can redistribute it and/or modify
|
||
|
## it under the terms of the GNU General Public License as published by
|
||
|
## the Free Software Foundation; either version 2 of the License, or
|
||
|
## (at your option) any later version.
|
||
|
##
|
||
|
## This program is distributed in the hope that it will be useful,
|
||
|
## but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
## GNU General Public License for more details.
|
||
|
##
|
||
|
## You should have received a copy of the GNU General Public License
|
||
|
## along with this program; if not, write to the Free Software
|
||
|
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
##
|
||
|
|
||
|
import sigrokdecode as srd
|
||
|
|
||
|
# Helper dictionary for edge detection.
|
||
|
edge_detector = {
|
||
|
'rising': lambda x, y: bool(not x and y),
|
||
|
'falling': lambda x, y: bool(x and not y),
|
||
|
'both': lambda x, y: bool(x ^ y),
|
||
|
}
|
||
|
|
||
|
class SamplerateError(Exception):
|
||
|
pass
|
||
|
|
||
|
class Decoder(srd.Decoder):
|
||
|
api_version = 2
|
||
|
id = 'jitter'
|
||
|
name = 'Jitter'
|
||
|
longname = 'Timing jitter calculation'
|
||
|
desc = 'Retrieves the timing jitter between two digital signals.'
|
||
|
license = 'gplv2+'
|
||
|
inputs = ['logic']
|
||
|
outputs = ['jitter']
|
||
|
channels = (
|
||
|
{'id': 'clk', 'name': 'Clock', 'desc': 'Clock reference channel'},
|
||
|
{'id': 'sig', 'name': 'Resulting signal', 'desc': 'Resulting signal controlled by the clock'},
|
||
|
)
|
||
|
options = (
|
||
|
{'id': 'clk_polarity', 'desc': 'Clock edge polarity',
|
||
|
'default': 'rising', 'values': ('rising', 'falling', 'both')},
|
||
|
{'id': 'sig_polarity', 'desc': 'Resulting signal edge polarity',
|
||
|
'default': 'rising', 'values': ('rising', 'falling', 'both')},
|
||
|
)
|
||
|
annotations = (
|
||
|
('jitter', 'Jitter value'),
|
||
|
('clk_missed', 'Clock missed'),
|
||
|
('sig_missed', 'Signal missed'),
|
||
|
)
|
||
|
annotation_rows = (
|
||
|
('jitter', 'Jitter values', (0,)),
|
||
|
('clk_missed', 'Clock missed', (1,)),
|
||
|
('sig_missed', 'Signal missed', (2,)),
|
||
|
)
|
||
|
binary = (
|
||
|
('ascii-float', 'Jitter values as newline-separated ASCII floats'),
|
||
|
)
|
||
|
|
||
|
def __init__(self):
|
||
|
self.state = 'CLK'
|
||
|
self.samplerate = None
|
||
|
self.oldpin = None
|
||
|
self.oldclk = self.oldsig = None
|
||
|
self.clk_start = None
|
||
|
self.sig_start = None
|
||
|
self.clk_missed = 0
|
||
|
self.sig_missed = 0
|
||
|
|
||
|
def start(self):
|
||
|
self.clk_edge = edge_detector[self.options['clk_polarity']]
|
||
|
self.sig_edge = edge_detector[self.options['sig_polarity']]
|
||
|
self.out_ann = self.register(srd.OUTPUT_ANN)
|
||
|
self.out_binary = self.register(srd.OUTPUT_BINARY)
|
||
|
self.out_clk_missed = self.register(srd.OUTPUT_META,
|
||
|
meta=(int, 'Clock missed', 'Clock transition missed'))
|
||
|
self.out_sig_missed = self.register(srd.OUTPUT_META,
|
||
|
meta=(int, 'Signal missed', 'Resulting signal transition missed'))
|
||
|
|
||
|
def metadata(self, key, value):
|
||
|
if key == srd.SRD_CONF_SAMPLERATE:
|
||
|
self.samplerate = value
|
||
|
|
||
|
# Helper function for jitter time annotations.
|
||
|
def putx(self, delta):
|
||
|
# Adjust granularity.
|
||
|
if delta == 0 or delta >= 1:
|
||
|
delta_s = '%.1fs' % (delta)
|
||
|
elif delta <= 1e-12:
|
||
|
delta_s = '%.1ffs' % (delta * 1e15)
|
||
|
elif delta <= 1e-9:
|
||
|
delta_s = '%.1fps' % (delta * 1e12)
|
||
|
elif delta <= 1e-6:
|
||
|
delta_s = '%.1fns' % (delta * 1e9)
|
||
|
elif delta <= 1e-3:
|
||
|
delta_s = '%.1fμs' % (delta * 1e6)
|
||
|
else:
|
||
|
delta_s = '%.1fms' % (delta * 1e3)
|
||
|
|
||
|
self.put(self.clk_start, self.sig_start, self.out_ann, [0, [delta_s]])
|
||
|
|
||
|
# Helper function for ASCII float jitter values (one value per line).
|
||
|
def putb(self, delta):
|
||
|
if delta is None:
|
||
|
return
|
||
|
# Format the delta to an ASCII float value terminated by a newline.
|
||
|
x = str(delta) + '\n'
|
||
|
#self.put(self.clk_start, self.sig_start, self.out_binary,
|
||
|
# [0, x.encode('UTF-8')])
|
||
|
|
||
|
# Helper function for missed clock and signal annotations.
|
||
|
def putm(self, data):
|
||
|
self.put(self.samplenum, self.samplenum, self.out_ann, data)
|
||
|
|
||
|
def handle_clk(self, clk, sig):
|
||
|
if self.clk_start == self.samplenum:
|
||
|
# Clock transition already treated.
|
||
|
# We have done everything we can with this sample.
|
||
|
return True
|
||
|
|
||
|
if self.clk_edge(self.oldclk, clk):
|
||
|
# Clock edge found.
|
||
|
# We note the sample and move to the next state.
|
||
|
self.clk_start = self.samplenum
|
||
|
self.state = 'SIG'
|
||
|
return False
|
||
|
else:
|
||
|
if self.sig_start is not None \
|
||
|
and self.sig_start != self.samplenum \
|
||
|
and self.sig_edge(self.oldsig, sig):
|
||
|
# If any transition in the resulting signal
|
||
|
# occurs while we are waiting for a clock,
|
||
|
# we increase the missed signal counter.
|
||
|
self.sig_missed += 1
|
||
|
self.put(self.samplenum, self.samplenum, self.out_sig_missed, self.sig_missed)
|
||
|
self.putm([2, ['Missed signal', 'MS']])
|
||
|
# No clock edge found, we have done everything we
|
||
|
# can with this sample.
|
||
|
return True
|
||
|
|
||
|
def handle_sig(self, clk, sig):
|
||
|
if self.sig_start == self.samplenum:
|
||
|
# Signal transition already treated.
|
||
|
# We have done everything we can with this sample.
|
||
|
return True
|
||
|
|
||
|
if self.sig_edge(self.oldsig, sig):
|
||
|
# Signal edge found.
|
||
|
# We note the sample, calculate the jitter
|
||
|
# and move to the next state.
|
||
|
self.sig_start = self.samplenum
|
||
|
self.state = 'CLK'
|
||
|
# Calculate and report the timing jitter.
|
||
|
delta = (self.sig_start - self.clk_start) / self.samplerate
|
||
|
self.putx(delta)
|
||
|
self.putb(delta)
|
||
|
return False
|
||
|
else:
|
||
|
if self.clk_start != self.samplenum \
|
||
|
and self.clk_edge(self.oldclk, clk):
|
||
|
# If any transition in the clock signal
|
||
|
# occurs while we are waiting for a resulting
|
||
|
# signal, we increase the missed clock counter.
|
||
|
self.clk_missed += 1
|
||
|
self.put(self.samplenum, self.samplenum, self.out_clk_missed, self.clk_missed)
|
||
|
self.putm([1, ['Missed clock', 'MC']])
|
||
|
# No resulting signal edge found, we have done
|
||
|
# everything we can with this sample.
|
||
|
return True
|
||
|
|
||
|
def decode(self, ss, es, data):
|
||
|
if not self.samplerate:
|
||
|
raise SamplerateError('Cannot decode without samplerate.')
|
||
|
|
||
|
for (self.samplenum, pins) in data:
|
||
|
data.itercnt += 1
|
||
|
# We are only interested in transitions.
|
||
|
if self.oldpin == pins:
|
||
|
continue
|
||
|
|
||
|
self.oldpin, (clk, sig) = pins, pins
|
||
|
|
||
|
if self.oldclk is None and self.oldsig is None:
|
||
|
self.oldclk, self.oldsig = clk, sig
|
||
|
|
||
|
# State machine:
|
||
|
# For each sample we can move 2 steps forward in the state machine.
|
||
|
while True:
|
||
|
# Clock state has the lead.
|
||
|
if self.state == 'CLK':
|
||
|
if self.handle_clk(clk, sig):
|
||
|
break
|
||
|
if self.state == 'SIG':
|
||
|
if self.handle_sig(clk, sig):
|
||
|
break
|
||
|
|
||
|
# Save current CLK/SIG values for the next round.
|
||
|
self.oldclk, self.oldsig = clk, sig
|