414 lines
16 KiB
Python
Raw Normal View History

##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2019 Stephan Thiele <stephan.thiele@mailbox.org>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
# Selection of constants as defined in FlexRay specification 3.0.1 Chapter A.1:
class Const:
cChannelIdleDelimiter = 11
cCrcInitA = 0xFEDCBA
cCrcInitB = 0xABCDEF
cCrcPolynomial = 0x5D6DCB
cCrcSize = 24
cCycleCountMax = 63
cdBSS = 2
cdCAS = 30
cdFES = 2
cdFSS = 1
cHCrcInit = 0x01A
cHCrcPolynomial = 0x385
cHCrcSize = 11
cSamplesPerBit = 8
cSlotIDMax = 2047
cStaticSlotIDMax = 1023
cVotingSamples = 5
class SamplerateError(Exception):
pass
class Decoder(srd.Decoder):
api_version = 3
id = 'flexray'
name = 'FlexRay'
longname = 'FlexRay'
desc = 'Automotive network communications protocol.'
license = 'gplv2+'
inputs = ['logic']
outputs = []
tags = ['Automotive']
channels = (
{'id': 'channel', 'name': 'Channel', 'desc': 'FlexRay bus channel'},
)
options = (
{'id': 'channel_type', 'desc': 'Channel type', 'default': 'A',
'values': ('A', 'B')},
{'id': 'bitrate', 'desc': 'Bitrate (bit/s)', 'default': 10000000,
'values': (10000000, 5000000, 2500000)},
)
annotations = (
('data', 'FlexRay payload data'),
('tss', 'Transmission start sequence'),
('fss', 'Frame start sequence'),
('reserved-bit', 'Reserved bit'),
('ppi', 'Payload preamble indicator'),
('null-frame', 'Nullframe indicator'),
('sync-frame', 'Full identifier'),
('startup-frame', 'Startup frame indicator'),
('id', 'Frame ID'),
('length', 'Data length'),
('header-crc', 'Header CRC'),
('cycle', 'Cycle code'),
('data-byte', 'Data byte'),
('frame-crc', 'Frame CRC'),
('fes', 'Frame end sequence'),
('bss', 'Byte start sequence'),
('warning', 'Warning'),
('bit', 'Bit'),
('cid', 'Channel idle delimiter'),
('dts', 'Dynamic trailing sequence'),
('cas', 'Collision avoidance symbol'),
)
annotation_rows = (
('bits', 'Bits', (15, 17)),
('fields', 'Fields', tuple(range(15)) + (18, 19, 20)),
('warnings', 'Warnings', (16,)),
)
def __init__(self):
self.reset()
def reset(self):
self.samplerate = None
self.reset_variables()
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
bitrate = float(self.options['bitrate'])
self.samplerate = value
self.bit_width = float(self.samplerate) / bitrate
self.sample_point = (self.bit_width / 100.0) * self.sample_point_percent
# Generic helper for FlexRay bit annotations.
def putg(self, ss, es, data):
left, right = int(self.sample_point), int(self.bit_width - self.sample_point)
self.put(ss - left, es + right, self.out_ann, data)
# Single-FlexRay-bit annotation using the current samplenum.
def putx(self, data):
self.putg(self.samplenum, self.samplenum, data)
# Multi-FlexRay-bit annotation from self.ss_block to current samplenum.
def putb(self, data):
self.putg(self.ss_block, self.samplenum, data)
# Generic CRC algorithm for any bit size and any data length. Used for
# 11-bit header and 24-bit trailer. Not very efficient but at least it
# works for now.
#
# TODO:
# - use precalculated tables to increase performance.
# - Add support for reverse CRC calculations.
@staticmethod
def crc(data, data_len_bits, polynom, crc_len_bits, iv=0, xor=0):
reg = iv ^ xor
for i in range(data_len_bits - 1, -1, -1):
bit = ((reg >> (crc_len_bits - 1)) & 0x1) ^ ((data >> i) & 0x1)
reg <<= 1
if bit:
reg ^= polynom
mask = (1 << crc_len_bits) - 1
crc = reg & mask
return crc ^ xor
def reset_variables(self):
self.sample_point_percent = 50 # TODO: use vote based sampling
self.state = 'IDLE'
self.tss_start = self.tss_end = self.frame_type = self.dlc = None
self.rawbits = [] # All bits, including byte start sequence bits
self.bits = [] # Only actual FlexRay frame bits (no byte start sequence bits)
self.curbit = 0 # Current bit of FlexRay frame (bit 0 == FSS)
self.last_databit = 999 # Positive value that bitnum+x will never match
self.last_xmit_bit = 999 # Positive value that bitnum+x will never match
self.ss_block = None
self.ss_databytebits = []
self.end_of_frame = False
self.dynamic_frame = False
self.ss_bit0 = None
self.ss_bit1 = None
self.ss_bit2 = None
# Poor man's clock synchronization. Use signal edges which change to
# dominant state in rather simple ways. This naive approach is neither
# aware of the SYNC phase's width nor the specific location of the edge,
# but improves the decoder's reliability when the input signal's bitrate
# does not exactly match the nominal rate.
def dom_edge_seen(self, force=False):
self.dom_edge_snum = self.samplenum
self.dom_edge_bcount = self.curbit
# Determine the position of the next desired bit's sample point.
def get_sample_point(self, bitnum):
samplenum = self.dom_edge_snum
samplenum += self.bit_width * (bitnum - self.dom_edge_bcount)
samplenum += self.sample_point
return int(samplenum)
def is_bss_sequence(self):
# FlexRay uses NRZ encoding and adds a binary 10 sequence before each
# byte. After each 8 data bits, a BSS sequence is added but not after
# frame CRC.
if self.end_of_frame:
return False
if (len(self.rawbits) - 2) % 10 == 0:
return True
elif (len(self.rawbits) - 3) % 10 == 0:
return True
return False
def handle_bit(self, fr_rx):
self.rawbits.append(fr_rx)
self.bits.append(fr_rx)
# Get the index of the current FlexRay frame bit.
bitnum = len(self.bits) - 1
# If this is a byte start sequence remove it from self.bits and ignore it.
if self.is_bss_sequence():
self.bits.pop()
if bitnum > 1:
self.putx([15, [str(fr_rx)]])
else:
if len(self.rawbits) == 2:
self.ss_bit1 = self.samplenum
elif len(self.rawbits) == 3:
self.ss_bit2 = self.samplenum
self.curbit += 1 # Increase self.curbit (bitnum is not affected).
return
else:
if bitnum > 1:
self.putx([17, [str(fr_rx)]])
# Bit 0: Frame start sequence (FSS) bit
if bitnum == 0:
self.ss_bit0 = self.samplenum
# Bit 1: Start of header
elif bitnum == 1:
if self.rawbits[:3] == [1, 1, 0]:
self.put(self.tss_start, self.tss_end, self.out_ann,
[1, ['Transmission start sequence', 'TSS']])
self.putg(self.ss_bit0, self.ss_bit0, [17, [str(self.rawbits[:3][0])]])
self.putg(self.ss_bit0, self.ss_bit0, [2, ['FSS', 'Frame start sequence']])
self.putg(self.ss_bit1, self.ss_bit1, [15, [str(self.rawbits[:3][1])]])
self.putg(self.ss_bit2, self.ss_bit2, [15, [str(self.rawbits[:3][2])]])
self.putx([17, [str(fr_rx)]])
self.putx([3, ['Reserved bit: %d' % fr_rx, 'RB: %d' % fr_rx, 'RB']])
else:
self.put(self.tss_start, self.tss_end, self.out_ann,
[20, ['Collision avoidance symbol', 'CAS']])
self.reset_variables()
# TODO: warning, if sequence is neither [1, 1, 0] nor [1, 1, 1]
# Bit 2: Payload preamble indicator. Must be 0 if null frame indicator is 0.
elif bitnum == 2:
self.putx([4, ['Payload preamble indicator: %d' % fr_rx,
'PPI: %d' % fr_rx]])
# Bit 3: Null frame indicator (inversed)
elif bitnum == 3:
data_type = 'data frame' if fr_rx else 'null frame'
self.putx([5, ['Null frame indicator: %s' % data_type,
'NF: %d' % fr_rx, 'NF']])
# Bit 4: Sync frame indicator
# Must be 1 if startup frame indicator is 1.
elif bitnum == 4:
self.putx([6, ['Sync frame indicator: %d' % fr_rx,
'Sync: %d' % fr_rx, 'Sync']])
# Bit 5: Startup frame indicator
elif bitnum == 5:
self.putx([7, ['Startup frame indicator: %d' % fr_rx,
'Startup: %d' % fr_rx, 'Startup']])
# Remember start of ID (see below).
elif bitnum == 6:
self.ss_block = self.samplenum
# Bits 6-16: Frame identifier (ID[10..0])
# ID must NOT be 0.
elif bitnum == 16:
self.id = int(''.join(str(d) for d in self.bits[6:]), 2)
self.putb([8, ['Frame ID: %d' % self.id, 'ID: %d' % self.id,
'%d' % self.id]])
# Remember start of payload length (see below).
elif bitnum == 17:
self.ss_block = self.samplenum
# Bits 17-23: Payload length (Length[7..0])
# Payload length in header is the half of the real payload size.
elif bitnum == 23:
self.payload_length = int(''.join(str(d) for d in self.bits[17:]), 2)
self.putb([9, ['Payload length: %d' % self.payload_length,
'Length: %d' % self.payload_length,
'%d' % self.payload_length]])
# Remember start of header CRC (see below).
elif bitnum == 24:
self.ss_block = self.samplenum
# Bits 24-34: Header CRC (11-bit) (HCRC[11..0])
# Calculation of header CRC is equal on both channels.
elif bitnum == 34:
bits = ''.join([str(b) for b in self.bits[4:24]])
header_to_check = int(bits, 2)
expected_crc = self.crc(header_to_check, len(bits),
Const.cHCrcPolynomial, Const.cHCrcSize, Const.cHCrcInit)
self.header_crc = int(''.join(str(d) for d in self.bits[24:]), 2)
crc_ok = self.header_crc == expected_crc
crc_ann = "OK" if crc_ok else "bad"
self.putb([10, ['Header CRC: 0x%X (%s)' % (self.header_crc, crc_ann),
'0x%X (%s)' % (self.header_crc, crc_ann),
'0x%X' % self.header_crc]])
# Remember start of cycle code (see below).
elif bitnum == 35:
self.ss_block = self.samplenum
# Bits 35-40: Cycle code (Cyc[6..0])
# Cycle code. Must be between 0 and 63.
elif bitnum == 40:
self.cycle = int(''.join(str(d) for d in self.bits[35:]), 2)
self.putb([11, ['Cycle: %d' % self.cycle, 'Cyc: %d' % self.cycle,
'%d' % self.cycle]])
self.last_databit = 41 + 2 * self.payload_length * 8
# Remember all databyte bits, except the very last one.
elif bitnum in range(41, self.last_databit):
self.ss_databytebits.append(self.samplenum)
# Bits 41-X: Data field (0-254 bytes, depending on length)
# The bits within a data byte are transferred MSB-first.
elif bitnum == self.last_databit:
self.ss_databytebits.append(self.samplenum) # Last databyte bit.
for i in range(2 * self.payload_length):
x = 40 + (8 * i) + 1
b = int(''.join(str(d) for d in self.bits[x:x + 8]), 2)
ss = self.ss_databytebits[i * 8]
es = self.ss_databytebits[((i + 1) * 8) - 1]
self.putg(ss, es, [12, ['Data byte %d: 0x%02x' % (i, b),
'DB%d: 0x%02x' % (i, b), '%02X' % b]])
self.ss_databytebits = []
self.ss_block = self.samplenum # Remember start of trailer CRC.
# Trailer CRC (24-bit) (CRC[11..0])
# Initialization vector of channel A and B are different, so CRCs are
# different for same data.
elif bitnum == self.last_databit + 23:
bits = ''.join([str(b) for b in self.bits[1:-24]])
frame_to_check = int(bits, 2)
iv = Const.cCrcInitA if self.options['channel_type'] == 'A' else Const.cCrcInitB
expected_crc = self.crc(frame_to_check, len(bits),
Const.cCrcPolynomial, Const.cCrcSize, iv=iv)
self.frame_crc = int(''.join(str(d) for d in self.bits[self.last_databit:]), 2)
crc_ok = self.frame_crc == expected_crc
crc_ann = "OK" if crc_ok else "bad"
self.putb([13, ['Frame CRC: 0x%X (%s)' % (self.frame_crc, crc_ann),
'0x%X (%s)' % (self.frame_crc, crc_ann),
'0x%X' % self.frame_crc]])
self.end_of_frame = True
# Remember start of frame end sequence (see below).
elif bitnum == self.last_databit + 24:
self.ss_block = self.samplenum
# Frame end sequence, must be 1 followed by 0.
elif bitnum == self.last_databit + 25:
self.putb([14, ['Frame end sequence', 'FES']])
# Check for DTS
elif bitnum == self.last_databit + 26:
if not fr_rx:
self.dynamic_frame = True
else:
self.last_xmit_bit = bitnum
self.ss_block = self.samplenum
# Remember start of channel idle delimiter (see below).
elif bitnum == self.last_xmit_bit:
self.ss_block = self.samplenum
# Channel idle limiter (CID[11..0])
elif bitnum == self.last_xmit_bit + Const.cChannelIdleDelimiter - 1:
self.putb([18, ['Channel idle delimiter', 'CID']])
self.reset_variables()
# DTS if dynamic frame
elif bitnum > self.last_databit + 27:
if self.dynamic_frame:
if fr_rx:
if self.last_xmit_bit == 999:
self.putb([19, ['Dynamic trailing sequence', 'DTS']])
self.last_xmit_bit = bitnum + 1
self.ss_block = self.samplenum
self.curbit += 1
def decode(self):
if not self.samplerate:
raise SamplerateError('Cannot decode without samplerate.')
while True:
# State machine.
if self.state == 'IDLE':
# Wait for a dominant state (logic 0) on the bus.
(fr_rx,) = self.wait({0: 'l'})
self.tss_start = self.samplenum
(fr_rx,) = self.wait({0: 'h'})
self.tss_end = self.samplenum
self.dom_edge_seen(force = True)
self.state = 'GET BITS'
elif self.state == 'GET BITS':
# Wait until we're in the correct bit/sampling position.
pos = self.get_sample_point(self.curbit)
(fr_rx,) = self.wait([{'skip': pos - self.samplenum}, {0: 'f'}])
if self.matched[1]:
self.dom_edge_seen()
if self.matched[0]:
self.handle_bit(fr_rx)