mirror of
https://github.com/DreamSourceLab/DSView.git
synced 2025-01-23 13:42:55 +08:00
Add 'FlexRay' decoder from libsigrokdecode codebase
This commit is contained in:
parent
48ec33c45c
commit
3d34e69c77
32
libsigrokdecode4DSL/decoders/flexray/__init__.py
Normal file
32
libsigrokdecode4DSL/decoders/flexray/__init__.py
Normal file
@ -0,0 +1,32 @@
|
||||
##
|
||||
## This file is part of the libsigrokdecode project.
|
||||
##
|
||||
## Copyright (C) 2019 Stephan Thiele <stephan.thiele@mailbox.org>
|
||||
##
|
||||
## This program is free software; you can redistribute it and/or modify
|
||||
## it under the terms of the GNU General Public License as published by
|
||||
## the Free Software Foundation; either version 2 of the License, or
|
||||
## (at your option) any later version.
|
||||
##
|
||||
## This program is distributed in the hope that it will be useful,
|
||||
## but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
## GNU General Public License for more details.
|
||||
##
|
||||
## You should have received a copy of the GNU General Public License
|
||||
## along with this program; if not, see <http://www.gnu.org/licenses/>.
|
||||
##
|
||||
|
||||
'''
|
||||
FlexRay is a fast, deterministic and fault-tolerant fieldbus system
|
||||
which is used in cars in high security related areas like X-by-Wire.
|
||||
|
||||
It is the result of the FlexRay consortium which consisted of BMW,
|
||||
Daimler, Motorola (today Freescale) and Philips, with the goal of
|
||||
working out a common standard automotive bus system.
|
||||
|
||||
This decoder assumes that at least one channel of a logic level RX line
|
||||
of a transceiver is sampled (e.g. NXP TJA1080).
|
||||
'''
|
||||
|
||||
from .pd import Decoder
|
413
libsigrokdecode4DSL/decoders/flexray/pd.py
Normal file
413
libsigrokdecode4DSL/decoders/flexray/pd.py
Normal file
@ -0,0 +1,413 @@
|
||||
##
|
||||
## This file is part of the libsigrokdecode project.
|
||||
##
|
||||
## Copyright (C) 2019 Stephan Thiele <stephan.thiele@mailbox.org>
|
||||
##
|
||||
## This program is free software; you can redistribute it and/or modify
|
||||
## it under the terms of the GNU General Public License as published by
|
||||
## the Free Software Foundation; either version 2 of the License, or
|
||||
## (at your option) any later version.
|
||||
##
|
||||
## This program is distributed in the hope that it will be useful,
|
||||
## but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
## GNU General Public License for more details.
|
||||
##
|
||||
## You should have received a copy of the GNU General Public License
|
||||
## along with this program; if not, see <http://www.gnu.org/licenses/>.
|
||||
##
|
||||
|
||||
import sigrokdecode as srd
|
||||
|
||||
# Selection of constants as defined in FlexRay specification 3.0.1 Chapter A.1:
|
||||
class Const:
|
||||
cChannelIdleDelimiter = 11
|
||||
cCrcInitA = 0xFEDCBA
|
||||
cCrcInitB = 0xABCDEF
|
||||
cCrcPolynomial = 0x5D6DCB
|
||||
cCrcSize = 24
|
||||
cCycleCountMax = 63
|
||||
cdBSS = 2
|
||||
cdCAS = 30
|
||||
cdFES = 2
|
||||
cdFSS = 1
|
||||
cHCrcInit = 0x01A
|
||||
cHCrcPolynomial = 0x385
|
||||
cHCrcSize = 11
|
||||
cSamplesPerBit = 8
|
||||
cSlotIDMax = 2047
|
||||
cStaticSlotIDMax = 1023
|
||||
cVotingSamples = 5
|
||||
|
||||
class SamplerateError(Exception):
|
||||
pass
|
||||
|
||||
class Decoder(srd.Decoder):
|
||||
api_version = 3
|
||||
id = 'flexray'
|
||||
name = 'FlexRay'
|
||||
longname = 'FlexRay'
|
||||
desc = 'Automotive network communications protocol.'
|
||||
license = 'gplv2+'
|
||||
inputs = ['logic']
|
||||
outputs = []
|
||||
tags = ['Automotive']
|
||||
channels = (
|
||||
{'id': 'channel', 'name': 'Channel', 'desc': 'FlexRay bus channel'},
|
||||
)
|
||||
options = (
|
||||
{'id': 'channel_type', 'desc': 'Channel type', 'default': 'A',
|
||||
'values': ('A', 'B')},
|
||||
{'id': 'bitrate', 'desc': 'Bitrate (bit/s)', 'default': 10000000,
|
||||
'values': (10000000, 5000000, 2500000)},
|
||||
)
|
||||
annotations = (
|
||||
('data', 'FlexRay payload data'),
|
||||
('tss', 'Transmission start sequence'),
|
||||
('fss', 'Frame start sequence'),
|
||||
('reserved-bit', 'Reserved bit'),
|
||||
('ppi', 'Payload preamble indicator'),
|
||||
('null-frame', 'Nullframe indicator'),
|
||||
('sync-frame', 'Full identifier'),
|
||||
('startup-frame', 'Startup frame indicator'),
|
||||
('id', 'Frame ID'),
|
||||
('length', 'Data length'),
|
||||
('header-crc', 'Header CRC'),
|
||||
('cycle', 'Cycle code'),
|
||||
('data-byte', 'Data byte'),
|
||||
('frame-crc', 'Frame CRC'),
|
||||
('fes', 'Frame end sequence'),
|
||||
('bss', 'Byte start sequence'),
|
||||
('warning', 'Warning'),
|
||||
('bit', 'Bit'),
|
||||
('cid', 'Channel idle delimiter'),
|
||||
('dts', 'Dynamic trailing sequence'),
|
||||
('cas', 'Collision avoidance symbol'),
|
||||
)
|
||||
annotation_rows = (
|
||||
('bits', 'Bits', (15, 17)),
|
||||
('fields', 'Fields', tuple(range(15)) + (18, 19, 20)),
|
||||
('warnings', 'Warnings', (16,)),
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
self.samplerate = None
|
||||
self.reset_variables()
|
||||
|
||||
def start(self):
|
||||
self.out_ann = self.register(srd.OUTPUT_ANN)
|
||||
|
||||
def metadata(self, key, value):
|
||||
if key == srd.SRD_CONF_SAMPLERATE:
|
||||
bitrate = float(self.options['bitrate'])
|
||||
self.samplerate = value
|
||||
self.bit_width = float(self.samplerate) / bitrate
|
||||
self.sample_point = (self.bit_width / 100.0) * self.sample_point_percent
|
||||
|
||||
# Generic helper for FlexRay bit annotations.
|
||||
def putg(self, ss, es, data):
|
||||
left, right = int(self.sample_point), int(self.bit_width - self.sample_point)
|
||||
self.put(ss - left, es + right, self.out_ann, data)
|
||||
|
||||
# Single-FlexRay-bit annotation using the current samplenum.
|
||||
def putx(self, data):
|
||||
self.putg(self.samplenum, self.samplenum, data)
|
||||
|
||||
# Multi-FlexRay-bit annotation from self.ss_block to current samplenum.
|
||||
def putb(self, data):
|
||||
self.putg(self.ss_block, self.samplenum, data)
|
||||
|
||||
# Generic CRC algorithm for any bit size and any data length. Used for
|
||||
# 11-bit header and 24-bit trailer. Not very efficient but at least it
|
||||
# works for now.
|
||||
#
|
||||
# TODO:
|
||||
# - use precalculated tables to increase performance.
|
||||
# - Add support for reverse CRC calculations.
|
||||
|
||||
@staticmethod
|
||||
def crc(data, data_len_bits, polynom, crc_len_bits, iv=0, xor=0):
|
||||
reg = iv ^ xor
|
||||
|
||||
for i in range(data_len_bits - 1, -1, -1):
|
||||
bit = ((reg >> (crc_len_bits - 1)) & 0x1) ^ ((data >> i) & 0x1)
|
||||
reg <<= 1
|
||||
if bit:
|
||||
reg ^= polynom
|
||||
|
||||
mask = (1 << crc_len_bits) - 1
|
||||
crc = reg & mask
|
||||
|
||||
return crc ^ xor
|
||||
|
||||
def reset_variables(self):
|
||||
self.sample_point_percent = 50 # TODO: use vote based sampling
|
||||
self.state = 'IDLE'
|
||||
self.tss_start = self.tss_end = self.frame_type = self.dlc = None
|
||||
self.rawbits = [] # All bits, including byte start sequence bits
|
||||
self.bits = [] # Only actual FlexRay frame bits (no byte start sequence bits)
|
||||
self.curbit = 0 # Current bit of FlexRay frame (bit 0 == FSS)
|
||||
self.last_databit = 999 # Positive value that bitnum+x will never match
|
||||
self.last_xmit_bit = 999 # Positive value that bitnum+x will never match
|
||||
self.ss_block = None
|
||||
self.ss_databytebits = []
|
||||
self.end_of_frame = False
|
||||
self.dynamic_frame = False
|
||||
self.ss_bit0 = None
|
||||
self.ss_bit1 = None
|
||||
self.ss_bit2 = None
|
||||
|
||||
# Poor man's clock synchronization. Use signal edges which change to
|
||||
# dominant state in rather simple ways. This naive approach is neither
|
||||
# aware of the SYNC phase's width nor the specific location of the edge,
|
||||
# but improves the decoder's reliability when the input signal's bitrate
|
||||
# does not exactly match the nominal rate.
|
||||
def dom_edge_seen(self, force=False):
|
||||
self.dom_edge_snum = self.samplenum
|
||||
self.dom_edge_bcount = self.curbit
|
||||
|
||||
# Determine the position of the next desired bit's sample point.
|
||||
def get_sample_point(self, bitnum):
|
||||
samplenum = self.dom_edge_snum
|
||||
samplenum += self.bit_width * (bitnum - self.dom_edge_bcount)
|
||||
samplenum += self.sample_point
|
||||
return int(samplenum)
|
||||
|
||||
def is_bss_sequence(self):
|
||||
# FlexRay uses NRZ encoding and adds a binary 10 sequence before each
|
||||
# byte. After each 8 data bits, a BSS sequence is added but not after
|
||||
# frame CRC.
|
||||
|
||||
if self.end_of_frame:
|
||||
return False
|
||||
|
||||
if (len(self.rawbits) - 2) % 10 == 0:
|
||||
return True
|
||||
elif (len(self.rawbits) - 3) % 10 == 0:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def handle_bit(self, fr_rx):
|
||||
self.rawbits.append(fr_rx)
|
||||
self.bits.append(fr_rx)
|
||||
|
||||
# Get the index of the current FlexRay frame bit.
|
||||
bitnum = len(self.bits) - 1
|
||||
|
||||
# If this is a byte start sequence remove it from self.bits and ignore it.
|
||||
if self.is_bss_sequence():
|
||||
self.bits.pop()
|
||||
|
||||
if bitnum > 1:
|
||||
self.putx([15, [str(fr_rx)]])
|
||||
else:
|
||||
if len(self.rawbits) == 2:
|
||||
self.ss_bit1 = self.samplenum
|
||||
elif len(self.rawbits) == 3:
|
||||
self.ss_bit2 = self.samplenum
|
||||
|
||||
self.curbit += 1 # Increase self.curbit (bitnum is not affected).
|
||||
return
|
||||
else:
|
||||
if bitnum > 1:
|
||||
self.putx([17, [str(fr_rx)]])
|
||||
|
||||
# Bit 0: Frame start sequence (FSS) bit
|
||||
if bitnum == 0:
|
||||
self.ss_bit0 = self.samplenum
|
||||
|
||||
# Bit 1: Start of header
|
||||
elif bitnum == 1:
|
||||
if self.rawbits[:3] == [1, 1, 0]:
|
||||
self.put(self.tss_start, self.tss_end, self.out_ann,
|
||||
[1, ['Transmission start sequence', 'TSS']])
|
||||
|
||||
self.putg(self.ss_bit0, self.ss_bit0, [17, [str(self.rawbits[:3][0])]])
|
||||
self.putg(self.ss_bit0, self.ss_bit0, [2, ['FSS', 'Frame start sequence']])
|
||||
self.putg(self.ss_bit1, self.ss_bit1, [15, [str(self.rawbits[:3][1])]])
|
||||
self.putg(self.ss_bit2, self.ss_bit2, [15, [str(self.rawbits[:3][2])]])
|
||||
self.putx([17, [str(fr_rx)]])
|
||||
self.putx([3, ['Reserved bit: %d' % fr_rx, 'RB: %d' % fr_rx, 'RB']])
|
||||
else:
|
||||
self.put(self.tss_start, self.tss_end, self.out_ann,
|
||||
[20, ['Collision avoidance symbol', 'CAS']])
|
||||
self.reset_variables()
|
||||
|
||||
# TODO: warning, if sequence is neither [1, 1, 0] nor [1, 1, 1]
|
||||
|
||||
# Bit 2: Payload preamble indicator. Must be 0 if null frame indicator is 0.
|
||||
elif bitnum == 2:
|
||||
self.putx([4, ['Payload preamble indicator: %d' % fr_rx,
|
||||
'PPI: %d' % fr_rx]])
|
||||
|
||||
# Bit 3: Null frame indicator (inversed)
|
||||
elif bitnum == 3:
|
||||
data_type = 'data frame' if fr_rx else 'null frame'
|
||||
self.putx([5, ['Null frame indicator: %s' % data_type,
|
||||
'NF: %d' % fr_rx, 'NF']])
|
||||
|
||||
# Bit 4: Sync frame indicator
|
||||
# Must be 1 if startup frame indicator is 1.
|
||||
elif bitnum == 4:
|
||||
self.putx([6, ['Sync frame indicator: %d' % fr_rx,
|
||||
'Sync: %d' % fr_rx, 'Sync']])
|
||||
|
||||
# Bit 5: Startup frame indicator
|
||||
elif bitnum == 5:
|
||||
self.putx([7, ['Startup frame indicator: %d' % fr_rx,
|
||||
'Startup: %d' % fr_rx, 'Startup']])
|
||||
|
||||
# Remember start of ID (see below).
|
||||
elif bitnum == 6:
|
||||
self.ss_block = self.samplenum
|
||||
|
||||
# Bits 6-16: Frame identifier (ID[10..0])
|
||||
# ID must NOT be 0.
|
||||
elif bitnum == 16:
|
||||
self.id = int(''.join(str(d) for d in self.bits[6:]), 2)
|
||||
self.putb([8, ['Frame ID: %d' % self.id, 'ID: %d' % self.id,
|
||||
'%d' % self.id]])
|
||||
|
||||
# Remember start of payload length (see below).
|
||||
elif bitnum == 17:
|
||||
self.ss_block = self.samplenum
|
||||
|
||||
# Bits 17-23: Payload length (Length[7..0])
|
||||
# Payload length in header is the half of the real payload size.
|
||||
elif bitnum == 23:
|
||||
self.payload_length = int(''.join(str(d) for d in self.bits[17:]), 2)
|
||||
self.putb([9, ['Payload length: %d' % self.payload_length,
|
||||
'Length: %d' % self.payload_length,
|
||||
'%d' % self.payload_length]])
|
||||
|
||||
# Remember start of header CRC (see below).
|
||||
elif bitnum == 24:
|
||||
self.ss_block = self.samplenum
|
||||
|
||||
# Bits 24-34: Header CRC (11-bit) (HCRC[11..0])
|
||||
# Calculation of header CRC is equal on both channels.
|
||||
elif bitnum == 34:
|
||||
bits = ''.join([str(b) for b in self.bits[4:24]])
|
||||
header_to_check = int(bits, 2)
|
||||
expected_crc = self.crc(header_to_check, len(bits),
|
||||
Const.cHCrcPolynomial, Const.cHCrcSize, Const.cHCrcInit)
|
||||
self.header_crc = int(''.join(str(d) for d in self.bits[24:]), 2)
|
||||
|
||||
crc_ok = self.header_crc == expected_crc
|
||||
crc_ann = "OK" if crc_ok else "bad"
|
||||
|
||||
self.putb([10, ['Header CRC: 0x%X (%s)' % (self.header_crc, crc_ann),
|
||||
'0x%X (%s)' % (self.header_crc, crc_ann),
|
||||
'0x%X' % self.header_crc]])
|
||||
|
||||
# Remember start of cycle code (see below).
|
||||
elif bitnum == 35:
|
||||
self.ss_block = self.samplenum
|
||||
|
||||
# Bits 35-40: Cycle code (Cyc[6..0])
|
||||
# Cycle code. Must be between 0 and 63.
|
||||
elif bitnum == 40:
|
||||
self.cycle = int(''.join(str(d) for d in self.bits[35:]), 2)
|
||||
self.putb([11, ['Cycle: %d' % self.cycle, 'Cyc: %d' % self.cycle,
|
||||
'%d' % self.cycle]])
|
||||
self.last_databit = 41 + 2 * self.payload_length * 8
|
||||
|
||||
# Remember all databyte bits, except the very last one.
|
||||
elif bitnum in range(41, self.last_databit):
|
||||
self.ss_databytebits.append(self.samplenum)
|
||||
|
||||
# Bits 41-X: Data field (0-254 bytes, depending on length)
|
||||
# The bits within a data byte are transferred MSB-first.
|
||||
elif bitnum == self.last_databit:
|
||||
self.ss_databytebits.append(self.samplenum) # Last databyte bit.
|
||||
for i in range(2 * self.payload_length):
|
||||
x = 40 + (8 * i) + 1
|
||||
b = int(''.join(str(d) for d in self.bits[x:x + 8]), 2)
|
||||
ss = self.ss_databytebits[i * 8]
|
||||
es = self.ss_databytebits[((i + 1) * 8) - 1]
|
||||
self.putg(ss, es, [12, ['Data byte %d: 0x%02x' % (i, b),
|
||||
'DB%d: 0x%02x' % (i, b), '%02X' % b]])
|
||||
self.ss_databytebits = []
|
||||
self.ss_block = self.samplenum # Remember start of trailer CRC.
|
||||
|
||||
# Trailer CRC (24-bit) (CRC[11..0])
|
||||
# Initialization vector of channel A and B are different, so CRCs are
|
||||
# different for same data.
|
||||
elif bitnum == self.last_databit + 23:
|
||||
bits = ''.join([str(b) for b in self.bits[1:-24]])
|
||||
frame_to_check = int(bits, 2)
|
||||
iv = Const.cCrcInitA if self.options['channel_type'] == 'A' else Const.cCrcInitB
|
||||
expected_crc = self.crc(frame_to_check, len(bits),
|
||||
Const.cCrcPolynomial, Const.cCrcSize, iv=iv)
|
||||
self.frame_crc = int(''.join(str(d) for d in self.bits[self.last_databit:]), 2)
|
||||
|
||||
crc_ok = self.frame_crc == expected_crc
|
||||
crc_ann = "OK" if crc_ok else "bad"
|
||||
|
||||
self.putb([13, ['Frame CRC: 0x%X (%s)' % (self.frame_crc, crc_ann),
|
||||
'0x%X (%s)' % (self.frame_crc, crc_ann),
|
||||
'0x%X' % self.frame_crc]])
|
||||
self.end_of_frame = True
|
||||
|
||||
# Remember start of frame end sequence (see below).
|
||||
elif bitnum == self.last_databit + 24:
|
||||
self.ss_block = self.samplenum
|
||||
|
||||
# Frame end sequence, must be 1 followed by 0.
|
||||
elif bitnum == self.last_databit + 25:
|
||||
self.putb([14, ['Frame end sequence', 'FES']])
|
||||
|
||||
# Check for DTS
|
||||
elif bitnum == self.last_databit + 26:
|
||||
if not fr_rx:
|
||||
self.dynamic_frame = True
|
||||
else:
|
||||
self.last_xmit_bit = bitnum
|
||||
self.ss_block = self.samplenum
|
||||
|
||||
# Remember start of channel idle delimiter (see below).
|
||||
elif bitnum == self.last_xmit_bit:
|
||||
self.ss_block = self.samplenum
|
||||
|
||||
# Channel idle limiter (CID[11..0])
|
||||
elif bitnum == self.last_xmit_bit + Const.cChannelIdleDelimiter - 1:
|
||||
self.putb([18, ['Channel idle delimiter', 'CID']])
|
||||
self.reset_variables()
|
||||
|
||||
# DTS if dynamic frame
|
||||
elif bitnum > self.last_databit + 27:
|
||||
if self.dynamic_frame:
|
||||
if fr_rx:
|
||||
if self.last_xmit_bit == 999:
|
||||
self.putb([19, ['Dynamic trailing sequence', 'DTS']])
|
||||
self.last_xmit_bit = bitnum + 1
|
||||
self.ss_block = self.samplenum
|
||||
|
||||
self.curbit += 1
|
||||
|
||||
def decode(self):
|
||||
if not self.samplerate:
|
||||
raise SamplerateError('Cannot decode without samplerate.')
|
||||
|
||||
while True:
|
||||
# State machine.
|
||||
if self.state == 'IDLE':
|
||||
# Wait for a dominant state (logic 0) on the bus.
|
||||
(fr_rx,) = self.wait({0: 'l'})
|
||||
self.tss_start = self.samplenum
|
||||
(fr_rx,) = self.wait({0: 'h'})
|
||||
self.tss_end = self.samplenum
|
||||
self.dom_edge_seen(force = True)
|
||||
self.state = 'GET BITS'
|
||||
elif self.state == 'GET BITS':
|
||||
# Wait until we're in the correct bit/sampling position.
|
||||
pos = self.get_sample_point(self.curbit)
|
||||
(fr_rx,) = self.wait([{'skip': pos - self.samplenum}, {0: 'f'}])
|
||||
if self.matched[1]:
|
||||
self.dom_edge_seen()
|
||||
if self.matched[0]:
|
||||
self.handle_bit(fr_rx)
|
Loading…
x
Reference in New Issue
Block a user