diff --git a/libsigrokdecode4DSL/decoders/qspi/pd.py b/libsigrokdecode4DSL/decoders/qspi/pd.py index 552901ec..2723842b 100644 --- a/libsigrokdecode4DSL/decoders/qspi/pd.py +++ b/libsigrokdecode4DSL/decoders/qspi/pd.py @@ -1,9 +1,7 @@ -## +### ## This file is part of the libsigrokdecode project. ## -## Copyright (C) 2011 Gareth McMullin -## Copyright (C) 2012-2014 Uwe Hermann -## Copyright (C) 2024 DreamSourceLab +## Copyright (C) 2020 DreamSourceLab ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by @@ -21,13 +19,9 @@ import sigrokdecode as srd from collections import namedtuple -from math import floor, ceil -from enum import Enum + Data = namedtuple('Data', ['ss', 'es', 'val']) -## -## 2023/4/8 DreamSourceLab : add flash module -## # Key: (CPOL, CPHA). Value: SPI mode. # Clock polarity (CPOL) = 0/1: Clock is low/high when inactive. @@ -39,155 +33,22 @@ spi_mode = { (1, 1): 3, # Mode 3 } -class process_enum(Enum): - COMMAND = 0 - WRITE_BYTE = 1 - READ_BYTE = 2 - READ_BYTE_CONTINUOUS = 3 - CONTINUOUS_READ_MODE_BITS = 4 - ADDRESS_BY_MODE = 5 - ADDRESS_24BIT = 6 - ADDRESS_32BIT = 7 - DUMMY_BY_MODE = 8 - DUMMY_8BIT = 9 - DUMMY_32BIT = 10 - DUMMY_40BIT = 11 - -process_text = { - process_enum.COMMAND : ['Command' , 'CMD'] , - process_enum.WRITE_BYTE : ['Write Data' , 'WD'] , - process_enum.READ_BYTE : ['Read Data' , 'RD'] , - process_enum.READ_BYTE_CONTINUOUS : ['Read Data' , 'RD'] , - process_enum.ADDRESS_24BIT : ['24-Bit Address' , 'AD'] , - process_enum.ADDRESS_32BIT : ['32-Bit Address' , 'AD'] , - process_enum.CONTINUOUS_READ_MODE_BITS : ['Continuous Read Mode bits' , 'M'] , -} - -class process_mode(Enum): - SINGLE = 0 - DUAL = 1 - QUAD = 2 - -class process_info: - def __init__(self, enum, mode): - self.enum = enum - self.mode = mode - - def __eq__(self, other): - if isinstance(other, self.__class__): - return self.enum == other.enum and self.mode == other.mode - return False - -#read adress(address mode、24BIT,32BIT) -READ_ADDRESS = process_info(process_enum.ADDRESS_BY_MODE , process_mode.SINGLE) -READ_3B_ADDRESS = process_info(process_enum.ADDRESS_24BIT , process_mode.SINGLE) -READ_4B_ADDRESS = process_info(process_enum.ADDRESS_32BIT , process_mode.SINGLE) - -#read DUAL Adress -READ_ADDRESS_DUAL = process_info(process_enum.ADDRESS_BY_MODE , process_mode.DUAL) -READ_3B_ADDRESS_DUAL = process_info(process_enum.ADDRESS_24BIT , process_mode.DUAL) -READ_4B_ADDRESS_DUAL = process_info(process_enum.ADDRESS_32BIT , process_mode.DUAL) - -#read QUAD Adress -READ_ADDRESS_QUAD = process_info(process_enum.ADDRESS_BY_MODE , process_mode.QUAD) -READ_3B_ADDRESS_QUAD = process_info(process_enum.ADDRESS_24BIT , process_mode.DUAL) -READ_4B_ADDRESS_QUAD = process_info(process_enum.ADDRESS_32BIT , process_mode.QUAD) - -#Read Byte(IO1, DUAL,QUAD) -READ_BYTE_SINGLE = process_info(process_enum.READ_BYTE , process_mode.SINGLE) -READ_BYTE_DUAL = process_info(process_enum.READ_BYTE , process_mode.DUAL) -READ_BYTE_QUAD = process_info(process_enum.READ_BYTE , process_mode.QUAD) - -READ_BYTE_SINGLE_CONTINUOUS = process_info(process_enum.READ_BYTE_CONTINUOUS , process_mode.SINGLE) -READ_BYTE_DUAL_CONTINUOUS = process_info(process_enum.READ_BYTE_CONTINUOUS , process_mode.DUAL) -READ_BYTE_QUAD_CONTINUOUS = process_info(process_enum.READ_BYTE_CONTINUOUS , process_mode.QUAD) - -#read m7-m0(DUAL,QUAD) -READ_MODE_BITS_DUAL = process_info(process_enum.CONTINUOUS_READ_MODE_BITS , process_mode.DUAL) -READ_MODE_BITS_QUAD = process_info(process_enum.CONTINUOUS_READ_MODE_BITS , process_mode.QUAD) - -#write (io0) -WRITE_BYTE_SINGLE = process_info(process_enum.WRITE_BYTE , process_mode.SINGLE) - -#DUMMY -DUMMY_CYCLE = process_info(process_enum.DUMMY_BY_MODE , process_mode.SINGLE) -DUMMY_CYCLE_8BIT = process_info(process_enum.DUMMY_8BIT , process_mode.SINGLE) -DUMMY_CYCLE_8BIT_QUAD = process_info(process_enum.DUMMY_8BIT , process_mode.QUAD) - -#Command list(command、name、abb、data after command) -command = { - 0x06 : ['Write Enable' , 'WREN' , []], - 0x04 : ['Write Disable' , 'WRDI' , []], - 0x50 : ['Write Enable for Volatile Status Register' , 'WRENFVSR' , []], - 0x05 : ['Read Status Register' , 'RDSR' , [READ_BYTE_SINGLE]], - 0x35 : ['Read Status Register' , 'RDSR' , [READ_BYTE_SINGLE]], - 0x15 : ['Read Status Register' , 'RDSR' , [READ_BYTE_SINGLE]], - 0x01 : ['Write Status Register' , 'WRSR' , [WRITE_BYTE_SINGLE]], - 0x31 : ['Write Status Register' , 'WRSR' , [WRITE_BYTE_SINGLE]], - 0x11 : ['Write Status Register' , 'WRSR' , [WRITE_BYTE_SINGLE]], - 0xC8 : ['Read Extended Register' , 'RER' , [READ_BYTE_SINGLE]], - 0xC5 : ['Write Extended Register' , 'WER' , [WRITE_BYTE_SINGLE]], - 0x03 : ['Read Data Bytes' , 'READ' , [READ_ADDRESS , READ_BYTE_SINGLE_CONTINUOUS]], - 0x13 : ['Read Data Bytes' , '4READ' , [READ_4B_ADDRESS , READ_BYTE_SINGLE_CONTINUOUS]], - 0x0B : ['Read Data Bytes at Higher Speed' , 'Fast Read' , [READ_ADDRESS , DUMMY_CYCLE_8BIT , READ_BYTE_SINGLE_CONTINUOUS]], - 0x0C : ['Read Data Bytes at Higher Speed' , '4Fast Read', [READ_4B_ADDRESS , DUMMY_CYCLE_8BIT , READ_BYTE_SINGLE_CONTINUOUS]], - 0x3B : ['Dual Output Fast Read' , 'DOFR' , [READ_ADDRESS ,DUMMY_CYCLE_8BIT , READ_BYTE_DUAL_CONTINUOUS]], - 0x3C : ['Dual Output Fast Read' , '4DOFR' , [READ_4B_ADDRESS ,DUMMY_CYCLE_8BIT , READ_BYTE_DUAL_CONTINUOUS]], - 0x6B : ['Quad Output Fast Read' , 'QOFR' , [READ_ADDRESS ,DUMMY_CYCLE_8BIT , READ_BYTE_QUAD_CONTINUOUS]], - 0x6C : ['Quad Output Fast Read' , '4QOFR' , [READ_4B_ADDRESS ,DUMMY_CYCLE_8BIT , READ_BYTE_QUAD_CONTINUOUS]], - 0xBB : ['Dual I/O Fast Read' , 'DIOFR' , [READ_ADDRESS_DUAL ,READ_MODE_BITS_DUAL , READ_BYTE_DUAL_CONTINUOUS]], - 0xBC : ['Dual I/O Fast Read' , '4DIOFR' , [READ_4B_ADDRESS_DUAL , READ_MODE_BITS_DUAL , READ_BYTE_DUAL_CONTINUOUS]], - 0xEB : ['Quad I/O Fast Read' , 'QIOFR' , [READ_ADDRESS_QUAD , READ_MODE_BITS_QUAD , DUMMY_CYCLE_8BIT_QUAD , DUMMY_CYCLE_8BIT_QUAD , READ_BYTE_QUAD_CONTINUOUS]], - 0xEC : ['Quad I/O Fast Read' , '4QIOFR' , [READ_4B_ADDRESS_QUAD , READ_MODE_BITS_QUAD , DUMMY_CYCLE_8BIT_QUAD , DUMMY_CYCLE_8BIT_QUAD , READ_BYTE_QUAD_CONTINUOUS]], - 0x77 : ['Set Burst with Wrap' , 'SBWW' , [DUMMY_CYCLE_8BIT_QUAD , DUMMY_CYCLE_8BIT_QUAD , DUMMY_CYCLE_8BIT_QUAD , READ_BYTE_QUAD_CONTINUOUS]], - 0x02 : ['Page Program' , 'PP' , [READ_ADDRESS] + [WRITE_BYTE_SINGLE] * 256], - 0x12 : ['Page Program' , '4PP' , [READ_4B_ADDRESS] + [WRITE_BYTE_SINGLE] * 256], - 0x32 : ['Quad Page Program' , 'QPP' , [READ_ADDRESS] + [READ_BYTE_QUAD_CONTINUOUS]], - 0x34 : ['Quad Page Program' , '4QPP' , [READ_4B_ADDRESS] + [READ_BYTE_QUAD_CONTINUOUS]], - 0x20 : ['Sector Erase' , 'SE' , [READ_ADDRESS]], - 0x21 : ['Sector Erase' , '4SE', [READ_4B_ADDRESS]], - 0x52 : ['32KB Block Erase' , 'BE32' , [READ_ADDRESS]], - 0x5C : ['32KB Block Erase' , '4BE32' , [READ_4B_ADDRESS]], - 0xD8 : ['64KB Block Erase' , 'BE64', [READ_ADDRESS]], - 0xDC : ['64KB Block Erase' , '4BE64', [READ_4B_ADDRESS]], - 0x60 : ['Chip Erase' , 'CE' , []], - 0xC7 : ['Chip Erase' , 'CE' , []], - 0xB9 : ['Deep Power-Down' , 'DP' , []], - 0x4B : ['Read Unique ID' , 'RUID', [DUMMY_CYCLE , READ_BYTE_SINGLE_CONTINUOUS]], - 0xB7 : ['Enter 4-Byte Address Mode' , 'EN4BADM' , []], - 0xE9 : ['Exit 4-Byte Address Mode' , 'EX4BADM' , []], - 0x30 : ['Clear SR Flags' , 'CLSRF' , []], - 0xAB : ['Release from Deep Power-Down and Read Device ID' , 'RDI' , []], - 0x90 : ['Read Manufacture ID/ Device ID' , 'REMS' , [READ_3B_ADDRESS , READ_BYTE_SINGLE , READ_BYTE_SINGLE]], - 0x92 : ['Read Manufacture ID/ Device ID Dual I/O' , 'REMS' , [READ_3B_ADDRESS_DUAL , READ_MODE_BITS_DUAL ,READ_BYTE_DUAL_CONTINUOUS]], - 0x94 : ['Read Manufacture ID/ Device ID Quad I/O' , 'REMS' , [READ_3B_ADDRESS_QUAD , READ_MODE_BITS_QUAD , DUMMY_CYCLE_8BIT_QUAD , DUMMY_CYCLE_8BIT_QUAD , READ_BYTE_QUAD_CONTINUOUS]], - 0x9F : ['Read Identification' , 'RDID', [READ_BYTE_SINGLE_CONTINUOUS]], - 0x75 : ['Program/Erase Suspend' , 'PES' , []], - 0x7A : ['Program/Erase Resume' , 'PER' , []], - 0x44 : ['Erase Security Registers' , 'ESR' , [READ_ADDRESS]], - 0x42 : ['Program Security Registers' , 'PSR' , [READ_ADDRESS] + [WRITE_BYTE_SINGLE] * 256], - 0x48 : ['Read Security Registers' , 'RSR' , [READ_ADDRESS , DUMMY_CYCLE_8BIT , READ_BYTE_SINGLE_CONTINUOUS]], - 0x66 : ['Enable Reset' , 'ENRE' , []], - 0x99 : ['Reset' , 'RE' , []], - 0x5A : ['Read Serial Flash Discoverable Parameter' , 'RSFDP', [READ_3B_ADDRESS , DUMMY_CYCLE_8BIT , READ_BYTE_SINGLE_CONTINUOUS]], -} - class ChannelError(Exception): pass class Decoder(srd.Decoder): api_version = 3 - id = 'smart_qspi' - name = 'Smart QSPI' + id = 'qspi' + name = 'QSPI' longname = 'Quad Serial Peripheral Interface' - desc = 'Full-duplex, synchronous, serial bus.compatible with Dual SPI and Quad SPI interfaces.' + desc = 'Full-duplex, synchronous, serial bus.' license = 'gplv2+' inputs = ['logic'] outputs = ['spi'] tags = ['Embedded/industrial'] channels = ( {'id': 'clk', 'type': 0, 'name': 'CLK', 'desc': 'Clock', 'idn':'dec_qspi_chan_clk'}, - {'id': 'io0', 'type': 109, 'name': 'IO0', 'desc': 'Data i/o 0', 'idn':'dec_qspi_chan_io0'}, + {'id': 'io0', 'type': 107, 'name': 'IO0', 'desc': 'Data i/o 0', 'idn':'dec_qspi_chan_io0'}, ) optional_channels = ( {'id': 'io1', 'type': 107, 'name': 'IO1', 'desc': 'Data i/o 1', 'idn':'dec_qspi_opt_chan_io1'}, @@ -204,35 +65,13 @@ class Decoder(srd.Decoder): 'values': (0, 1), 'idn':'dec_qspi_opt_cpha'}, {'id': 'bitorder', 'desc': 'Bit order', 'default': 'msb-first', 'values': ('msb-first', 'lsb-first'), 'idn':'dec_qspi_opt_bitorder'}, - {'id': 'ads', 'desc': 'Adress Mode', 'default': '24-Bit Address', - 'values': ('32-Bit Address', '24-Bit Address'), 'idn':'dec_qspi_adress_mode'}, - {'id': 'frame', 'desc': 'Frame Decoder', 'default': 'no', - 'values': ('yes', 'no'), 'idn':'dec_qspi_opt_frame'}, - {'id': 'twolinesmode', 'desc': 'TwoLinesMode', 'default':'spi', - 'values':('spi','dspi','qspi'), 'idn':'dec_qspi_two_lines_mode'}, - {'id': 'invalidlevel', 'desc': 'Keep high or low as invalid', 'default':'both', - 'values':('both','low','high'), 'idn':'dec_qspi_invalidlevel'}, - + {'id': 'wordsize', 'desc': 'Word size', 'default': 8, 'idn':'dec_qspi_opt_wordsize'}, ) annotations = ( - ('6', 'data-transfer', 'data transfer'), - ('108', 'Quad data', 'Q-Data'), - ('108', 'Dual data', 'D-Data'), - ('106', 'd0', 'IO0 data'), - ('106', 'd1', 'IO1 data'), - ('106', 'd2', 'IO2 data'), - ('106', 'd3', 'IO3 data'), - ('1000', 'other', 'Human-readable warnings'), + ('106', 'data', 'data'), ) annotation_rows = ( - ('data-transfer', 'data transfer', (0,)), - ('Quad data', 'Q-Data', (1,)), - ('Dual data', 'D-Data', (2,)), - ('d0', 'D0', (3,)), - ('d1', 'D1', (4,)), - ('d2', 'D2', (5,)), - ('d3', 'D3', (6,)), - ('Other', 'Other',(7,)), + ('data', 'data', (0,)), ) def __init__(self): @@ -243,29 +82,6 @@ class Decoder(srd.Decoder): self.bitcount = 0 self.data = 0 self.bits = [] - self.io0bits=[] - self.io1bits=[] - self.io2bits=[] - self.io3bits=[] - self.io0bytes=[] - self.io1bytes=[] - self.io2bytes=[] - self.io3bytes=[] - self.io0data=0 - self.io1data=0 - self.io2data=0 - self.io3data=0 - - self.command = 0 - - self.state_count = 0 - self.ads = False - self.diagram = [] - - self.ss = 0 - self.count = 0 - self.bits_data = 0 - self.ss_block = -1 self.samplenum = -1 self.ss_transfer = -1 @@ -273,332 +89,93 @@ class Decoder(srd.Decoder): self.have_cs = self.have_io1 = self.have_io3 = None def start(self): - self.out_python = self.register(srd.OUTPUT_PYTHON) self.out_ann = self.register(srd.OUTPUT_ANN) - self.out_binary = self.register(srd.OUTPUT_BINARY) - self.out_bitrate = self.register(srd.OUTPUT_META, - meta=(int, 'Bitrate', 'Bitrate during transfers')) - self.bw = (8 + 7) // 8 - self.spiModeSet=self.options['twolinesmode'].lower() - self.invalidlevelSet = 0XFF if self.options['invalidlevel'] == 'high' else 0 - - self.ads = False if self.options['ads'] == '24-Bit Address' else True + self.bw = (self.options['wordsize'] + 7) // 8 def metadata(self, key, value): if key == srd.SRD_CONF_SAMPLERATE: self.samplerate = value - self.bit_width = float(self.samplerate) / float(115200) def putw(self, data): self.put(self.ss_block, self.samplenum, self.out_ann, data) - def putgse(self, ss, es, data): - self.put(ss, es, self.out_ann, data) + def putdata(self): + # Pass bits and then data to the next PD up the stack. + ss, es = self.bits[-1][1], self.bits[0][2] - def putg(self, data): - s, halfbit = self.samplenum, self.bit_width / 2.0 - self.put(s - floor(halfbit), s + ceil(halfbit), self.out_ann, data) - - def puttext(self, ss, es, state, data): - self.put(ss, es, self.out_ann, [0, ['%s : 0x%02x' % (process_text[state][0] , data), - '%s : 0x%02x' % (process_text[state][1] , data), - '0x%02X' % data]]) - - def putdummy(self, ss, es): - self.put(ss, es, self.out_ann, [0, ['Dummy Cycles','Dummy','D']]) - - def putcmd(self, ss, es): - self.put(ss, es, self.out_ann, [0, ['%s : %s' % (process_text[process_enum.COMMAND][0] , command[self.io0data][0]), - '%s : %s' % (process_text[process_enum.COMMAND][1] , command[self.io0data][1]), - '%s' % command[self.io0data][1]]]) - - def checkinvalidlevel(self,data): # if data line is keep high or keep low,data is invalid then return true - if self.options['invalidlevel']=='both' : - return data==0xff or data ==0 - elif self.options['invalidlevel']=='high': - return data==0xff - else : - return data==0 - - - def putdata(self, frame): - data0 = self.io0data - data1 = self.io1data - data2 = self.io2data if self.have_io3 else None - data3 = self.io3data if self.have_io3 else None - - ss,es = self.io0bits[-1][1], self.io0bits[0][2] - if frame: - if self.have_io3: - self.io2bytes.append(Data(ss = ss, es = es, val = data2)) - self.io3bytes.append(Data(ss = ss, es = es, val = data3)) - if self.have_io1: - self.io1bytes.append(Data(ss = ss, es = es, val = data1)) - self.io0bytes.append(Data(ss = ss, es = es, val = data0)) - - bo = self.options['bitorder'] - - if(((self.checkinvalidlevel(data2) or self.checkinvalidlevel(data3)) and self.have_io3) or (self.checkinvalidlevel(data1) and self.have_io1)): - spiMode = self.spiModeSet - elif self.have_io3: - spiMode='qspi' - else : - spiMode='spi' - - self.putgse(ss,es,[7, ['%s' %spiMode.upper()]]) - self.put(ss, es, self.out_ann, [3, ['@%02X' % self.io0data]]) - if self.have_io1: - self.put(ss, es, self.out_ann, [4, ['@%02X' % self.io1data]]) - if self.have_io3: - self.put(ss, es, self.out_ann, [5, ['@%02X' % self.io2data]]) - self.put(ss, es, self.out_ann, [6, ['@%02X' % self.io3data]]) - - if spiMode == 'qspi' or spiMode == 'dspi': - - qdata = [] - ddata = [] - if self.have_io1 and self.have_io3: - for i in range(4): - self.data = 0 - for j in range(2): - self.data |= self.io3bits[-1 - i * 2 - j][0] - self.data = self.data << 1 - self.data |= self.io2bits[-1 - i * 2 - j][0] - self.data = self.data << 1 - self.data |= self.io1bits[-1 - i * 2 - j][0] - self.data = self.data << 1 - self.data |= self.io0bits[-1 - i * 2 - j][0] - if j < 1: - self.data = self.data << 1 - - qss,qes = self.io0bits[-1 - i * 2][1], self.io0bits[-2 - i * 2][2] - - if not bo == 'msb-first': - dataTemp = (0xF0 & self.data) >> 4|(0x0f & self.data) << 4 - self.data = dataTemp - - qdata.append([self.data, qss, qes]) - self.put(qss, qes, self.out_ann, [1, ['@%02X' % self.data]]) - if self.have_io1: - for i in range(2): - self.data = 0 - for j in range(4): - self.data |= self.io1bits[-1 - i * 4 - j][0] - self.data = self.data << 1 - self.data |= self.io0bits[-1 - i * 4 - j][0] - if j < 3: - self.data = self.data << 1 - dss,des = self.io0bits[-1 - i * 4][1], self.io0bits[-4 - i * 4][2] - if not bo == 'msb-first': - dataTemp = (0xF0 & self.data) >> 4|(0x0f & self.data) << 4 - self.data = dataTemp - - ddata.append([self.data, dss, des]) - self.put(dss, des, self.out_ann, [2, ['@%02X' % self.data]]) - - if self.command == 0 and self.io0data in command: - self.putcmd(ss, es) - #update adress mode - if self.io0data == 0xB7: - self.ads = True - elif self.io0data == 0xE9: - self.ads = False - - if len(command[self.io0data][2]) != 0: - self.command = self.io0data - self.diagram = command[self.command][2] - - elif self.command != 0: - cur_state = self.diagram[self.state_count] - - i, size = 0, 1 - if cur_state.mode == process_mode.DUAL: - size = 2 - elif cur_state.mode == process_mode.QUAD: - size = 4 - - while i < size: - if size == 1: - if cur_state.enum == process_enum.READ_BYTE and self.have_io1: - origin_data = [self.io1data & 0xFF , ss, es] - else: - origin_data = [self.io0data & 0xFF , ss, es] - elif size == 2: - origin_data = ddata[i] - origin_data[0] = origin_data[0] & 0xFF - elif size == 4: - origin_data = qdata[i] - origin_data[0] = origin_data[0] & 0xFF - i = i + 1 - - if cur_state.enum == process_enum.ADDRESS_BY_MODE or \ - cur_state.enum == process_enum.ADDRESS_24BIT or \ - cur_state.enum == process_enum.ADDRESS_32BIT or \ - cur_state.enum == process_enum.DUMMY_BY_MODE or \ - cur_state.enum == process_enum.DUMMY_8BIT: - - if cur_state.enum == process_enum.ADDRESS_BY_MODE: - cur_state.enum = process_enum.ADDRESS_24BIT if self.ads == False else process_enum.ADDRESS_32BIT - elif cur_state.enum == process_enum.DUMMY_BY_MODE: - cur_state.enum = process_enum.DUMMY_32BIT if self.ads == False else process_enum.DUMMY_40BIT - - if self.count == 0: - self.ss = ss - self.bits_data |= origin_data[0] - self.count = self.count + 1 - - if (cur_state.enum == process_enum.ADDRESS_24BIT and self.count == 3) or \ - (cur_state.enum == process_enum.ADDRESS_32BIT and self.count == 4) or \ - (cur_state.enum == process_enum.DUMMY_8BIT and self.count == 1) or \ - (cur_state.enum == process_enum.DUMMY_32BIT and self.count == 4) or \ - (cur_state.enum == process_enum.DUMMY_40BIT and self.count == 5): - - if cur_state.enum == process_enum.ADDRESS_24BIT or \ - cur_state.enum == process_enum.ADDRESS_32BIT: - self.puttext(self.ss , origin_data[2] , cur_state.enum , self.bits_data) - else: - self.putdummy(self.ss, origin_data[2]) - - self.ss = 0 - self.count = 0 - self.bits_data = 0 - self.state_count += 1 - - if self.state_count < len(self.diagram): - cur_state = self.diagram[self.state_count] - else: - self.bits_data = self.bits_data << 8 - - elif cur_state.enum == process_enum.WRITE_BYTE or \ - cur_state.enum == process_enum.READ_BYTE or \ - cur_state.enum == process_enum.READ_BYTE_CONTINUOUS or \ - cur_state.enum == process_enum.CONTINUOUS_READ_MODE_BITS: - - self.puttext(origin_data[1] , origin_data[2] , cur_state.enum , origin_data[0]) - - if cur_state.enum != process_enum.READ_BYTE_CONTINUOUS: - self.state_count += 1 - - if self.state_count < len(self.diagram): - cur_state = self.diagram[self.state_count] - - if self.state_count >= len(self.diagram): - self.command = 0 - self.diagram = [] - self.state_count = 0 - break + # Dataword annotations. + self.put(ss, es, self.out_ann, [0, ['%02X' % self.data]]) def reset_decoder_state(self): - - self.io0data = 0 - self.io1data = 0 if self.have_io1 else None - self.io2data=0 if self.have_io3 else None - self.io3data=0 if self.have_io3 else None - - self.io0bits=[] - self.io1bits=[] if self.have_io1 else None - self.io2bits=[] if self.have_io3 else None - self.io3bits=[] if self.have_io3 else None + self.data = 0 + self.bits = [] self.bitcount = 0 def cs_asserted(self, cs): active_low = (self.options['cs_polarity'] == 'active-low') return (cs == 0) if active_low else (cs == 1) - def handle_bit(self, datapins, clk, cs, frame): + def handle_bit(self, datapins, clk, cs): # If this is the first bit of a dataword, save its sample number. if self.bitcount == 0: self.ss_block = self.samplenum self.cs_was_deasserted = \ not self.cs_asserted(cs) if self.have_cs else False - ws = 8 bo = self.options['bitorder'] - - if bo == 'msb-first': - self.io0data |= datapins[3] << (ws - 1 - self.bitcount) - else: - self.io0data |= datapins[3] << self.bitcount - if self.have_io1: - if bo == 'msb-first': - self.io1data |= datapins[2] << (ws - 1 - self.bitcount) - else: - self.io1data |= datapins[2] << self.bitcount - + ws = self.options['wordsize'] if self.have_io3: + nibws = ws >> 2 + elif self.have_io1: + nibws = ws >> 1 + else: + nibws = ws + + # Receive bit into our shift register. + if self.have_io3: + for i in range(4): + if bo == 'msb-first': + self.data |= datapins[i] << (ws - 1 - self.bitcount*4 - i) + else: + self.data |= datapins[3-i] << (self.bitcount*4 + i) + elif self.have_io1: + for i in range(2): + if bo == 'msb-first': + self.data |= datapins[i+2] << (ws - 1 - self.bitcount*2 - i) + else: + self.data |= datapins[3-i] << (self.bitcount*2 + i) + else: if bo == 'msb-first': - self.io2data |= datapins[1] << (ws - 1 - self.bitcount) - self.io3data |= datapins[0] << (ws - 1 - self.bitcount) + self.data |= datapins[3] << (ws - 1 - self.bitcount) else: - self.io2data |= datapins[1] << self.bitcount - self.io3data |= datapins[0] << self.bitcount + self.data |= datapins[3] << self.bitcount # Guesstimate the endsample for this bit (can be overridden below). es = self.samplenum if self.bitcount > 0: - es += self.samplenum - self.io0bits[0][1] + es += self.samplenum - self.bits[0][1] - self.io0bits.insert(0, [datapins[3], self.samplenum, es]) - if self.have_io1: - self.io1bits.insert(0, [datapins[2], self.samplenum, es]) - if self.have_io3: - self.io2bits.insert(0, [datapins[1], self.samplenum, es]) - self.io3bits.insert(0, [datapins[0], self.samplenum, es]) + self.bits.insert(0, [datapins[3], self.samplenum, es]) if self.bitcount > 0: - self.io0bits[1][2] = self.samplenum - if self.have_io1: - self.io1bits[1][2] = self.samplenum - if self.have_io3: - self.io2bits[1][2] = self.samplenum - self.io3bits[1][2] = self.samplenum + self.bits[1][2] = self.samplenum self.bitcount += 1 # Continue to receive if not enough bits were received, yet. - if self.bitcount != ws: + if self.bitcount != nibws: return - self.putdata(frame) - if self.samplerate: - elapsed = 1 / float(self.samplerate) - elapsed *= (self.samplenum - self.ss_block + 1) - bitrate = int(1 / elapsed * ws) - self.put(self.ss_block, self.samplenum, self.out_bitrate, bitrate) - - if self.have_cs and self.cs_was_deasserted: - self.putw([6, ['CS# was deasserted during this data word!']]) + self.putdata() self.reset_decoder_state() - def find_clk_edge(self, datapins, clk, cs, first,frame): - + def find_clk_edge(self, datapins, clk, cs, first): if self.have_cs and (first or (self.matched & (0b1 << self.have_cs))): # Send all CS# pin value changes. oldcs = None if first else 1 - cs - self.put(self.samplenum, self.samplenum, self.out_python, - ['CS-CHANGE', oldcs, cs]) - - if frame: - if self.cs_asserted(cs): - self.ss_transfer = self.samplenum - self.io0bytes = [] - self.io1bytes = [] - self.io2bytes = [] - self.io3bytes = [] - elif self.ss_transfer != -1: - self.put(self.ss_transfer, self.samplenum, self.out_python, - ['TRANSFER', self.io0bytes, self.io1bytes, self.io2bytes,self.io3bytes]) # Reset decoder state when CS# changes (and the CS# pin is used). - self.command = 0 - self.diagram = [] - self.state_count = 0 - - self.ss = 0 - self.count = 0 - self.bits_data = 0 - self.reset_decoder_state() # We only care about samples if CS# is asserted. @@ -610,25 +187,17 @@ class Decoder(srd.Decoder): return # Found the correct clock edge, now get the SPI bit(s). - self.handle_bit(datapins, clk, cs,frame) + self.handle_bit(datapins, clk, cs) def decode(self): # The CLK & IO0 input is mandatory. Other signals are (individually) # optional. Tell stacked decoders when we don't have a CS# signal. if not self.has_channel(0): raise ChannelError('CLK pin required.') - if not self.has_channel(1): - raise ChannelError('io0 pin required.') - self.have_io1 = self.has_channel(2) self.have_io3 = self.has_channel(3) & self.has_channel(4) self.have_cs = self.has_channel(5) - if not self.have_cs: - self.put(0, 0, self.out_python, ['CS-CHANGE', None, None]) - - frame = self.options['frame'] == 'yes' - # We want all CLK changes. We want all CS changes if CS is used. # Map 'have_cs' from boolean to an integer index. This simplifies # evaluation in other locations. @@ -648,12 +217,10 @@ class Decoder(srd.Decoder): # previous implementation did this by seeding old values with # None, which led to an immediate "change" in comparison. (clk, d0, d1, d2, d3, cs) = self.wait({}) - d = (d3, d2, d1, d0) - self.find_clk_edge(d, clk, cs, True ,frame) + d = (d3, d2, d1, d0); + self.find_clk_edge(d, clk, cs, True) while True: (clk, d0, d1, d2, d3, cs) = self.wait(wait_cond) - d = (d3, d2, d1, d0) - self.find_clk_edge(d, clk, cs, False,frame)# - - + d = (d3, d2, d1, d0); + self.find_clk_edge(d, clk, cs, False)# diff --git a/libsigrokdecode4DSL/decoders/smart qspi/__init__.py b/libsigrokdecode4DSL/decoders/smart qspi/__init__.py new file mode 100644 index 00000000..10b74234 --- /dev/null +++ b/libsigrokdecode4DSL/decoders/smart qspi/__init__.py @@ -0,0 +1,31 @@ +## +## This file is part of the libsigrokdecode project. +## +## Copyright (C) 2016 fenugrec +## +## This program is free software; you can redistribute it and/or modify +## it under the terms of the GNU General Public License as published by +## the Free Software Foundation; either version 2 of the License, or +## (at your option) any later version. +## +## This program is distributed in the hope that it will be useful, +## but WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +## GNU General Public License for more details. +## +## You should have received a copy of the GNU General Public License +## along with this program; if not, see . +## + +''' +This protocol decoder decodes the AUD (Advanced User Debugger) interface +of certain Renesas / Hitachi microcontrollers, when set in Branch Trace mode. + +AUD has two modes, this PD currently only supports "Branch Trace" mode. + +Details: +http://www.renesas.eu/products/mpumcu/superh/sh7050/sh7058/Documentation.jsp +("rej09b0046 - SH7058 Hardware manual") +''' + +from .pd import Decoder diff --git a/libsigrokdecode4DSL/decoders/smart qspi/pd.py b/libsigrokdecode4DSL/decoders/smart qspi/pd.py new file mode 100644 index 00000000..75ed0189 --- /dev/null +++ b/libsigrokdecode4DSL/decoders/smart qspi/pd.py @@ -0,0 +1,659 @@ +## +## This file is part of the libsigrokdecode project. +## +## Copyright (C) 2011 Gareth McMullin +## Copyright (C) 2012-2014 Uwe Hermann +## Copyright (C) 2024 DreamSourceLab +## +## This program is free software; you can redistribute it and/or modify +## it under the terms of the GNU General Public License as published by +## the Free Software Foundation; either version 2 of the License, or +## (at your option) any later version. +## +## This program is distributed in the hope that it will be useful, +## but WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +## GNU General Public License for more details. +## +## You should have received a copy of the GNU General Public License +## along with this program; if not, see . +## + +import sigrokdecode as srd +from collections import namedtuple +from math import floor, ceil +from enum import Enum +Data = namedtuple('Data', ['ss', 'es', 'val']) + +## +## 2023/4/8 DreamSourceLab : add flash module +## + +# Key: (CPOL, CPHA). Value: SPI mode. +# Clock polarity (CPOL) = 0/1: Clock is low/high when inactive. +# Clock phase (CPHA) = 0/1: Data is valid on the leading/trailing clock edge. +spi_mode = { + (0, 0): 0, # Mode 0 + (0, 1): 1, # Mode 1 + (1, 0): 2, # Mode 2 + (1, 1): 3, # Mode 3 +} + +class process_enum(Enum): + COMMAND = 0 + WRITE_BYTE = 1 + READ_BYTE = 2 + READ_BYTE_CONTINUOUS = 3 + CONTINUOUS_READ_MODE_BITS = 4 + ADDRESS_BY_MODE = 5 + ADDRESS_24BIT = 6 + ADDRESS_32BIT = 7 + DUMMY_BY_MODE = 8 + DUMMY_8BIT = 9 + DUMMY_32BIT = 10 + DUMMY_40BIT = 11 + +process_text = { + process_enum.COMMAND : ['Command' , 'CMD'] , + process_enum.WRITE_BYTE : ['Write Data' , 'WD'] , + process_enum.READ_BYTE : ['Read Data' , 'RD'] , + process_enum.READ_BYTE_CONTINUOUS : ['Read Data' , 'RD'] , + process_enum.ADDRESS_24BIT : ['24-Bit Address' , 'AD'] , + process_enum.ADDRESS_32BIT : ['32-Bit Address' , 'AD'] , + process_enum.CONTINUOUS_READ_MODE_BITS : ['Continuous Read Mode bits' , 'M'] , +} + +class process_mode(Enum): + SINGLE = 0 + DUAL = 1 + QUAD = 2 + +class process_info: + def __init__(self, enum, mode): + self.enum = enum + self.mode = mode + + def __eq__(self, other): + if isinstance(other, self.__class__): + return self.enum == other.enum and self.mode == other.mode + return False + +#read adress(address mode、24BIT,32BIT) +READ_ADDRESS = process_info(process_enum.ADDRESS_BY_MODE , process_mode.SINGLE) +READ_3B_ADDRESS = process_info(process_enum.ADDRESS_24BIT , process_mode.SINGLE) +READ_4B_ADDRESS = process_info(process_enum.ADDRESS_32BIT , process_mode.SINGLE) + +#read DUAL Adress +READ_ADDRESS_DUAL = process_info(process_enum.ADDRESS_BY_MODE , process_mode.DUAL) +READ_3B_ADDRESS_DUAL = process_info(process_enum.ADDRESS_24BIT , process_mode.DUAL) +READ_4B_ADDRESS_DUAL = process_info(process_enum.ADDRESS_32BIT , process_mode.DUAL) + +#read QUAD Adress +READ_ADDRESS_QUAD = process_info(process_enum.ADDRESS_BY_MODE , process_mode.QUAD) +READ_3B_ADDRESS_QUAD = process_info(process_enum.ADDRESS_24BIT , process_mode.DUAL) +READ_4B_ADDRESS_QUAD = process_info(process_enum.ADDRESS_32BIT , process_mode.QUAD) + +#Read Byte(IO1, DUAL,QUAD) +READ_BYTE_SINGLE = process_info(process_enum.READ_BYTE , process_mode.SINGLE) +READ_BYTE_DUAL = process_info(process_enum.READ_BYTE , process_mode.DUAL) +READ_BYTE_QUAD = process_info(process_enum.READ_BYTE , process_mode.QUAD) + +READ_BYTE_SINGLE_CONTINUOUS = process_info(process_enum.READ_BYTE_CONTINUOUS , process_mode.SINGLE) +READ_BYTE_DUAL_CONTINUOUS = process_info(process_enum.READ_BYTE_CONTINUOUS , process_mode.DUAL) +READ_BYTE_QUAD_CONTINUOUS = process_info(process_enum.READ_BYTE_CONTINUOUS , process_mode.QUAD) + +#read m7-m0(DUAL,QUAD) +READ_MODE_BITS_DUAL = process_info(process_enum.CONTINUOUS_READ_MODE_BITS , process_mode.DUAL) +READ_MODE_BITS_QUAD = process_info(process_enum.CONTINUOUS_READ_MODE_BITS , process_mode.QUAD) + +#write (io0) +WRITE_BYTE_SINGLE = process_info(process_enum.WRITE_BYTE , process_mode.SINGLE) + +#DUMMY +DUMMY_CYCLE = process_info(process_enum.DUMMY_BY_MODE , process_mode.SINGLE) +DUMMY_CYCLE_8BIT = process_info(process_enum.DUMMY_8BIT , process_mode.SINGLE) +DUMMY_CYCLE_8BIT_QUAD = process_info(process_enum.DUMMY_8BIT , process_mode.QUAD) + +#Command list(command、name、abb、data after command) +command = { + 0x06 : ['Write Enable' , 'WREN' , []], + 0x04 : ['Write Disable' , 'WRDI' , []], + 0x50 : ['Write Enable for Volatile Status Register' , 'WRENFVSR' , []], + 0x05 : ['Read Status Register' , 'RDSR' , [READ_BYTE_SINGLE]], + 0x35 : ['Read Status Register' , 'RDSR' , [READ_BYTE_SINGLE]], + 0x15 : ['Read Status Register' , 'RDSR' , [READ_BYTE_SINGLE]], + 0x01 : ['Write Status Register' , 'WRSR' , [WRITE_BYTE_SINGLE]], + 0x31 : ['Write Status Register' , 'WRSR' , [WRITE_BYTE_SINGLE]], + 0x11 : ['Write Status Register' , 'WRSR' , [WRITE_BYTE_SINGLE]], + 0xC8 : ['Read Extended Register' , 'RER' , [READ_BYTE_SINGLE]], + 0xC5 : ['Write Extended Register' , 'WER' , [WRITE_BYTE_SINGLE]], + 0x03 : ['Read Data Bytes' , 'READ' , [READ_ADDRESS , READ_BYTE_SINGLE_CONTINUOUS]], + 0x13 : ['Read Data Bytes' , '4READ' , [READ_4B_ADDRESS , READ_BYTE_SINGLE_CONTINUOUS]], + 0x0B : ['Read Data Bytes at Higher Speed' , 'Fast Read' , [READ_ADDRESS , DUMMY_CYCLE_8BIT , READ_BYTE_SINGLE_CONTINUOUS]], + 0x0C : ['Read Data Bytes at Higher Speed' , '4Fast Read', [READ_4B_ADDRESS , DUMMY_CYCLE_8BIT , READ_BYTE_SINGLE_CONTINUOUS]], + 0x3B : ['Dual Output Fast Read' , 'DOFR' , [READ_ADDRESS ,DUMMY_CYCLE_8BIT , READ_BYTE_DUAL_CONTINUOUS]], + 0x3C : ['Dual Output Fast Read' , '4DOFR' , [READ_4B_ADDRESS ,DUMMY_CYCLE_8BIT , READ_BYTE_DUAL_CONTINUOUS]], + 0x6B : ['Quad Output Fast Read' , 'QOFR' , [READ_ADDRESS ,DUMMY_CYCLE_8BIT , READ_BYTE_QUAD_CONTINUOUS]], + 0x6C : ['Quad Output Fast Read' , '4QOFR' , [READ_4B_ADDRESS ,DUMMY_CYCLE_8BIT , READ_BYTE_QUAD_CONTINUOUS]], + 0xBB : ['Dual I/O Fast Read' , 'DIOFR' , [READ_ADDRESS_DUAL ,READ_MODE_BITS_DUAL , READ_BYTE_DUAL_CONTINUOUS]], + 0xBC : ['Dual I/O Fast Read' , '4DIOFR' , [READ_4B_ADDRESS_DUAL , READ_MODE_BITS_DUAL , READ_BYTE_DUAL_CONTINUOUS]], + 0xEB : ['Quad I/O Fast Read' , 'QIOFR' , [READ_ADDRESS_QUAD , READ_MODE_BITS_QUAD , DUMMY_CYCLE_8BIT_QUAD , DUMMY_CYCLE_8BIT_QUAD , READ_BYTE_QUAD_CONTINUOUS]], + 0xEC : ['Quad I/O Fast Read' , '4QIOFR' , [READ_4B_ADDRESS_QUAD , READ_MODE_BITS_QUAD , DUMMY_CYCLE_8BIT_QUAD , DUMMY_CYCLE_8BIT_QUAD , READ_BYTE_QUAD_CONTINUOUS]], + 0x77 : ['Set Burst with Wrap' , 'SBWW' , [DUMMY_CYCLE_8BIT_QUAD , DUMMY_CYCLE_8BIT_QUAD , DUMMY_CYCLE_8BIT_QUAD , READ_BYTE_QUAD_CONTINUOUS]], + 0x02 : ['Page Program' , 'PP' , [READ_ADDRESS] + [WRITE_BYTE_SINGLE] * 256], + 0x12 : ['Page Program' , '4PP' , [READ_4B_ADDRESS] + [WRITE_BYTE_SINGLE] * 256], + 0x32 : ['Quad Page Program' , 'QPP' , [READ_ADDRESS] + [READ_BYTE_QUAD_CONTINUOUS]], + 0x34 : ['Quad Page Program' , '4QPP' , [READ_4B_ADDRESS] + [READ_BYTE_QUAD_CONTINUOUS]], + 0x20 : ['Sector Erase' , 'SE' , [READ_ADDRESS]], + 0x21 : ['Sector Erase' , '4SE', [READ_4B_ADDRESS]], + 0x52 : ['32KB Block Erase' , 'BE32' , [READ_ADDRESS]], + 0x5C : ['32KB Block Erase' , '4BE32' , [READ_4B_ADDRESS]], + 0xD8 : ['64KB Block Erase' , 'BE64', [READ_ADDRESS]], + 0xDC : ['64KB Block Erase' , '4BE64', [READ_4B_ADDRESS]], + 0x60 : ['Chip Erase' , 'CE' , []], + 0xC7 : ['Chip Erase' , 'CE' , []], + 0xB9 : ['Deep Power-Down' , 'DP' , []], + 0x4B : ['Read Unique ID' , 'RUID', [DUMMY_CYCLE , READ_BYTE_SINGLE_CONTINUOUS]], + 0xB7 : ['Enter 4-Byte Address Mode' , 'EN4BADM' , []], + 0xE9 : ['Exit 4-Byte Address Mode' , 'EX4BADM' , []], + 0x30 : ['Clear SR Flags' , 'CLSRF' , []], + 0xAB : ['Release from Deep Power-Down and Read Device ID' , 'RDI' , []], + 0x90 : ['Read Manufacture ID/ Device ID' , 'REMS' , [READ_3B_ADDRESS , READ_BYTE_SINGLE , READ_BYTE_SINGLE]], + 0x92 : ['Read Manufacture ID/ Device ID Dual I/O' , 'REMS' , [READ_3B_ADDRESS_DUAL , READ_MODE_BITS_DUAL ,READ_BYTE_DUAL_CONTINUOUS]], + 0x94 : ['Read Manufacture ID/ Device ID Quad I/O' , 'REMS' , [READ_3B_ADDRESS_QUAD , READ_MODE_BITS_QUAD , DUMMY_CYCLE_8BIT_QUAD , DUMMY_CYCLE_8BIT_QUAD , READ_BYTE_QUAD_CONTINUOUS]], + 0x9F : ['Read Identification' , 'RDID', [READ_BYTE_SINGLE_CONTINUOUS]], + 0x75 : ['Program/Erase Suspend' , 'PES' , []], + 0x7A : ['Program/Erase Resume' , 'PER' , []], + 0x44 : ['Erase Security Registers' , 'ESR' , [READ_ADDRESS]], + 0x42 : ['Program Security Registers' , 'PSR' , [READ_ADDRESS] + [WRITE_BYTE_SINGLE] * 256], + 0x48 : ['Read Security Registers' , 'RSR' , [READ_ADDRESS , DUMMY_CYCLE_8BIT , READ_BYTE_SINGLE_CONTINUOUS]], + 0x66 : ['Enable Reset' , 'ENRE' , []], + 0x99 : ['Reset' , 'RE' , []], + 0x5A : ['Read Serial Flash Discoverable Parameter' , 'RSFDP', [READ_3B_ADDRESS , DUMMY_CYCLE_8BIT , READ_BYTE_SINGLE_CONTINUOUS]], +} + +class ChannelError(Exception): + pass + +class Decoder(srd.Decoder): + api_version = 3 + id = 'smart_qspi' + name = 'Smart QSPI' + longname = 'Quad Serial Peripheral Interface' + desc = 'Full-duplex, synchronous, serial bus.compatible with Dual SPI and Quad SPI interfaces.' + license = 'gplv2+' + inputs = ['logic'] + outputs = ['spi'] + tags = ['Embedded/industrial'] + channels = ( + {'id': 'clk', 'type': 0, 'name': 'CLK', 'desc': 'Clock', 'idn':'dec_qspi_chan_clk'}, + {'id': 'io0', 'type': 109, 'name': 'IO0', 'desc': 'Data i/o 0', 'idn':'dec_qspi_chan_io0'}, + ) + optional_channels = ( + {'id': 'io1', 'type': 107, 'name': 'IO1', 'desc': 'Data i/o 1', 'idn':'dec_qspi_opt_chan_io1'}, + {'id': 'io2', 'type': 107, 'name': 'IO2', 'desc': 'Data i/o 2', 'idn':'dec_qspi_opt_chan_io2'}, + {'id': 'io3', 'type': 107, 'name': 'IO3', 'desc': 'Data i/o 3', 'idn':'dec_qspi_opt_chan_io3'}, + {'id': 'cs', 'type': -1, 'name': 'CS#', 'desc': 'Chip-select', 'idn':'dec_qspi_opt_chan_cs'}, + ) + options = ( + {'id': 'cs_polarity', 'desc': 'CS# polarity', 'default': 'active-low', + 'values': ('active-low', 'active-high'), 'idn':'dec_qspi_opt_cs_polarity'}, + {'id': 'cpol', 'desc': 'Clock polarity (CPOL)', 'default': 0, + 'values': (0, 1), 'idn':'dec_qspi_opt_cpol'}, + {'id': 'cpha', 'desc': 'Clock phase (CPHA)', 'default': 0, + 'values': (0, 1), 'idn':'dec_qspi_opt_cpha'}, + {'id': 'bitorder', 'desc': 'Bit order', + 'default': 'msb-first', 'values': ('msb-first', 'lsb-first'), 'idn':'dec_qspi_opt_bitorder'}, + {'id': 'ads', 'desc': 'Adress Mode', 'default': '24-Bit Address', + 'values': ('32-Bit Address', '24-Bit Address'), 'idn':'dec_qspi_adress_mode'}, + {'id': 'frame', 'desc': 'Frame Decoder', 'default': 'no', + 'values': ('yes', 'no'), 'idn':'dec_qspi_opt_frame'}, + {'id': 'twolinesmode', 'desc': 'TwoLinesMode', 'default':'spi', + 'values':('spi','dspi','qspi'), 'idn':'dec_qspi_two_lines_mode'}, + {'id': 'invalidlevel', 'desc': 'Keep high or low as invalid', 'default':'both', + 'values':('both','low','high'), 'idn':'dec_qspi_invalidlevel'}, + + ) + annotations = ( + ('6', 'data-transfer', 'data transfer'), + ('108', 'Quad data', 'Q-Data'), + ('108', 'Dual data', 'D-Data'), + ('106', 'd0', 'IO0 data'), + ('106', 'd1', 'IO1 data'), + ('106', 'd2', 'IO2 data'), + ('106', 'd3', 'IO3 data'), + ('1000', 'other', 'Human-readable warnings'), + ) + annotation_rows = ( + ('data-transfer', 'data transfer', (0,)), + ('Quad data', 'Q-Data', (1,)), + ('Dual data', 'D-Data', (2,)), + ('d0', 'D0', (3,)), + ('d1', 'D1', (4,)), + ('d2', 'D2', (5,)), + ('d3', 'D3', (6,)), + ('Other', 'Other',(7,)), + ) + + def __init__(self): + self.reset() + + def reset(self): + self.samplerate = None + self.bitcount = 0 + self.data = 0 + self.bits = [] + self.io0bits=[] + self.io1bits=[] + self.io2bits=[] + self.io3bits=[] + self.io0bytes=[] + self.io1bytes=[] + self.io2bytes=[] + self.io3bytes=[] + self.io0data=0 + self.io1data=0 + self.io2data=0 + self.io3data=0 + + self.command = 0 + + self.state_count = 0 + self.ads = False + self.diagram = [] + + self.ss = 0 + self.count = 0 + self.bits_data = 0 + + self.ss_block = -1 + self.samplenum = -1 + self.ss_transfer = -1 + self.cs_was_deasserted = False + self.have_cs = self.have_io1 = self.have_io3 = None + + def start(self): + self.out_python = self.register(srd.OUTPUT_PYTHON) + self.out_ann = self.register(srd.OUTPUT_ANN) + self.out_binary = self.register(srd.OUTPUT_BINARY) + self.out_bitrate = self.register(srd.OUTPUT_META, + meta=(int, 'Bitrate', 'Bitrate during transfers')) + self.bw = (8 + 7) // 8 + self.spiModeSet=self.options['twolinesmode'].lower() + self.invalidlevelSet = 0XFF if self.options['invalidlevel'] == 'high' else 0 + + self.ads = False if self.options['ads'] == '24-Bit Address' else True + + def metadata(self, key, value): + if key == srd.SRD_CONF_SAMPLERATE: + self.samplerate = value + self.bit_width = float(self.samplerate) / float(115200) + + def putw(self, data): + self.put(self.ss_block, self.samplenum, self.out_ann, data) + + def putgse(self, ss, es, data): + self.put(ss, es, self.out_ann, data) + + def putg(self, data): + s, halfbit = self.samplenum, self.bit_width / 2.0 + self.put(s - floor(halfbit), s + ceil(halfbit), self.out_ann, data) + + def puttext(self, ss, es, state, data): + self.put(ss, es, self.out_ann, [0, ['%s : 0x%02x' % (process_text[state][0] , data), + '%s : 0x%02x' % (process_text[state][1] , data), + '0x%02X' % data]]) + + def putdummy(self, ss, es): + self.put(ss, es, self.out_ann, [0, ['Dummy Cycles','Dummy','D']]) + + def putcmd(self, ss, es): + self.put(ss, es, self.out_ann, [0, ['%s(0x%02x)' % (command[self.io0data][0] , self.io0data), + '%s(0x%02x)' % (command[self.io0data][1] , self.io0data), + '%s' % command[self.io0data][1]]]) + + def checkinvalidlevel(self,data): # if data line is keep high or keep low,data is invalid then return true + if self.options['invalidlevel']=='both' : + return data==0xff or data ==0 + elif self.options['invalidlevel']=='high': + return data==0xff + else : + return data==0 + + + def putdata(self, frame): + data0 = self.io0data + data1 = self.io1data + data2 = self.io2data if self.have_io3 else None + data3 = self.io3data if self.have_io3 else None + + ss,es = self.io0bits[-1][1], self.io0bits[0][2] + if frame: + if self.have_io3: + self.io2bytes.append(Data(ss = ss, es = es, val = data2)) + self.io3bytes.append(Data(ss = ss, es = es, val = data3)) + if self.have_io1: + self.io1bytes.append(Data(ss = ss, es = es, val = data1)) + self.io0bytes.append(Data(ss = ss, es = es, val = data0)) + + bo = self.options['bitorder'] + + if(((self.checkinvalidlevel(data2) or self.checkinvalidlevel(data3)) and self.have_io3) or (self.checkinvalidlevel(data1) and self.have_io1)): + spiMode = self.spiModeSet + elif self.have_io3: + spiMode='qspi' + else : + spiMode='spi' + + #self.putgse(ss,es,[7, ['%s' %spiMode.upper()]]) + #self.put(ss, es, self.out_ann, [3, ['@%02X' % self.io0data]]) + #if self.have_io1: + # self.put(ss, es, self.out_ann, [4, ['@%02X' % self.io1data]]) + #if self.have_io3: + # self.put(ss, es, self.out_ann, [5, ['@%02X' % self.io2data]]) + # self.put(ss, es, self.out_ann, [6, ['@%02X' % self.io3data]]) + + if spiMode == 'qspi' or spiMode == 'dspi': + + qdata = [] + ddata = [] + if self.have_io1 and self.have_io3: + for i in range(4): + self.data = 0 + for j in range(2): + self.data |= self.io3bits[-1 - i * 2 - j][0] + self.data = self.data << 1 + self.data |= self.io2bits[-1 - i * 2 - j][0] + self.data = self.data << 1 + self.data |= self.io1bits[-1 - i * 2 - j][0] + self.data = self.data << 1 + self.data |= self.io0bits[-1 - i * 2 - j][0] + if j < 1: + self.data = self.data << 1 + + qss,qes = self.io0bits[-1 - i * 2][1], self.io0bits[-2 - i * 2][2] + + if not bo == 'msb-first': + dataTemp = (0xF0 & self.data) >> 4|(0x0f & self.data) << 4 + self.data = dataTemp + + qdata.append([self.data, qss, qes]) + self.put(qss, qes, self.out_ann, [1, ['@%02X' % self.data]]) + if self.have_io1: + for i in range(2): + self.data = 0 + for j in range(4): + self.data |= self.io1bits[-1 - i * 4 - j][0] + self.data = self.data << 1 + self.data |= self.io0bits[-1 - i * 4 - j][0] + if j < 3: + self.data = self.data << 1 + dss,des = self.io0bits[-1 - i * 4][1], self.io0bits[-4 - i * 4][2] + if not bo == 'msb-first': + dataTemp = (0xF0 & self.data) >> 4|(0x0f & self.data) << 4 + self.data = dataTemp + + ddata.append([self.data, dss, des]) + self.put(dss, des, self.out_ann, [2, ['@%02X' % self.data]]) + + if self.command == 0 and self.io0data in command: + self.putcmd(ss, es) + #update adress mode + if self.io0data == 0xB7: + self.ads = True + elif self.io0data == 0xE9: + self.ads = False + + if len(command[self.io0data][2]) != 0: + self.command = self.io0data + self.diagram = command[self.command][2] + + elif self.command != 0: + cur_state = self.diagram[self.state_count] + + i, size = 0, 1 + if cur_state.mode == process_mode.DUAL: + size = 2 + elif cur_state.mode == process_mode.QUAD: + size = 4 + + while i < size: + if size == 1: + if cur_state.enum == process_enum.READ_BYTE and self.have_io1: + origin_data = [self.io1data & 0xFF , ss, es] + else: + origin_data = [self.io0data & 0xFF , ss, es] + elif size == 2: + origin_data = ddata[i] + origin_data[0] = origin_data[0] & 0xFF + elif size == 4: + origin_data = qdata[i] + origin_data[0] = origin_data[0] & 0xFF + i = i + 1 + + if cur_state.enum == process_enum.ADDRESS_BY_MODE or \ + cur_state.enum == process_enum.ADDRESS_24BIT or \ + cur_state.enum == process_enum.ADDRESS_32BIT or \ + cur_state.enum == process_enum.DUMMY_BY_MODE or \ + cur_state.enum == process_enum.DUMMY_8BIT: + + if cur_state.enum == process_enum.ADDRESS_BY_MODE: + cur_state.enum = process_enum.ADDRESS_24BIT if self.ads == False else process_enum.ADDRESS_32BIT + elif cur_state.enum == process_enum.DUMMY_BY_MODE: + cur_state.enum = process_enum.DUMMY_32BIT if self.ads == False else process_enum.DUMMY_40BIT + + if self.count == 0: + self.ss = ss + self.bits_data |= origin_data[0] + self.count = self.count + 1 + + if (cur_state.enum == process_enum.ADDRESS_24BIT and self.count == 3) or \ + (cur_state.enum == process_enum.ADDRESS_32BIT and self.count == 4) or \ + (cur_state.enum == process_enum.DUMMY_8BIT and self.count == 1) or \ + (cur_state.enum == process_enum.DUMMY_32BIT and self.count == 4) or \ + (cur_state.enum == process_enum.DUMMY_40BIT and self.count == 5): + + if cur_state.enum == process_enum.ADDRESS_24BIT or \ + cur_state.enum == process_enum.ADDRESS_32BIT: + self.puttext(self.ss , origin_data[2] , cur_state.enum , self.bits_data) + else: + self.putdummy(self.ss, origin_data[2]) + + self.ss = 0 + self.count = 0 + self.bits_data = 0 + self.state_count += 1 + + if self.state_count < len(self.diagram): + cur_state = self.diagram[self.state_count] + else: + self.bits_data = self.bits_data << 8 + + elif cur_state.enum == process_enum.WRITE_BYTE or \ + cur_state.enum == process_enum.READ_BYTE or \ + cur_state.enum == process_enum.READ_BYTE_CONTINUOUS or \ + cur_state.enum == process_enum.CONTINUOUS_READ_MODE_BITS: + + self.puttext(origin_data[1] , origin_data[2] , cur_state.enum , origin_data[0]) + + if cur_state.enum != process_enum.READ_BYTE_CONTINUOUS: + self.state_count += 1 + + if self.state_count < len(self.diagram): + cur_state = self.diagram[self.state_count] + + if self.state_count >= len(self.diagram): + self.command = 0 + self.diagram = [] + self.state_count = 0 + break + + def reset_decoder_state(self): + + self.io0data = 0 + self.io1data = 0 if self.have_io1 else None + self.io2data=0 if self.have_io3 else None + self.io3data=0 if self.have_io3 else None + + self.io0bits=[] + self.io1bits=[] if self.have_io1 else None + self.io2bits=[] if self.have_io3 else None + self.io3bits=[] if self.have_io3 else None + self.bitcount = 0 + + def cs_asserted(self, cs): + active_low = (self.options['cs_polarity'] == 'active-low') + return (cs == 0) if active_low else (cs == 1) + + def handle_bit(self, datapins, clk, cs, frame): + # If this is the first bit of a dataword, save its sample number. + if self.bitcount == 0: + self.ss_block = self.samplenum + self.cs_was_deasserted = \ + not self.cs_asserted(cs) if self.have_cs else False + + ws = 8 + bo = self.options['bitorder'] + + if bo == 'msb-first': + self.io0data |= datapins[3] << (ws - 1 - self.bitcount) + else: + self.io0data |= datapins[3] << self.bitcount + if self.have_io1: + if bo == 'msb-first': + self.io1data |= datapins[2] << (ws - 1 - self.bitcount) + else: + self.io1data |= datapins[2] << self.bitcount + + if self.have_io3: + if bo == 'msb-first': + self.io2data |= datapins[1] << (ws - 1 - self.bitcount) + self.io3data |= datapins[0] << (ws - 1 - self.bitcount) + else: + self.io2data |= datapins[1] << self.bitcount + self.io3data |= datapins[0] << self.bitcount + + # Guesstimate the endsample for this bit (can be overridden below). + es = self.samplenum + if self.bitcount > 0: + es += self.samplenum - self.io0bits[0][1] + + self.io0bits.insert(0, [datapins[3], self.samplenum, es]) + if self.have_io1: + self.io1bits.insert(0, [datapins[2], self.samplenum, es]) + if self.have_io3: + self.io2bits.insert(0, [datapins[1], self.samplenum, es]) + self.io3bits.insert(0, [datapins[0], self.samplenum, es]) + + if self.bitcount > 0: + self.io0bits[1][2] = self.samplenum + if self.have_io1: + self.io1bits[1][2] = self.samplenum + if self.have_io3: + self.io2bits[1][2] = self.samplenum + self.io3bits[1][2] = self.samplenum + + self.bitcount += 1 + + # Continue to receive if not enough bits were received, yet. + if self.bitcount != ws: + return + + self.putdata(frame) + if self.samplerate: + elapsed = 1 / float(self.samplerate) + elapsed *= (self.samplenum - self.ss_block + 1) + bitrate = int(1 / elapsed * ws) + self.put(self.ss_block, self.samplenum, self.out_bitrate, bitrate) + + if self.have_cs and self.cs_was_deasserted: + self.putw([6, ['CS# was deasserted during this data word!']]) + + self.reset_decoder_state() + + def find_clk_edge(self, datapins, clk, cs, first,frame): + + if self.have_cs and (first or (self.matched & (0b1 << self.have_cs))): + # Send all CS# pin value changes. + oldcs = None if first else 1 - cs + self.put(self.samplenum, self.samplenum, self.out_python, + ['CS-CHANGE', oldcs, cs]) + + if frame: + if self.cs_asserted(cs): + self.ss_transfer = self.samplenum + self.io0bytes = [] + self.io1bytes = [] + self.io2bytes = [] + self.io3bytes = [] + + elif self.ss_transfer != -1: + self.put(self.ss_transfer, self.samplenum, self.out_python, + ['TRANSFER', self.io0bytes, self.io1bytes, self.io2bytes,self.io3bytes]) + # Reset decoder state when CS# changes (and the CS# pin is used). + self.command = 0 + self.diagram = [] + self.state_count = 0 + + self.ss = 0 + self.count = 0 + self.bits_data = 0 + + self.reset_decoder_state() + + # We only care about samples if CS# is asserted. + if self.have_cs and not self.cs_asserted(cs): + return + + # Ignore sample if the clock pin hasn't changed. + if first or not (self.matched & (0b1 << 0)): + return + + # Found the correct clock edge, now get the SPI bit(s). + self.handle_bit(datapins, clk, cs,frame) + + def decode(self): + # The CLK & IO0 input is mandatory. Other signals are (individually) + # optional. Tell stacked decoders when we don't have a CS# signal. + if not self.has_channel(0): + raise ChannelError('CLK pin required.') + if not self.has_channel(1): + raise ChannelError('io0 pin required.') + + self.have_io1 = self.has_channel(2) + self.have_io3 = self.has_channel(3) & self.has_channel(4) + self.have_cs = self.has_channel(5) + + if not self.have_cs: + self.put(0, 0, self.out_python, ['CS-CHANGE', None, None]) + + frame = self.options['frame'] == 'yes' + + # We want all CLK changes. We want all CS changes if CS is used. + # Map 'have_cs' from boolean to an integer index. This simplifies + # evaluation in other locations. + # Sample data on rising/falling clock edge (depends on mode). + mode = spi_mode[self.options['cpol'], self.options['cpha']] + if mode == 0 or mode == 3: # Sample on rising clock edge + wait_cond = [{0: 'r'}] + else: # Sample on falling clock edge + wait_cond = [{0: 'f'}] + + if self.have_cs: + self.have_cs = len(wait_cond) + wait_cond.append({5: 'e'}) + + # "Pixel compatibility" with the v2 implementation. Grab and + # process the very first sample before checking for edges. The + # previous implementation did this by seeding old values with + # None, which led to an immediate "change" in comparison. + (clk, d0, d1, d2, d3, cs) = self.wait({}) + d = (d3, d2, d1, d0) + self.find_clk_edge(d, clk, cs, True ,frame) + + while True: + (clk, d0, d1, d2, d3, cs) = self.wait(wait_cond) + d = (d3, d2, d1, d0) + self.find_clk_edge(d, clk, cs, False,frame)# + +