/* * This file is part of the libsigrok project. * * Copyright (C) 2011 Uwe Hermann * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libsigrok.h" #include "libsigrok-internal.h" #include #include #include #include "config.h" /* Needed for PACKAGE_STRING and others. */ #define LOG_PREFIX "output/csv" struct context { unsigned int num_enabled_channels; uint64_t samplerate; uint64_t limit_samples; char separator; gboolean header_done; int *channel_index; int *channel_unit; float *channel_scale; uint16_t *channel_offset; double *channel_mmin; double *channel_mmax; uint32_t ref_min; uint32_t ref_max; uint64_t mask; uint64_t pre_data; uint64_t index; int type; }; /* * TODO: * - Option to specify delimiter character and/or string. * - Option to (not) print metadata as comments. * - Option to specify the comment character(s), e.g. # or ; or C/C++-style. * - Option to (not) print samplenumber / time as extra column. * - Option to "compress" output (only print changed samples, VCD-like). * - Option to print comma-separated bits, or whole bytes/words (for 8/16 * channel LAs) as ASCII/hex etc. etc. * - Trigger support. */ static int init(struct sr_output *o, GHashTable *options) { struct context *ctx; struct sr_channel *ch; GSList *l; int i; float range; if (!o || !o->sdi) return SR_ERR_ARG; ctx = g_malloc0(sizeof(struct context)); o->priv = ctx; ctx->separator = ','; ctx->mask = 0; ctx->index = 0; ctx->type = g_variant_get_int16(g_hash_table_lookup(options, "type")); /* Get the number of channels, and the unitsize. */ for (l = o->sdi->channels; l; l = l->next) { ch = l->data; if (ch->type != ctx->type) continue; if (!ch->enabled) continue; ctx->num_enabled_channels++; } ctx->channel_index = g_malloc(sizeof(int) * ctx->num_enabled_channels); ctx->channel_unit = g_malloc(sizeof(int) * ctx->num_enabled_channels); ctx->channel_scale = g_malloc(sizeof(float) * ctx->num_enabled_channels); ctx->channel_offset = g_malloc(sizeof(uint16_t) * ctx->num_enabled_channels); ctx->channel_mmax = g_malloc(sizeof(double) * ctx->num_enabled_channels); ctx->channel_mmin = g_malloc(sizeof(double) * ctx->num_enabled_channels); /* Once more to map the enabled channels. */ for (i = 0, l = o->sdi->channels; l; l = l->next) { ch = l->data; if (ch->type != ctx->type) continue; if (!ch->enabled) continue; ctx->channel_index[i] = ch->index; //ctx->mask |= (1 << ch->index); ctx->mask |= (1 << i); range = ch->vdiv * ch->vfactor * DS_CONF_DSO_VDIVS; ctx->channel_unit[i] = (range >= 5000000) ? 1000000 : (range >= 5000) ? 1000 : 1; ctx->channel_scale[i] = range / ctx->channel_unit[i]; ctx->channel_offset[i] = ch->hw_offset; ctx->channel_mmax[i] = ch->map_max; ctx->channel_mmin[i] = ch->map_min; i++; } return SR_OK; } static GString *gen_header(const struct sr_output *o) { struct context *ctx; struct sr_channel *ch; GString *header; GSList *l; time_t t; int num_channels, i; ctx = o->priv; header = g_string_sized_new(512); /* Some metadata */ t = time(NULL); g_string_append_printf(header, "; CSV, generated by %s on %s", PACKAGE_STRING, ctime(&t)); /* Columns / channels */ if (ctx->type == SR_CHANNEL_LOGIC) num_channels = g_slist_length(o->sdi->channels); else num_channels = ctx->num_enabled_channels; g_string_append_printf(header, "; Channels (%d/%d)\n", ctx->num_enabled_channels, num_channels); // if (ctx->samplerate == 0) { // if (sr_config_get(o->sdi->driver, o->sdi, NULL, NULL, SR_CONF_SAMPLERATE, // &gvar) == SR_OK) { // ctx->samplerate = g_variant_get_uint64(gvar); // g_variant_unref(gvar); // } // } char *samplerate_s = sr_samplerate_string(ctx->samplerate); g_string_append_printf(header, "; Sample rate: %s\n", samplerate_s); g_free(samplerate_s); // if (sr_config_get(o->sdi->driver, o->sdi, NULL, NULL, SR_CONF_LIMIT_SAMPLES, // &gvar) == SR_OK) { // uint64_t depth = g_variant_get_uint64(gvar); // g_variant_unref(gvar); // char *depth_s = sr_samplecount_string(depth); // g_string_append_printf(header, "; Sample count: %s\n", depth_s); // g_free(depth_s); // } char *depth_s = sr_samplecount_string(ctx->limit_samples); g_string_append_printf(header, "; Sample count: %s\n", depth_s); g_free(depth_s); if (ctx->type == SR_CHANNEL_LOGIC) g_string_append_printf(header, "Time(s),"); for (i = 0, l = o->sdi->channels; l; l = l->next, i++) { ch = l->data; if (ch->type != ctx->type) continue; if (!ch->enabled) continue; if (ctx->type == SR_CHANNEL_DSO) { char *unit_s = ctx->channel_unit[i] >= 1000000 ? "kV" : ctx->channel_unit[i] >= 1000 ? "V" : "mV"; g_string_append_printf(header, " %s (Unit: %s),", ch->name, unit_s); } else if (ctx->type == SR_CHANNEL_ANALOG) { g_string_append_printf(header, " %s (Unit: %s),", ch->name, ch->map_unit); } else { g_string_append_printf(header, " %s,", ch->name); } } if (o->sdi->channels) /* Drop last separator. */ g_string_truncate(header, header->len - 1); g_string_append_printf(header, "\n"); return header; } static int receive(const struct sr_output *o, const struct sr_datafeed_packet *packet, GString **out) { const struct sr_datafeed_meta *meta; const struct sr_datafeed_logic *logic; const struct sr_datafeed_dso *dso; const struct sr_datafeed_analog *analog; const struct sr_config *src; GSList *l; struct context *ctx; int idx; uint64_t i, j; unsigned char *p, c; *out = NULL; if (!o || !o->sdi) return SR_ERR_ARG; if (!(ctx = o->priv)) return SR_ERR_ARG; switch (packet->type) { case SR_DF_META: meta = packet->payload; for (l = meta->config; l; l = l->next) { src = l->data; if (src->key == SR_CONF_SAMPLERATE) ctx->samplerate = g_variant_get_uint64(src->data); else if (src->key == SR_CONF_LIMIT_SAMPLES) ctx->limit_samples = g_variant_get_uint64(src->data); else if (src->key == SR_CONF_REF_MIN) ctx->ref_min = g_variant_get_uint32(src->data); else if (src->key == SR_CONF_REF_MAX) ctx->ref_max = g_variant_get_uint32(src->data); } break; case SR_DF_LOGIC: logic = packet->payload; if (!ctx->header_done) { *out = gen_header(o); ctx->header_done = TRUE; } else { *out = g_string_sized_new(512); } int bflag = sr_get_export_original_flag(); for (i = 0; i <= logic->length - logic->unitsize; i += logic->unitsize) { ctx->index++; if (bflag == 0){ if (ctx->index > 1 && (*(uint64_t *)(logic->data + i) & ctx->mask) == ctx->pre_data) continue; } g_string_append_printf(*out, "%0.10g", (ctx->index-1)*1.0/ctx->samplerate); for (j = 0; j < ctx->num_enabled_channels; j++) { //idx = ctx->channel_index[j]; idx = j; p = logic->data + i + idx / 8; c = *p & (1 << (idx % 8)); g_string_append_c(*out, ctx->separator); g_string_append_c(*out, c ? '1' : '0'); } g_string_append_printf(*out, "\n"); ctx->pre_data = (*(uint64_t *)(logic->data + i) & ctx->mask); } break; case SR_DF_DSO: dso = packet->payload; if (!ctx->header_done) { *out = gen_header(o); ctx->header_done = TRUE; } else { *out = g_string_sized_new(512); } for (i = 0; i < (uint64_t)dso->num_samples; i++) { for (j = 0; j < ctx->num_enabled_channels; j++) { idx = ctx->channel_index[j]; p = dso->data + i * ctx->num_enabled_channels + idx * ((ctx->num_enabled_channels > 1) ? 1 : 0); g_string_append_printf(*out, "%0.5f", (ctx->channel_offset[j] - *p) * ctx->channel_scale[j] / (ctx->ref_max - ctx->ref_min)); g_string_append_c(*out, ctx->separator); } /* Drop last separator. */ g_string_truncate(*out, (*out)->len - 1); g_string_append_printf(*out, "\n"); } break; case SR_DF_ANALOG: analog = packet->payload; if (!ctx->header_done) { *out = gen_header(o); ctx->header_done = TRUE; } else { *out = g_string_sized_new(512); } for (i = 0; i < (uint64_t)analog->num_samples; i++) { for (j = 0; j < ctx->num_enabled_channels; j++) { idx = ctx->channel_index[j]; p = analog->data + i * ctx->num_enabled_channels + idx * ((ctx->num_enabled_channels > 1) ? 1 : 0); g_string_append_printf(*out, "%0.5f", (ctx->channel_offset[j] - *p) * (ctx->channel_mmax[j] - ctx->channel_mmin[j]) / (ctx->ref_max - ctx->ref_min)); g_string_append_c(*out, ctx->separator); } /* Drop last separator. */ g_string_truncate(*out, (*out)->len - 1); g_string_append_printf(*out, "\n"); } break; } return SR_OK; } static int cleanup(struct sr_output *o) { struct context *ctx; if (!o || !o->sdi) return SR_ERR_ARG; if (o->priv) { ctx = o->priv; g_free(ctx->channel_index); g_free(o->priv); o->priv = NULL; } return SR_OK; } SR_PRIV struct sr_output_module output_csv = { .id = "csv", .name = "CSV", .desc = "Comma-separated values", .exts = (const char*[]){"csv", NULL}, .options = NULL, .init = init, .receive = receive, .cleanup = cleanup, };