/* * This file is part of the libsigrok project. * * Copyright (C) 2010 Uwe Hermann * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libsigrok-internal.h" #include #include #include #include "log.h" #undef LOG_PREFIX #define LOG_PREFIX "strutil: " /** * @file * * Helper functions for handling or converting libsigrok-related strings. */ /** * @defgroup grp_strutil String utilities * * Helper functions for handling or converting libsigrok-related strings. * * @{ */ /** * Convert a numeric value value to its "natural" string representation. * in SI units * * E.g. a value of 3000000, with units set to "W", would be converted * to "3 MW", 20000 to "20 kW", 31500 would become "31.5 kW". * * @param x The value to convert. * @param unit The unit to append to the string, or NULL if the string * has no units. * * @return A malloc()ed string representation of the samplerate value, * or NULL upon errors. The caller is responsible to g_free() the * memory. */ SR_API char *sr_si_string_u64(uint64_t x, const char *unit) { if (unit == NULL) unit = ""; if ((x >= SR_GHZ(1)) && (x % SR_GHZ(1) == 0)) { return g_strdup_printf("%llu G%s", (u64_t)(x / SR_GHZ(1)), unit); } else if ((x >= SR_GHZ(1)) && (x % SR_GHZ(1) != 0)) { return g_strdup_printf("%llu.%llu G%s", (u64_t)(x / SR_GHZ(1)), (u64_t)(x % SR_GHZ(1)), unit); } else if ((x >= SR_MHZ(1)) && (x % SR_MHZ(1) == 0)) { return g_strdup_printf("%llu M%s", (u64_t)(x / SR_MHZ(1)), unit); } else if ((x >= SR_MHZ(1)) && (x % SR_MHZ(1) != 0)) { return g_strdup_printf("%llu.%llu M%s", (u64_t)(x / SR_MHZ(1)), (u64_t)(x % SR_MHZ(1)), unit); } else if ((x >= SR_KHZ(1)) && (x % SR_KHZ(1) == 0)) { return g_strdup_printf("%llu k%s", (u64_t)(x / SR_KHZ(1)), unit); } else if ((x >= SR_KHZ(1)) && (x % SR_KHZ(1) != 0)) { return g_strdup_printf("%llu.%llu K%s", (u64_t)(x / SR_KHZ(1)), (u64_t)(x % SR_KHZ(1)), unit); } else { return g_strdup_printf("%llu %s", (u64_t)x, unit); } sr_err("%s: Error creating SI units string.", __func__); return NULL; } /** * Convert a numeric value value to its "natural" string representation. * in IEC units * * E.g. a value of 1024, with units set to "B", would be converted * to "1 kB", 16384 to "16 kB". * * @param x The value to convert. * @param unit The unit to append to the string, or NULL if the string * has no units. * * @return A malloc()ed string representation of the samplerate value, * or NULL upon errors. The caller is responsible to g_free() the * memory. */ SR_API char *sr_iec_string_u64(uint64_t x, const char *unit) { if (unit == NULL) unit = ""; if ((x >= SR_GB(1)) && (x % SR_GB(1) == 0)) { return g_strdup_printf("%llu G%s", (u64_t)(x / SR_GB(1)), unit); } else if ((x >= SR_GB(1)) && (x % SR_GB(1) != 0)) { return g_strdup_printf("%llu.%llu G%s", (u64_t)(x / SR_GB(1)), (u64_t)(x % SR_GB(1)), unit); } else if ((x >= SR_MB(1)) && (x % SR_MB(1) == 0)) { return g_strdup_printf("%llu M%s", (u64_t)(x / SR_MB(1)), unit); } else if ((x >= SR_MB(1)) && (x % SR_MB(1) != 0)) { return g_strdup_printf("%llu.%llu M%s", (u64_t)(x / SR_MB(1)), (u64_t)(x % SR_MB(1)), unit); } else if ((x >= SR_KB(1)) && (x % SR_KB(1) == 0)) { return g_strdup_printf("%llu k%s", (u64_t)(x / SR_KB(1)), unit); } else if ((x >= SR_KB(1)) && (x % SR_KB(1) != 0)) { return g_strdup_printf("%llu.%llu K%s", (u64_t)(x / SR_KB(1)), (u64_t)(x % SR_KB(1)), unit); } else { return g_strdup_printf("%llu %s", (u64_t)x, unit); } sr_err("%s: Error creating SI units string.", __func__); return NULL; } /** * Convert a numeric samplerate value to its "natural" string representation. * * E.g. a value of 3000000 would be converted to "3 MHz", 20000 to "20 kHz", * 31500 would become "31.5 kHz". * * @param samplerate The samplerate in Hz. * * @return A malloc()ed string representation of the samplerate value, * or NULL upon errors. The caller is responsible to g_free() the * memory. */ SR_API char *sr_samplerate_string(uint64_t samplerate) { return sr_si_string_u64(samplerate, "Hz"); } /** * Convert a numeric samplecount value to its "natural" string representation. * * E.g. a value of 16384 would be converted to "16 K" * * @param samplecount. * * @return A malloc()ed string representation of the samplecount value, * or NULL upon errors. The caller is responsible to g_free() the * memory. */ SR_API char *sr_samplecount_string(uint64_t samplecount) { return sr_si_string_u64(samplecount, " Samples"); } /** * Convert a numeric frequency value to the "natural" string representation * of its period. * * E.g. a value of 3000000 would be converted to "3 us", 20000 to "50 ms". * * @param frequency The frequency in Hz. * * @return A malloc()ed string representation of the frequency value, * or NULL upon errors. The caller is responsible to g_free() the * memory. */ SR_API char *sr_period_string(uint64_t frequency) { char *o; int r; /* Allocate enough for a uint64_t as string + " ms". */ if (!(o = malloc(30 + 1))) { sr_err("%s: o malloc failed", __func__); return NULL; } if (frequency >= SR_GHZ(1)) r = snprintf(o, 30, "%llu ns", (u64_t)(frequency / 1000000000)); else if (frequency >= SR_MHZ(1)) r = snprintf(o, 30, "%llu us", (u64_t)(frequency / 1000000)); else if (frequency >= SR_KHZ(1)) r = snprintf(o, 30, "%llu ms", (u64_t)(frequency / 1000)); else r = snprintf(o, 30, "%llu s", (u64_t)frequency); if (r < 0) { /* Something went wrong... */ g_free(o); return NULL; } return o; } /** * Convert a numeric time(ns) value to the "natural" string representation * of its period. * * E.g. a value of 3000000 would be converted to "3 ms", 20000 to "20 us". * * @param time The time in ns. * * @return A malloc()ed string representation of the time value, * or NULL upon errors. The caller is responsible to g_free() the * memory. */ SR_API char *sr_time_string(uint64_t time) { char *o; int r; /* Allocate enough for a uint64_t as string + " ms". */ if (!(o = malloc(30 + 1))) { sr_err("%s: o malloc failed", __func__); return NULL; } if (time >= SR_DAY(1)) r = snprintf(o, 30, "%0.2lf day", time * 1.0 / SR_DAY(1)); else if (time >= SR_HOUR(1)) r = snprintf(o, 30, "%0.2lf hour", time * 1.0 / SR_HOUR(1)); else if (time >= SR_MIN(1)) r = snprintf(o, 30, "%0.2lf min", time * 1.0 / SR_MIN(1)); else if (time >= SR_SEC(1)) r = snprintf(o, 30, "%0.2lf s", time * 1.0 / SR_SEC(1)); else if (time >= SR_MS(1)) r = snprintf(o, 30, "%0.2lf ms", time * 1.0 / SR_MS(1)); else if (time >= SR_US(1)) r = snprintf(o, 30, "%0.2lf us", time * 1.0 / SR_US(1)); else r = snprintf(o, 30, "%llu ns", (u64_t)time); if (r < 0) { /* Something went wrong... */ g_free(o); return NULL; } return o; } /** * Convert a numeric voltage value to the "natural" string representation * of its voltage value. The voltage is specified as a rational number's * numerator and denominator. * * E.g. a value of 300000 would be converted to "300mV", 2 to "2V". * * @param v_p The voltage numerator. * @param v_q The voltage denominator. * * @return A malloc()ed string representation of the voltage value, * or NULL upon errors. The caller is responsible to g_free() the * memory. */ SR_API char *sr_voltage_string(uint64_t v_p, uint64_t v_q) { int r; char *o; if (!(o = malloc(30 + 1))) { sr_err("%s: o malloc failed", __func__); return NULL; } if (v_q == 1000) r = snprintf(o, 30, "%llumV", (u64_t)v_p); else if (v_q == 1) r = snprintf(o, 30, "%lluV", (u64_t)v_p); else r = snprintf(o, 30, "%gV", (float)v_p / (float)v_q); if (r < 0) { /* Something went wrong... */ g_free(o); return NULL; } return o; } /** * Convert a "natural" string representation of a size value to uint64_t. * * E.g. a value of "3k" or "3 K" would be converted to 3000, a value * of "15M" would be converted to 15000000. * * Value representations other than decimal (such as hex or octal) are not * supported. Only 'k' (kilo), 'm' (mega), 'g' (giga) suffixes are supported. * Spaces (but not other whitespace) between value and suffix are allowed. * * @param sizestring A string containing a (decimal) size value. * @param size Pointer to uint64_t which will contain the string's size value. * * @return SR_OK upon success, SR_ERR upon errors. */ SR_API int sr_parse_sizestring(const char *sizestring, uint64_t *size) { int multiplier, done; char *s; *size = strtoull(sizestring, &s, 10); multiplier = 0; done = FALSE; while (s && *s && multiplier == 0 && !done) { switch (*s) { case ' ': break; case 'k': case 'K': multiplier = SR_KHZ(1); break; case 'm': case 'M': multiplier = SR_MHZ(1); break; case 'g': case 'G': multiplier = SR_GHZ(1); break; default: done = TRUE; s--; } s++; } if (multiplier > 0) *size *= multiplier; if (*s && strcasecmp(s, "Hz")) return SR_ERR; return SR_OK; } /** * Convert a "natural" string representation of a time value to an * uint64_t value in milliseconds. * * E.g. a value of "3s" or "3 s" would be converted to 3000, a value * of "15ms" would be converted to 15. * * Value representations other than decimal (such as hex or octal) are not * supported. Only lower-case "s" and "ms" time suffixes are supported. * Spaces (but not other whitespace) between value and suffix are allowed. * * @param timestring A string containing a (decimal) time value. * @return The string's time value as uint64_t, in milliseconds. * * @todo Add support for "m" (minutes) and others. * @todo Add support for picoseconds? * @todo Allow both lower-case and upper-case? If no, document it. */ SR_API uint64_t sr_parse_timestring(const char *timestring) { uint64_t time_msec; char *s; /* TODO: Error handling, logging. */ time_msec = strtoull(timestring, &s, 10); if (time_msec == 0 && s == timestring) return 0; if (s && *s) { while (*s == ' ') s++; if (!strcmp(s, "s")) time_msec *= 1000; else if (!strcmp(s, "ms")) ; /* redundant */ else return 0; } return time_msec; } SR_API gboolean sr_parse_boolstring(const char *boolstr) { if (!boolstr) return FALSE; if (!g_ascii_strncasecmp(boolstr, "true", 4) || !g_ascii_strncasecmp(boolstr, "yes", 3) || !g_ascii_strncasecmp(boolstr, "on", 2) || !g_ascii_strncasecmp(boolstr, "1", 1)) return TRUE; return FALSE; } SR_API int sr_parse_period(const char *periodstr, uint64_t *p, uint64_t *q) { char *s; *p = strtoull(periodstr, &s, 10); if (*p == 0 && s == periodstr) /* No digits found. */ return SR_ERR_ARG; if (s && *s) { while (*s == ' ') s++; if (!strcmp(s, "fs")) *q = 1000000000000000ULL; else if (!strcmp(s, "ps")) *q = 1000000000000ULL; else if (!strcmp(s, "ns")) *q = 1000000000ULL; else if (!strcmp(s, "us")) *q = 1000000; else if (!strcmp(s, "ms")) *q = 1000; else if (!strcmp(s, "s")) *q = 1; else /* Must have a time suffix. */ return SR_ERR_ARG; } return SR_OK; } SR_API int sr_parse_voltage(const char *voltstr, uint64_t *p, uint64_t *q) { char *s; *p = strtoull(voltstr, &s, 10); if (*p == 0 && s == voltstr) /* No digits found. */ return SR_ERR_ARG; if (s && *s) { while (*s == ' ') s++; if (!strcasecmp(s, "mv")) *q = 1000L; else if (!strcasecmp(s, "v")) *q = 1; else /* Must have a base suffix. */ return SR_ERR_ARG; } return SR_OK; } /** @} */