## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2011-2014 Uwe Hermann ## Copyright (C) 2019 DreamSourceLab ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see . ## import sigrokdecode as srd from common.srdhelper import bitpack from math import floor, ceil ''' OUTPUT_PYTHON format: Packet: [, , ] This is the list of s and their respective values: - 'STARTBIT': The data is the (integer) value of the start bit (0/1). - 'DATA': This is always a tuple containing two items: - 1st item: the (integer) value of the UART data. Valid values range from 0 to 511 (as the data can be up to 9 bits in size). - 2nd item: the list of individual data bits and their ss/es numbers. - 'PARITYBIT': The data is the (integer) value of the parity bit (0/1). - 'STOPBIT': The data is the (integer) value of the stop bit (0 or 1). - 'INVALID STARTBIT': The data is the (integer) value of the start bit (0/1). - 'INVALID STOPBIT': The data is the (integer) value of the stop bit (0/1). - 'PARITY ERROR': The data is a tuple with two entries. The first one is the expected parity value, the second is the actual parity value. - 'BREAK': The data is always 0. - 'FRAME': The data is always a tuple containing two items: The (integer) value of the UART data, and a boolean which reflects the validity of the UART frame. ''' # Given a parity type to check (odd, even, zero, one), the value of the # parity bit, the value of the data, and the length of the data (5-9 bits, # usually 8 bits) return True if the parity is correct, False otherwise. # 'none' is _not_ allowed as value for 'parity_type'. def parity_ok(parity_type, parity_bit, data, num_data_bits): # Handle easy cases first (parity bit is always 1 or 0). if parity_type == 'zero': return parity_bit == 0 elif parity_type == 'one': return parity_bit == 1 # Count number of 1 (high) bits in the data (and the parity bit itself!). ones = bin(data).count('1') + parity_bit # Check for odd/even parity. if parity_type == 'odd': return (ones % 2) == 1 elif parity_type == 'even': return (ones % 2) == 0 class SamplerateError(Exception): pass class ChannelError(Exception): pass class Decoder(srd.Decoder): api_version = 3 id = '1:uart' name = '1:UART' longname = 'Universal Asynchronous Receiver/Transmitter' desc = 'Asynchronous, serial bus.' license = 'gplv2+' inputs = ['logic'] outputs = ['uart'] tags = ['Embedded/industrial'] channels = ( {'id': 'rxtx', 'type': 209, 'name': 'RX/TX', 'desc': 'UART transceive line'}, ) options = ( {'id': 'baudrate', 'desc': 'Baud rate', 'default': 115200}, {'id': 'num_data_bits', 'desc': 'Data bits', 'default': 8, 'values': tuple(range(4,129,1))}, {'id': 'parity_type', 'desc': 'Parity type', 'default': 'none', 'values': ('none', 'odd', 'even', 'zero', 'one')}, {'id': 'parity_check', 'desc': 'Check parity?', 'default': 'yes', 'values': ('yes', 'no')}, {'id': 'num_stop_bits', 'desc': 'Stop bits', 'default': 1.0, 'values': (0.0, 0.5, 1.0, 1.5, 2.0, 2.5)}, {'id': 'bit_order', 'desc': 'Bit order', 'default': 'lsb-first', 'values': ('lsb-first', 'msb-first')}, {'id': 'format', 'desc': 'Data format', 'default': 'hex', 'values': ('ascii', 'dec', 'hex', 'oct', 'bin')}, {'id': 'invert', 'desc': 'Invert Signal?', 'default': 'no', 'values': ('yes', 'no')}, {'id': 'anno_startstop', 'desc': 'Display Start/Stop?', 'default': 'yes', 'values': ('yes', 'no')}, ) annotations = ( ('108', 'data', 'data'), ('7', 'start', 'start bits'), ('6', 'parity-ok', 'parity OK bits'), ('0', 'parity-err', 'parity error bits'), ('1', 'stop', 'stop bits'), ('1000', 'warnings', 'warnings'), ('209', 'data-bits', 'data bits'), ('10', 'break', 'break'), ) annotation_rows = ( ('data', 'RX/TX', (0, 1, 2, 3, 4)), ('data-bits', 'Bits', (6,)), ('warnings', 'Warnings', (5,)), ('break', 'break', (7,)), ) binary = ( ('rxtx', 'RX/TX dump'), ) idle_state = 'WAIT FOR START BIT' def putx(self, data): s, halfbit = self.startsample, self.bit_width / 2.0 if self.options['anno_startstop'] == 'yes' : self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_ann, data) else : self.put(self.frame_start, self.samplenum + ceil(halfbit * (1+self.options['num_stop_bits'])), self.out_ann, data) def putpx(self, data): s, halfbit = self.startsample, self.bit_width / 2.0 self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_python, data) def putg(self, data): s, halfbit = self.samplenum, self.bit_width / 2.0 self.put(s - floor(halfbit), s + ceil(halfbit), self.out_ann, data) def putp(self, data): s, halfbit = self.samplenum, self.bit_width / 2.0 self.put(s - floor(halfbit), s + ceil(halfbit), self.out_python, data) def putgse(self, ss, es, data): self.put(ss, es, self.out_ann, data) def putpse(self, ss, es, data): self.put(ss, es, self.out_python, data) def putbin(self, data): s, halfbit = self.startsample, self.bit_width / 2.0 self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_binary, data) def __init__(self): self.reset() def reset(self): self.samplerate = None self.samplenum = 0 self.frame_start = -1 self.frame_valid = None self.startbit = -1 self.cur_data_bit = 0 self.datavalue = 0 self.paritybit = -1 self.stopbit1 = -1 self.startsample = -1 self.state = 'WAIT FOR START BIT' self.databits = [] self.break_start = None def start(self): self.out_python = self.register(srd.OUTPUT_PYTHON) self.out_binary = self.register(srd.OUTPUT_BINARY) self.out_ann = self.register(srd.OUTPUT_ANN) self.bw = (self.options['num_data_bits'] + 7) // 8 def metadata(self, key, value): if key == srd.SRD_CONF_SAMPLERATE: self.samplerate = value # The width of one UART bit in number of samples. self.bit_width = float(self.samplerate) / float(self.options['baudrate']) def get_sample_point(self, bitnum): # Determine absolute sample number of a bit slot's sample point. # bitpos is the samplenumber which is in the middle of the # specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit # (if used) or the first stop bit, and so on). # The samples within bit are 0, 1, ..., (bit_width - 1), therefore # index of the middle sample within bit window is (bit_width - 1) / 2. bitpos = self.frame_start + (self.bit_width - 1) / 2.0 bitpos += bitnum * self.bit_width return bitpos def wait_for_start_bit(self, signal): # Save the sample number where the start bit begins. self.frame_start = self.samplenum self.frame_valid = True self.state = 'GET START BIT' def get_start_bit(self, signal): self.startbit = signal # The startbit must be 0. If not, we report an error and wait # for the next start bit (assuming this one was spurious). if self.startbit != 0: self.putp(['INVALID STARTBIT', 0, self.startbit]) self.putg([5, ['Frame error', 'Frame err', 'FE']]) self.frame_valid = False es = self.samplenum + ceil(self.bit_width / 2.0) self.putpse(self.frame_start, es, ['FRAME', 0, (self.datavalue, self.frame_valid)]) self.state = 'WAIT FOR START BIT' return self.cur_data_bit = 0 self.datavalue = 0 self.startsample = -1 self.putp(['STARTBIT', 0, self.startbit]) if self.options['anno_startstop'] == 'yes': self.putg([1, ['Start bit', 'Start', 'S']]) self.state = 'GET DATA BITS' def get_data_bits(self, signal): # Save the sample number of the middle of the first data bit. if self.startsample == -1: self.startsample = self.samplenum self.putg([6, ['%d' % signal]]) # Store individual data bits and their start/end samplenumbers. s, halfbit = self.samplenum, int(self.bit_width / 2) self.databits.append([signal, s - halfbit, s + halfbit]) # Return here, unless we already received all data bits. self.cur_data_bit += 1 if self.cur_data_bit < self.options['num_data_bits']: return # Convert accumulated data bits to a data value. bits = [b[0] for b in self.databits] if self.options['bit_order'] == 'msb-first': bits.reverse() self.datavalue = bitpack(bits) self.putpx(['DATA', 0, (self.datavalue, self.databits)]) b = self.datavalue formatted = self.format_value(b) if formatted is not None: self.putx([0, [formatted]]) bdata = b.to_bytes(self.bw, byteorder='big') self.putbin([0, bdata]) self.putbin([1, bdata]) self.databits = [] # Advance to either reception of the parity bit, or reception of # the STOP bits if parity is not applicable. self.state = 'GET PARITY BIT' if self.options['parity_type'] == 'none': self.state = 'GET STOP BITS' def format_value(self, v): # Format value 'v' according to configured options. # Reflects the user selected kind of representation, as well as # the number of data bits in the UART frames. fmt, bits = self.options['format'], self.options['num_data_bits'] # Assume "is printable" for values from 32 to including 126, # below 32 is "control" and thus not printable, above 127 is # "not ASCII" in its strict sense, 127 (DEL) is not printable, # fall back to hex representation for non-printables. if fmt == 'ascii': if v in range(32, 126 + 1): return chr(v) hexfmt = "[{:02X}]" if bits <= 8 else "[{:03X}]" return hexfmt.format(v) # Mere number to text conversion without prefix and padding # for the "decimal" output format. if fmt == 'dec': return "{:d}".format(v) # Padding with leading zeroes for hex/oct/bin formats, but # without a prefix for density -- since the format is user # specified, there is no ambiguity. if fmt == 'hex': digits = (bits + 4 - 1) // 4 fmtchar = "X" elif fmt == 'oct': digits = (bits + 3 - 1) // 3 fmtchar = "o" elif fmt == 'bin': digits = bits fmtchar = "b" else: fmtchar = None if fmtchar is not None: fmt = "{{:0{:d}{:s}}}".format(digits, fmtchar) return fmt.format(v) return None def get_parity_bit(self, signal): self.paritybit = signal if parity_ok(self.options['parity_type'], self.paritybit, self.datavalue, self.options['num_data_bits']): self.putp(['PARITYBIT', 0, self.paritybit]) self.putg([2, ['Parity bit', 'Parity', 'P']]) else: # TODO: Return expected/actual parity values. self.putp(['PARITY ERROR', 0, (0, 1)]) # FIXME: Dummy tuple... self.putg([3, ['Parity error', 'Parity err', 'PE']]) self.frame_valid = False self.state = 'GET STOP BITS' # TODO: Currently only supports 1 stop bit. def get_stop_bits(self, signal): self.stopbit1 = signal # Stop bits must be 1. If not, we report an error. if self.stopbit1 != 1: self.putp(['INVALID STOPBIT', 0, self.stopbit1]) self.putg([5, ['Frame error', 'Frame err', 'FE']]) self.frame_valid = False self.putp(['STOPBIT', 0, self.stopbit1]) if self.options['anno_startstop'] == 'yes': self.putg([2, ['Stop bit', 'Stop', 'T']]) # Pass the complete UART frame to upper layers. es = self.samplenum + ceil(self.bit_width / 2.0) self.putpse(self.frame_start, es, ['FRAME', 0, (self.datavalue, self.frame_valid)]) self.state = 'WAIT FOR START BIT' def handle_break(self): self.putpse(self.frame_start, self.samplenum, ['BREAK', 0, 0]) self.putgse(self.frame_start, self.samplenum, [7, ['Break condition', 'Break', 'Brk', 'B']]) self.state = 'WAIT FOR START BIT' def get_wait_cond(self, inv): # Return condititions that are suitable for Decoder.wait(). Those # conditions either match the falling edge of the START bit, or # the sample point of the next bit time. state = self.state if state == 'WAIT FOR START BIT': return {0: 'r' if inv else 'f'} if state == 'GET START BIT': bitnum = 0 elif state == 'GET DATA BITS': bitnum = 1 + self.cur_data_bit elif state == 'GET PARITY BIT': bitnum = 1 + self.options['num_data_bits'] elif state == 'GET STOP BITS': bitnum = 1 + self.options['num_data_bits'] bitnum += 0 if self.options['parity_type'] == 'none' else 1 want_num = ceil(self.get_sample_point(bitnum)) return {'skip': want_num - self.samplenum} def inspect_sample(self, signal, inv): # Inspect a sample returned by .wait() for the specified UART line. if inv: signal = not signal state = self.state if state == 'WAIT FOR START BIT': self.wait_for_start_bit(signal) elif state == 'GET START BIT': self.get_start_bit(signal) elif state == 'GET DATA BITS': self.get_data_bits(signal) elif state == 'GET PARITY BIT': self.get_parity_bit(signal) elif state == 'GET STOP BITS': self.get_stop_bits(signal) def inspect_edge(self, signal, inv): # Inspect edges, independently from traffic, to detect break conditions. if inv: signal = not signal if not signal: # Signal went low. Start another interval. self.break_start = self.samplenum return # Signal went high. Was there an extended period with low signal? if self.break_start is None: return diff = self.samplenum - self.break_start if diff >= self.break_min_sample_count: self.handle_break() self.break_start = None def decode(self): if not self.samplerate: raise SamplerateError('Cannot decode without samplerate.') inv = self.options['invert'] == 'yes' cond_data_idx = None # Determine the number of samples for a complete frame's time span. # A period of low signal (at least) that long is a break condition. frame_samples = 1 # START frame_samples += self.options['num_data_bits'] frame_samples += 0 if self.options['parity_type'] == 'none' else 1 frame_samples += self.options['num_stop_bits'] frame_samples *= self.bit_width self.break_min_sample_count = ceil(frame_samples) cond_edge_idx = None while True: conds = [] cond_data_idx = len(conds) conds.append(self.get_wait_cond(inv)) cond_edge_idx = len(conds) conds.append({0: 'e'}) (rxtx, ) = self.wait(conds) if cond_data_idx is not None and (self.matched & (0b1 << cond_data_idx)): self.inspect_sample(rxtx, inv) if cond_edge_idx is not None and (self.matched & (0b1 << cond_edge_idx)): self.inspect_edge(rxtx, inv)