## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2014 Sebastien Bourdelin ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see . ## import sigrokdecode as srd # Helper dictionary for edge detection. edge_detector = { 'rising': lambda x, y: bool(not x and y), 'falling': lambda x, y: bool(x and not y), 'both': lambda x, y: bool(x ^ y), } class SamplerateError(Exception): pass class Decoder(srd.Decoder): api_version = 3 id = 'jitter' name = 'Jitter' longname = 'Timing jitter calculation' desc = 'Retrieves the timing jitter between two digital signals.' license = 'gplv2+' inputs = ['logic'] outputs = [] tags = ['Clock/timing', 'Util'] channels = ( {'id': 'clk', 'name': 'Clock', 'desc': 'Clock reference channel'}, {'id': 'sig', 'name': 'Resulting signal', 'desc': 'Resulting signal controlled by the clock'}, ) options = ( {'id': 'clk_polarity', 'desc': 'Clock edge polarity', 'default': 'rising', 'values': ('rising', 'falling', 'both')}, {'id': 'sig_polarity', 'desc': 'Resulting signal edge polarity', 'default': 'rising', 'values': ('rising', 'falling', 'both')}, ) annotations = ( ('jitter', 'Jitter value'), ('clk_missed', 'Clock missed'), ('sig_missed', 'Signal missed'), ) annotation_rows = ( ('jitter', 'Jitter values', (0,)), ('clk_missed', 'Clock missed', (1,)), ('sig_missed', 'Signal missed', (2,)), ) binary = ( ('ascii-float', 'Jitter values as newline-separated ASCII floats'), ) def __init__(self): self.reset() def reset(self): self.state = 'CLK' self.samplerate = None self.oldclk, self.oldsig = 0, 0 self.clk_start = None self.sig_start = None self.clk_missed = 0 self.sig_missed = 0 def start(self): self.clk_edge = edge_detector[self.options['clk_polarity']] self.sig_edge = edge_detector[self.options['sig_polarity']] self.out_ann = self.register(srd.OUTPUT_ANN) self.out_binary = self.register(srd.OUTPUT_BINARY) self.out_clk_missed = self.register(srd.OUTPUT_META, meta=(int, 'Clock missed', 'Clock transition missed')) self.out_sig_missed = self.register(srd.OUTPUT_META, meta=(int, 'Signal missed', 'Resulting signal transition missed')) def metadata(self, key, value): if key == srd.SRD_CONF_SAMPLERATE: self.samplerate = value # Helper function for jitter time annotations. def putx(self, delta): # Adjust granularity. if delta == 0 or delta >= 1: delta_s = '%.1fs' % (delta) elif delta <= 1e-12: delta_s = '%.1ffs' % (delta * 1e15) elif delta <= 1e-9: delta_s = '%.1fps' % (delta * 1e12) elif delta <= 1e-6: delta_s = '%.1fns' % (delta * 1e9) elif delta <= 1e-3: delta_s = '%.1fμs' % (delta * 1e6) else: delta_s = '%.1fms' % (delta * 1e3) self.put(self.clk_start, self.sig_start, self.out_ann, [0, [delta_s]]) # Helper function for ASCII float jitter values (one value per line). def putb(self, delta): if delta is None: return # Format the delta to an ASCII float value terminated by a newline. x = str(delta) + '\n' self.put(self.clk_start, self.sig_start, self.out_binary, [0, x.encode('UTF-8')]) # Helper function for missed clock and signal annotations. def putm(self, data): self.put(self.samplenum, self.samplenum, self.out_ann, data) def handle_clk(self, clk, sig): if self.clk_start == self.samplenum: # Clock transition already treated. # We have done everything we can with this sample. return True if self.clk_edge(self.oldclk, clk): # Clock edge found. # We note the sample and move to the next state. self.clk_start = self.samplenum self.state = 'SIG' return False else: if self.sig_start is not None \ and self.sig_start != self.samplenum \ and self.sig_edge(self.oldsig, sig): # If any transition in the resulting signal # occurs while we are waiting for a clock, # we increase the missed signal counter. self.sig_missed += 1 self.put(self.samplenum, self.samplenum, self.out_sig_missed, self.sig_missed) self.putm([2, ['Missed signal', 'MS']]) # No clock edge found, we have done everything we # can with this sample. return True def handle_sig(self, clk, sig): if self.sig_start == self.samplenum: # Signal transition already treated. # We have done everything we can with this sample. return True if self.sig_edge(self.oldsig, sig): # Signal edge found. # We note the sample, calculate the jitter # and move to the next state. self.sig_start = self.samplenum self.state = 'CLK' # Calculate and report the timing jitter. delta = (self.sig_start - self.clk_start) / self.samplerate self.putx(delta) self.putb(delta) return False else: if self.clk_start != self.samplenum \ and self.clk_edge(self.oldclk, clk): # If any transition in the clock signal # occurs while we are waiting for a resulting # signal, we increase the missed clock counter. self.clk_missed += 1 self.put(self.samplenum, self.samplenum, self.out_clk_missed, self.clk_missed) self.putm([1, ['Missed clock', 'MC']]) # No resulting signal edge found, we have done # everything we can with this sample. return True def decode(self): if not self.samplerate: raise SamplerateError('Cannot decode without samplerate.') while True: # Wait for a transition on CLK and/or SIG. (clk, sig) = self.wait([{0: 'e'}, {1: 'e'}]) # State machine: # For each sample we can move 2 steps forward in the state machine. while True: # Clock state has the lead. if self.state == 'CLK': if self.handle_clk(clk, sig): break if self.state == 'SIG': if self.handle_sig(clk, sig): break # Save current CLK/SIG values for the next round. self.oldclk, self.oldsig = clk, sig