/* * This file is part of the libsigrok project. * * Copyright (C) 2013 Bert Vermeulen * Copyright (C) 2013 DreamSourceLab * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include //#include #include "dsl.h" #include "command.h" #undef min #define min(a,b) ((a)<(b)?(a):(b)) static const int single_buffer_time = 20; static const int total_buffer_time = 200; static const int buffer_size = 1024 * 1024; static const int instant_buffer_size = 1024 * 1024; static const int cons_buffer_size = 128; static const int buffer_cnt = 4; static struct sr_dev_mode mode_list[] = { {"OSC", DSO}, }; static const char *opmodes[] = { "Normal", "Internal Test", "External Test", "DRAM Loopback Test", }; static const char *thresholds[] = { "1.8/2.5/3.3V Level", "5.0V Level", }; static const char *filters[] = { "None", "1 Sample Clock", }; static const int32_t hwopts[] = { SR_CONF_CONN, }; static const int32_t hwcaps[] = { SR_CONF_LOGIC_ANALYZER, SR_CONF_TRIGGER_TYPE, SR_CONF_SAMPLERATE, /* These are really implemented in the driver, not the hardware. */ SR_CONF_LIMIT_SAMPLES, SR_CONF_CONTINUOUS, }; static const int32_t hwoptions[] = { SR_CONF_OPERATION_MODE, }; static const int32_t sessions[] = { SR_CONF_SAMPLERATE, SR_CONF_LIMIT_SAMPLES, SR_CONF_OPERATION_MODE, SR_CONF_TIMEBASE, SR_CONF_TRIGGER_SLOPE, SR_CONF_TRIGGER_SOURCE, SR_CONF_HORIZ_TRIGGERPOS, SR_CONF_TRIGGER_HOLDOFF, }; static const char *probe_names[] = { "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", NULL, }; static uint16_t test_sample_value; static uint16_t test_init = 1; static const uint64_t samplerates[] = { SR_KHZ(10), SR_KHZ(20), SR_KHZ(50), SR_KHZ(100), SR_KHZ(200), SR_KHZ(500), SR_MHZ(1), SR_MHZ(2), SR_MHZ(5), SR_MHZ(10), SR_MHZ(20), SR_MHZ(25), SR_MHZ(50), SR_MHZ(100), SR_MHZ(200), }; static const uint64_t samplecounts[] = { SR_KB(1), SR_KB(2), SR_KB(4), SR_KB(8), SR_KB(16), SR_KB(32), SR_KB(64), SR_KB(128), SR_KB(256), SR_KB(512), SR_MB(1), SR_MB(2), SR_MB(4), SR_MB(8), SR_MB(16), SR_MB(32), }; static const uint8_t zero_base_addr = 0x80; static const uint8_t comb_base_addr = 0xB0; SR_PRIV struct sr_dev_driver DSCope_driver_info; static struct sr_dev_driver *di = &DSCope_driver_info; extern struct ds_trigger *trigger; gboolean mstatus_valid = FALSE; struct sr_status mstatus; struct cmd_zero_info zero_info; struct cmd_comb_info comb_info; /** * Check the USB configuration to determine if this is an DSCope device. * * @return TRUE if the device's configuration profile match DSCope * configuration, FALSE otherwise. */ static gboolean check_conf_profile(libusb_device *dev) { struct libusb_device_descriptor des; struct libusb_device_handle *hdl; gboolean ret; unsigned char strdesc[64]; hdl = NULL; ret = FALSE; while (!ret) { /* Assume the FW has not been loaded, unless proven wrong. */ if (libusb_get_device_descriptor(dev, &des) != 0) break; if (libusb_open(dev, &hdl) != 0) break; if (libusb_get_string_descriptor_ascii(hdl, des.iManufacturer, strdesc, sizeof(strdesc)) < 0) break; if (strncmp((const char *)strdesc, "DreamSourceLab", 14)) break; if (libusb_get_string_descriptor_ascii(hdl, des.iProduct, strdesc, sizeof(strdesc)) < 0) break; if (strncmp((const char *)strdesc, "DSCope", 6)) break; /* If we made it here, it must be an DSCope. */ ret = TRUE; } if (hdl) libusb_close(hdl); return ret; } static int fpga_setting(const struct sr_dev_inst *sdi) { struct DSL_context *devc; struct sr_usb_dev_inst *usb; struct libusb_device_handle *hdl; struct DSL_setting setting; int ret; int transferred; int result; int i; int channel_en_cnt = 0; int channel_cnt = 0; GSList *l; devc = sdi->priv; usb = sdi->conn; hdl = usb->devhdl; setting.sync = 0xf5a5f5a5; setting.mode_header = 0x0001; setting.divider_header = 0x0102ffff; setting.count_header = 0x0302ffff; setting.trig_pos_header = 0x0502ffff; setting.trig_glb_header = 0x0701; setting.trig_adp_header = 0x0a02ffff; setting.trig_sda_header = 0x0c02ffff; setting.trig_mask0_header = 0x1010ffff; setting.trig_mask1_header = 0x1110ffff; //setting.trig_mask2_header = 0x1210ffff; //setting.trig_mask3_header = 0x1310ffff; setting.trig_value0_header = 0x1410ffff; setting.trig_value1_header = 0x1510ffff; //setting.trig_value2_header = 0x1610ffff; //setting.trig_value3_header = 0x1710ffff; setting.trig_edge0_header = 0x1810ffff; setting.trig_edge1_header = 0x1910ffff; //setting.trig_edge2_header = 0x1a10ffff; //setting.trig_edge3_header = 0x1b10ffff; setting.trig_count0_header = 0x1c20ffff; setting.trig_count1_header = 0x1d20ffff; //setting.trig_count2_header = 0x1e10ffff; //setting.trig_count3_header = 0x1f10ffff; setting.trig_logic0_header = 0x2010ffff; setting.trig_logic1_header = 0x2110ffff; //setting.trig_logic2_header = 0x2210ffff; //setting.trig_logic3_header = 0x2310ffff; setting.end_sync = 0xfa5afa5a; for (l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; channel_en_cnt += probe->enabled; channel_cnt++; } if (channel_en_cnt == 0) channel_en_cnt = 1; //setting.mode = (test_mode ? 0x8000 : 0x0000) + trigger->trigger_en + (sdi->mode << 4); setting.mode = ((devc->op_mode == SR_OP_INTERNAL_TEST) << 15) + ((devc->op_mode == SR_OP_EXTERNAL_TEST) << 14) + ((devc->op_mode == SR_OP_LOOPBACK_TEST) << 13) + trigger->trigger_en + ((sdi->mode > 0) << 4) + (devc->clock_type << 1) + (devc->clock_edge << 1) + (((devc->cur_samplerate == SR_MHZ(200) && sdi->mode != DSO) || (sdi->mode == ANALOG)) << 5) + ((devc->cur_samplerate == SR_MHZ(400)) << 6) + ((sdi->mode == ANALOG) << 7) + ((devc->filter == SR_FILTER_1T) << 8) + (devc->instant << 9) + (devc->zero << 10); setting.divider = devc->zero ? 0x1 : (uint32_t)ceil(DSCOPE_MAX_SAMPLERATE * 1.0 / devc->cur_samplerate / channel_en_cnt); setting.count = (uint32_t)(devc->limit_samples / (channel_cnt / channel_en_cnt)); setting.trig_pos = (uint32_t)(trigger->trigger_pos / 100.0 * devc->limit_samples); setting.trig_glb = trigger->trigger_stages; setting.trig_adp = setting.count - setting.trig_pos - 1; setting.trig_sda = 0x0; if (trigger->trigger_mode == SIMPLE_TRIGGER) { setting.trig_mask0[0] = ds_trigger_get_mask0(TriggerStages); setting.trig_mask1[0] = ds_trigger_get_mask1(TriggerStages); setting.trig_value0[0] = ds_trigger_get_value0(TriggerStages); setting.trig_value1[0] = ds_trigger_get_value1(TriggerStages); setting.trig_edge0[0] = ds_trigger_get_edge0(TriggerStages); setting.trig_edge1[0] = ds_trigger_get_edge1(TriggerStages); setting.trig_count0[0] = trigger->trigger0_count[TriggerStages]; setting.trig_count1[0] = trigger->trigger1_count[TriggerStages]; setting.trig_logic0[0] = (trigger->trigger_logic[TriggerStages] << 1) + trigger->trigger0_inv[TriggerStages]; setting.trig_logic1[0] = (trigger->trigger_logic[TriggerStages] << 1) + trigger->trigger1_inv[TriggerStages]; for (i = 1; i < NUM_TRIGGER_STAGES; i++) { setting.trig_mask0[i] = 0xff; setting.trig_mask1[i] = 0xff; setting.trig_value0[i] = 0; setting.trig_value1[i] = 0; setting.trig_edge0[i] = 0; setting.trig_edge1[i] = 0; setting.trig_count0[i] = 0; setting.trig_count1[i] = 0; setting.trig_logic0[i] = 2; setting.trig_logic1[i] = 2; } } else { for (i = 0; i < NUM_TRIGGER_STAGES; i++) { setting.trig_mask0[i] = ds_trigger_get_mask0(i); setting.trig_mask1[i] = ds_trigger_get_mask1(i); setting.trig_value0[i] = ds_trigger_get_value0(i); setting.trig_value1[i] = ds_trigger_get_value1(i); setting.trig_edge0[i] = ds_trigger_get_edge0(i); setting.trig_edge1[i] = ds_trigger_get_edge1(i); setting.trig_count0[i] = trigger->trigger0_count[i]; setting.trig_count1[i] = trigger->trigger1_count[i]; setting.trig_logic0[i] = (trigger->trigger_logic[i] << 1) + trigger->trigger0_inv[i]; setting.trig_logic1[i] = (trigger->trigger_logic[i] << 1) + trigger->trigger1_inv[i]; } } result = SR_OK; ret = libusb_bulk_transfer(hdl, 2 | LIBUSB_ENDPOINT_OUT, &setting, sizeof(struct DSL_setting), &transferred, 1000); if (ret < 0) { sr_err("Unable to setting FPGA of DSCope: %s.", libusb_error_name(ret)); result = SR_ERR; } else if (transferred != sizeof(struct DSL_setting)) { sr_err("Setting FPGA error: expacted transfer size %d; actually %d", sizeof(struct DSL_setting), transferred); result = SR_ERR; } if (result == SR_OK) sr_info("FPGA setting done"); return result; } static int fpga_config(struct libusb_device_handle *hdl, const char *filename) { FILE *fw; int offset, chunksize, ret, result; unsigned char *buf; int transferred; uint64_t filesize; struct stat f_stat; sr_info("Configure FPGA using %s", filename); if ((fw = fopen(filename, "rb")) == NULL) { sr_err("Unable to open FPGA bit file %s for reading: %s", filename, strerror(errno)); return SR_ERR; } if (stat(filename, &f_stat) == -1) return SR_ERR; filesize = (uint64_t)f_stat.st_size; if (!(buf = g_try_malloc(filesize))) { sr_err("FPGA configure bit malloc failed."); return SR_ERR; } result = SR_OK; offset = 0; while (1) { chunksize = fread(buf, 1, filesize, fw); if (chunksize == 0) break; //do { ret = libusb_bulk_transfer(hdl, 2 | LIBUSB_ENDPOINT_OUT, buf, chunksize, &transferred, 1000); //} while(ret == LIBUSB_ERROR_TIMEOUT); if (ret < 0) { sr_err("Unable to configure FPGA of DSCope: %s.", libusb_error_name(ret)); result = SR_ERR; break; } else if (transferred != chunksize) { sr_err("Configure FPGA error: expacted transfer size %d; actually %d", chunksize, transferred); result = SR_ERR; break; } sr_info("Configure %d bytes", chunksize); offset += chunksize; } fclose(fw); if (result == SR_OK) sr_info("FPGA configure done"); return result; } static int DSCope_dev_open(struct sr_dev_inst *sdi) { libusb_device **devlist; struct sr_usb_dev_inst *usb; struct libusb_device_descriptor des; struct DSL_context *devc; struct drv_context *drvc; struct version_info vi; int ret, skip, i, device_count; uint8_t revid; drvc = di->priv; devc = sdi->priv; usb = sdi->conn; if (sdi->status == SR_ST_ACTIVE) /* Device is already in use. */ return SR_ERR; skip = 0; device_count = libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); if (device_count < 0) { sr_err("Failed to get device list: %s.", libusb_error_name(device_count)); return SR_ERR; } for (i = 0; i < device_count; i++) { if ((ret = libusb_get_device_descriptor(devlist[i], &des))) { sr_err("Failed to get device descriptor: %s.", libusb_error_name(ret)); continue; } if (des.idVendor != devc->profile->vid || des.idProduct != devc->profile->pid) continue; if (sdi->status == SR_ST_INITIALIZING) { if (skip != sdi->index) { /* Skip devices of this type that aren't the one we want. */ skip += 1; continue; } } else if (sdi->status == SR_ST_INACTIVE) { /* * This device is fully enumerated, so we need to find * this device by vendor, product, bus and address. */ if (libusb_get_bus_number(devlist[i]) != usb->bus || libusb_get_device_address(devlist[i]) != usb->address) /* This is not the one. */ continue; } if (!(ret = libusb_open(devlist[i], &usb->devhdl))) { if (usb->address == 0xff) /* * First time we touch this device after FW * upload, so we don't know the address yet. */ usb->address = libusb_get_device_address(devlist[i]); } else { sr_err("Failed to open device: %s.", libusb_error_name(ret)); break; } ret = command_get_fw_version(usb->devhdl, &vi); if (ret != SR_OK) { sr_err("Failed to get firmware version."); break; } ret = command_get_revid_version(usb->devhdl, &revid); if (ret != SR_OK) { sr_err("Failed to get REVID."); break; } /* * Changes in major version mean incompatible/API changes, so * bail out if we encounter an incompatible version. * Different minor versions are OK, they should be compatible. */ if (vi.major != DSL_REQUIRED_VERSION_MAJOR) { sr_err("Expected firmware version %d.x, " "got %d.%d.", DSL_REQUIRED_VERSION_MAJOR, vi.major, vi.minor); break; } sdi->status = SR_ST_ACTIVE; sr_info("Opened device %d on %d.%d, " "interface %d, firmware %d.%d.", sdi->index, usb->bus, usb->address, USB_INTERFACE, vi.major, vi.minor); sr_info("Detected REVID=%d, it's a Cypress CY7C68013%s.", revid, (revid != 1) ? " (FX2)" : "A (FX2LP)"); break; } libusb_free_device_list(devlist, 1); if (sdi->status != SR_ST_ACTIVE) return SR_ERR; return SR_OK; } static int configure_probes(const struct sr_dev_inst *sdi) { struct DSL_context *devc; struct sr_channel *probe; GSList *l; int probe_bit, stage, i; char *tc; devc = sdi->priv; for (i = 0; i < NUM_TRIGGER_STAGES; i++) { devc->trigger_mask[i] = 0; devc->trigger_value[i] = 0; } stage = -1; for (l = sdi->channels; l; l = l->next) { probe = (struct sr_channel *)l->data; if (probe->enabled == FALSE) continue; if ((probe->index > 7 && probe->type == SR_CHANNEL_LOGIC) || (probe->type == SR_CHANNEL_ANALOG || probe->type == SR_CHANNEL_DSO)) devc->sample_wide = TRUE; else devc->sample_wide = FALSE; probe_bit = 1 << (probe->index); if (!(probe->trigger)) continue; stage = 0; for (tc = probe->trigger; *tc; tc++) { devc->trigger_mask[stage] |= probe_bit; if (*tc == '1') devc->trigger_value[stage] |= probe_bit; stage++; if (stage > NUM_TRIGGER_STAGES) return SR_ERR; } } if (stage == -1) /* * We didn't configure any triggers, make sure acquisition * doesn't wait for any. */ devc->trigger_stage = TRIGGER_FIRED; else devc->trigger_stage = 0; return SR_OK; } static struct DSL_context *DSCope_dev_new(void) { struct DSL_context *devc; if (!(devc = g_try_malloc(sizeof(struct DSL_context)))) { sr_err("Device context malloc failed."); return NULL; } devc->profile = NULL; devc->fw_updated = 0; devc->cur_samplerate = DSCOPE_MAX_SAMPLERATE / MAX_DSO_PROBES_NUM; devc->limit_samples = DSCOPE_MAX_DEPTH / MAX_DSO_PROBES_NUM; devc->sample_wide = 0; devc->clock_type = FALSE; devc->clock_edge = FALSE; devc->instant = FALSE; devc->op_mode = SR_OP_NORMAL; devc->th_level = SR_TH_3V3; devc->filter = SR_FILTER_NONE; devc->timebase = 10000; devc->trigger_slope = DSO_TRIGGER_RISING; devc->trigger_source = DSO_TRIGGER_AUTO; devc->trigger_holdoff = 0; devc->trigger_hpos = 0x0; devc->trigger_hrate = 0; devc->zero = FALSE; return devc; } static int dev_clear(void) { return std_dev_clear(di, NULL); } static int init(struct sr_context *sr_ctx) { return std_hw_init(sr_ctx, di, LOG_PREFIX); } static int set_probes(struct sr_dev_inst *sdi, int num_probes) { int j; struct sr_channel *probe; for (j = 0; j < num_probes; j++) { if (!(probe = sr_channel_new(j, (sdi->mode == LOGIC) ? SR_CHANNEL_LOGIC : ((sdi->mode == DSO) ? SR_CHANNEL_DSO : SR_CHANNEL_ANALOG), TRUE, probe_names[j]))) return SR_ERR; if (sdi->mode == DSO) { probe->vdiv = 1000; probe->vfactor = 1; probe->vpos = 0; probe->coupling = SR_DC_COUPLING; probe->trig_value = 0x80; } sdi->channels = g_slist_append(sdi->channels, probe); } return SR_OK; } static int adjust_probes(struct sr_dev_inst *sdi, int num_probes) { int j; GSList *l; struct sr_channel *probe; GSList *p; assert(num_probes > 0); j = g_slist_length(sdi->channels); while(j < num_probes) { if (!(probe = sr_channel_new(j, (sdi->mode == LOGIC) ? SR_CHANNEL_LOGIC : ((sdi->mode == DSO) ? SR_CHANNEL_DSO : SR_CHANNEL_ANALOG), TRUE, probe_names[j]))) return SR_ERR; sdi->channels = g_slist_append(sdi->channels, probe); j++; } while(j > num_probes) { g_slist_delete_link(sdi->channels, g_slist_last(sdi->channels)); j--; } return SR_OK; } static GSList *scan(GSList *options) { struct drv_context *drvc; struct DSL_context *devc; struct sr_dev_inst *sdi; struct sr_usb_dev_inst *usb; struct sr_config *src; const struct DSL_profile *prof; GSList *l, *devices, *conn_devices; struct libusb_device_descriptor des; libusb_device **devlist; int devcnt, ret, i, j; const char *conn; drvc = di->priv; conn = NULL; for (l = options; l; l = l->next) { src = l->data; switch (src->key) { case SR_CONF_CONN: conn = g_variant_get_string(src->data, NULL); break; } } if (conn) conn_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn); else conn_devices = NULL; /* Find all DSCope compatible devices and upload firmware to them. */ devices = NULL; libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); for (i = 0; devlist[i]; i++) { if (conn) { usb = NULL; for (l = conn_devices; l; l = l->next) { usb = l->data; if (usb->bus == libusb_get_bus_number(devlist[i]) && usb->address == libusb_get_device_address(devlist[i])) break; } if (!l) /* This device matched none of the ones that * matched the conn specification. */ continue; } if ((ret = libusb_get_device_descriptor( devlist[i], &des)) != 0) { sr_warn("Failed to get device descriptor: %s.", libusb_error_name(ret)); continue; } prof = NULL; for (j = 0; supported_DSCope[j].vid; j++) { if (des.idVendor == supported_DSCope[j].vid && des.idProduct == supported_DSCope[j].pid) { prof = &supported_DSCope[j]; } } /* Skip if the device was not found. */ if (!prof) continue; devcnt = g_slist_length(drvc->instances); sdi = sr_dev_inst_new(DSO, devcnt, SR_ST_INITIALIZING, prof->vendor, prof->model, prof->model_version); if (!sdi) return NULL; sdi->driver = di; /* Fill in probelist according to this device's profile. */ if (set_probes(sdi, 2) != SR_OK) return NULL; devc = DSCope_dev_new(); devc->profile = prof; sdi->priv = devc; drvc->instances = g_slist_append(drvc->instances, sdi); devices = g_slist_append(devices, sdi); if (check_conf_profile(devlist[i])) { /* Already has the firmware, so fix the new address. */ sr_dbg("Found an DSCope device."); sdi->status = SR_ST_INACTIVE; sdi->inst_type = SR_INST_USB; sdi->conn = sr_usb_dev_inst_new(libusb_get_bus_number(devlist[i]), libusb_get_device_address(devlist[i]), NULL); } else { char filename[256]; sprintf(filename,"%s%s",config_path,prof->firmware); const char *firmware = filename; if (ezusb_upload_firmware(devlist[i], USB_CONFIGURATION, firmware) == SR_OK) /* Store when this device's FW was updated. */ devc->fw_updated = g_get_monotonic_time(); else sr_err("Firmware upload failed for " "device %d.", devcnt); sdi->inst_type = SR_INST_USB; sdi->conn = sr_usb_dev_inst_new (libusb_get_bus_number(devlist[i]), 0xff, NULL); } } libusb_free_device_list(devlist, 1); g_slist_free_full(conn_devices, (GDestroyNotify)sr_usb_dev_inst_free); return devices; } static GSList *dev_list(void) { return ((struct drv_context *)(di->priv))->instances; } static GSList *dev_mode_list(const struct sr_dev_inst *sdi) { (void)sdi; GSList *l = NULL; int i; for(i = 0; i < ARRAY_SIZE(mode_list); i++) { l = g_slist_append(l, &mode_list[i]); } return l; } static uint64_t dso_cmd_gen(struct sr_dev_inst *sdi, struct sr_channel* ch, int id) { struct DSL_context *devc; uint64_t cmd = 0; int channel_cnt = 0; uint16_t vpos_coarse; uint16_t vpos_fine; gboolean vpos_coarse_neg; gboolean vpos_fine_neg; GSList *l; const int ch_bit = 7; devc = sdi->priv; switch (id) { case SR_CONF_EN_CH: case SR_CONF_COUPLING: for (l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; channel_cnt += probe->enabled; } if (channel_cnt == 1) { if (((ch->index == 0) && ch->enabled) || ((ch->index == 1) && !ch->enabled)) cmd += 0x1600; else if (((ch->index == 1) && ch->enabled) || ((ch->index == 0) && !ch->enabled)) cmd += 0x1A00; } else if (channel_cnt == 2) { cmd += 0x0E00; //cmd += 0x000; } else { return 0x0; } cmd += ch->index << ch_bit; if (ch->coupling == SR_GND_COUPLING) cmd &= 0xFFFFFDFF; else if (ch->coupling == SR_DC_COUPLING) cmd += 0x100; break; case SR_CONF_VDIV: case SR_CONF_TIMEBASE: cmd += 0x8; cmd += ch->index << ch_bit; // --VDBS switch(ch->vdiv){ case 5: cmd += 0x170000; break; case 10: cmd += 0x162800; break; case 20: cmd += 0x14D000; break; case 50: cmd += 0x12E800; break; case 100: cmd += 0x118000; break; case 200: cmd += 0x101800; break; case 500: cmd += 0x2E800; break; case 1000: cmd += 0x18000; break; case 2000: cmd += 0x01800; break; case 5000: cmd += 0x00000; break; default: cmd += 0x0; break; } break; case SR_CONF_VPOS: cmd += 0x10; cmd += ch->index << ch_bit; if (ch->vdiv < 500) { vpos_coarse_neg = (ch->vpos < 0); vpos_coarse = (uint16_t)(abs(ch->vpos)/(2*VPOS_STEP) + 0.5) * 4; vpos_fine_neg = vpos_coarse_neg ^ ((abs(ch->vpos) < vpos_coarse*0.5*VPOS_STEP)); vpos_fine = (uint16_t)(abs((abs(ch->vpos) - vpos_coarse*0.5*VPOS_STEP))/(2*VPOS_MINISTEP) + 0.5); } else { vpos_coarse_neg = (ch->vpos < 0); vpos_coarse = (uint16_t)(abs(ch->vpos)/(20*VPOS_STEP) + 0.5) * 4; vpos_fine_neg = vpos_coarse_neg ^ ((abs(ch->vpos) < vpos_coarse*5*VPOS_STEP)); vpos_fine = (uint16_t)(abs((abs(ch->vpos) - vpos_coarse*5*VPOS_STEP))/(20*VPOS_MINISTEP) + 0.5); } cmd += (vpos_fine_neg << 31) + (vpos_fine << 20) + (vpos_coarse_neg << 19) + (vpos_coarse << 8); break; case SR_CONF_SAMPLERATE: for (l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; channel_cnt += probe->enabled; } cmd += 0x18; uint32_t divider = devc->zero ? 0x1 : (uint32_t)ceil(DSCOPE_MAX_SAMPLERATE * 1.0 / devc->cur_samplerate / channel_cnt); cmd += divider << 8; break; case SR_CONF_HORIZ_TRIGGERPOS: cmd += 0x20; cmd += devc->trigger_hpos << 8; break; case SR_CONF_TRIGGER_SLOPE: cmd += 0x28; cmd += devc->trigger_slope << 8; break; case SR_CONF_TRIGGER_SOURCE: cmd += 0x30; cmd += devc->trigger_source << 8; break; case SR_CONF_TRIGGER_VALUE: cmd += 0x38; for (l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; cmd += probe->trig_value << (8 * (probe->index + 1)); } break; case SR_CONF_ZERO_SET: cmd += 0x40; cmd += ch->index << ch_bit; cmd += ((uint64_t)zero_info.vpos_l << 8); cmd += ((uint64_t)(zero_info.vpos_h & 0x3) << 16); cmd += ((uint64_t)zero_info.voff_l << 24); cmd += ((uint64_t)(zero_info.voff_h & 0x3) << 32); cmd += ((uint64_t)zero_info.vcntr_l << 40); cmd += ((uint64_t)(zero_info.vcntr_h & 0x3) << 48); cmd += ((uint64_t)zero_info.adc_off << 56); break; case SR_CONF_COMB_SET: cmd += 0x48; cmd += ((uint64_t)comb_info.comb0_low_off << 8); cmd += ((uint64_t)comb_info.comb0_hig_off << 16); cmd += ((uint64_t)comb_info.comb1_low_off << 24); cmd += ((uint64_t)comb_info.comb1_hig_off << 32); cmd += ((uint64_t)comb_info.comb_sign << 40); break; case SR_CONF_ZERO_OVER: cmd += 0x50; break; case SR_CONF_TRIGGER_HOLDOFF: cmd += 0x58; cmd += ((uint64_t)devc->trigger_holdoff << 8); break; case SR_CONF_DSO_SYNC: cmd = 0xa5a5a500; break; default: cmd = 0x00000000; } return cmd; } static int dev_open(struct sr_dev_inst *sdi) { struct sr_usb_dev_inst *usb; struct DSL_context *devc; int ret; int64_t timediff_us, timediff_ms; devc = sdi->priv; usb = sdi->conn; /* * If the firmware was recently uploaded, wait up to MAX_RENUM_DELAY_MS * milliseconds for the FX2 to renumerate. */ ret = SR_ERR; if (devc->fw_updated > 0) { sr_info("Waiting for device to reset."); /* Takes >= 300ms for the FX2 to be gone from the USB bus. */ g_usleep(300 * 1000); timediff_ms = 0; while (timediff_ms < MAX_RENUM_DELAY_MS) { if ((ret = DSCope_dev_open(sdi)) == SR_OK) break; g_usleep(100 * 1000); timediff_us = g_get_monotonic_time() - devc->fw_updated; timediff_ms = timediff_us / 1000; sr_spew("Waited %" PRIi64 "ms.", timediff_ms); } if (ret != SR_OK) { sr_err("Device failed to renumerate."); return SR_ERR; } sr_info("Device came back after %" PRIi64 "ms.", timediff_ms); } else { sr_info("Firmware upload was not needed."); ret = DSCope_dev_open(sdi); } if (ret != SR_OK) { sr_err("Unable to open device."); return SR_ERR; } ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE); if (ret != 0) { switch(ret) { case LIBUSB_ERROR_BUSY: sr_err("Unable to claim USB interface. Another " "program or driver has already claimed it."); break; case LIBUSB_ERROR_NO_DEVICE: sr_err("Device has been disconnected."); break; default: sr_err("Unable to claim interface: %s.", libusb_error_name(ret)); break; } return SR_ERR; } if ((ret = command_fpga_config(usb->devhdl)) != SR_OK) { sr_err("Send FPGA configure command failed!"); } else { /* Takes >= 10ms for the FX2 to be ready for FPGA configure. */ g_usleep(10 * 1000); char filename[256]; sprintf(filename,"%s%s",config_path,devc->profile->fpga_bit33); const char *fpga_bit = filename; ret = fpga_config(usb->devhdl, fpga_bit); if (ret != SR_OK) { sr_err("Configure FPGA failed!"); } } if (sdi->mode == DSO) { GSList *l; for(l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, probe, SR_CONF_COUPLING)); if (ret != SR_OK) { sr_err("DSO set coupling of channel %d command failed!", probe->index); return ret; } ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, probe, SR_CONF_VDIV)); if (ret != SR_OK) { sr_err("Set VDIV of channel %d command failed!", probe->index); return ret; } ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, probe, SR_CONF_VPOS)); if (ret != SR_OK) { sr_err("Set VDIV of channel %d command failed!", probe->index); return ret; } } ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, 0, SR_CONF_SAMPLERATE)); if (ret != SR_OK) { sr_err("Set Sample Rate command failed!"); return ret; } ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, NULL, SR_CONF_HORIZ_TRIGGERPOS)); if (ret != SR_OK) { sr_err("Set Horiz Trigger Position command failed!"); return ret; } ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_HOLDOFF)); if (ret != SR_OK) { sr_err("Set Trigger Holdoff Time command failed!"); return ret; } ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_SLOPE)); if (ret != SR_OK) { sr_err("Set Trigger Slope command failed!"); return ret; } ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_SOURCE)); if (ret != SR_OK) { sr_err("Set Trigger Source command failed!"); return ret; } ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_VALUE)); if (ret != SR_OK) { sr_err("Set Trigger Value command failed!"); return ret; } } GSList *l; for(l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; zero_info.zero_addr = (zero_base_addr + probe->index * sizeof(struct cmd_zero_info)); if ((ret = command_rd_nvm(usb->devhdl, (unsigned char *)&zero_info, zero_info.zero_addr, sizeof(struct cmd_zero_info))) != SR_OK) { sr_err("Send Get Zero command failed!"); } else { if (zero_info.zero_addr == (zero_base_addr + probe->index * sizeof(struct cmd_zero_info))) { ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, probe, SR_CONF_ZERO_SET)); if (ret != SR_OK) { sr_err("Set Zero command failed!"); return ret; } } else { devc->zero = TRUE; sr_info("Zero have not been setted!"); } } } comb_info.comb_addr = comb_base_addr; if ((ret = command_rd_nvm(usb->devhdl, (unsigned char *)&comb_info, comb_info.comb_addr, sizeof(struct cmd_comb_info))) != SR_OK) { sr_err("Send Get Comb Command Failed!"); } else { if (comb_info.comb_addr == comb_base_addr) { ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, NULL, SR_CONF_COMB_SET)); if (ret != SR_OK) { sr_err("Set Comb command failed!"); return ret; } } else { devc->zero = TRUE; sr_info("Comb have not been setted!"); } } return SR_OK; } static int dev_close(struct sr_dev_inst *sdi) { struct sr_usb_dev_inst *usb; usb = sdi->conn; if (usb->devhdl == NULL) return SR_ERR; sr_info("DSCope: Closing device %d on %d.%d interface %d.", sdi->index, usb->bus, usb->address, USB_INTERFACE); libusb_release_interface(usb->devhdl, USB_INTERFACE); libusb_close(usb->devhdl); usb->devhdl = NULL; sdi->status = SR_ST_INACTIVE; return SR_OK; } static int cleanup(void) { int ret; struct drv_context *drvc; if (!(drvc = di->priv)) return SR_OK; ret = dev_clear(); g_free(drvc); di->priv = NULL; return ret; } static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel *ch, const struct sr_channel_group *cg) { struct DSL_context *devc; struct sr_usb_dev_inst *usb; char str[128]; (void)cg; switch (id) { case SR_CONF_CONN: if (!sdi || !sdi->conn) return SR_ERR_ARG; usb = sdi->conn; if (usb->address == 255) /* Device still needs to re-enumerate after firmware * upload, so we don't know its (future) address. */ return SR_ERR; snprintf(str, 128, "%d.%d", usb->bus, usb->address); *data = g_variant_new_string(str); break; case SR_CONF_LIMIT_SAMPLES: if (!sdi) return SR_ERR; devc = sdi->priv; *data = g_variant_new_uint64(devc->limit_samples); break; case SR_CONF_SAMPLERATE: if (!sdi) return SR_ERR; devc = sdi->priv; *data = g_variant_new_uint64(devc->cur_samplerate); break; case SR_CONF_CLOCK_TYPE: if (!sdi) return SR_ERR; devc = sdi->priv; *data = g_variant_new_boolean(devc->clock_type); break; case SR_CONF_CLOCK_EDGE: if (!sdi) return SR_ERR; devc = sdi->priv; *data = g_variant_new_boolean(devc->clock_edge); break; case SR_CONF_INSTANT: if (!sdi) return SR_ERR; devc = sdi->priv; *data = g_variant_new_boolean(devc->instant); break; case SR_CONF_OPERATION_MODE: if (!sdi) return SR_ERR; devc = sdi->priv; *data = g_variant_new_string(opmodes[devc->op_mode]); break; case SR_CONF_FILTER: if (!sdi) return SR_ERR; devc = sdi->priv; *data = g_variant_new_string(filters[devc->filter]); break; case SR_CONF_THRESHOLD: if (!sdi) return SR_ERR; devc = sdi->priv; *data = g_variant_new_string(thresholds[devc->th_level]); break; case SR_CONF_VDIV: if (!ch) return SR_ERR; *data = g_variant_new_uint64(ch->vdiv); break; case SR_CONF_FACTOR: if (!ch) return SR_ERR; *data = g_variant_new_uint64(ch->vfactor); break; case SR_CONF_VPOS: if (!ch) return SR_ERR; *data = g_variant_new_double(ch->vpos); break; case SR_CONF_TIMEBASE: if (!sdi) return SR_ERR; devc = sdi->priv; *data = g_variant_new_uint64(devc->timebase); break; case SR_CONF_COUPLING: if (!ch) return SR_ERR; *data = g_variant_new_byte(ch->coupling); break; case SR_CONF_EN_CH: if (!ch) return SR_ERR; *data = g_variant_new_boolean(ch->enabled); break; case SR_CONF_TRIGGER_SLOPE: if (!sdi) return SR_ERR; devc = sdi->priv; *data = g_variant_new_byte(devc->trigger_slope); break; case SR_CONF_TRIGGER_SOURCE: if (!sdi) return SR_ERR; devc = sdi->priv; *data = g_variant_new_byte(devc->trigger_source); break; case SR_CONF_TRIGGER_VALUE: if (!ch) return SR_ERR; *data = g_variant_new_byte(ch->trig_value); break; case SR_CONF_HORIZ_TRIGGERPOS: if (!sdi) return SR_ERR; devc = sdi->priv; *data = g_variant_new_byte(devc->trigger_hrate); break; case SR_CONF_TRIGGER_HOLDOFF: if (!sdi) return SR_ERR; devc = sdi->priv; *data = g_variant_new_uint64(devc->trigger_holdoff); break; case SR_CONF_ZERO: if (!sdi) return SR_ERR; devc = sdi->priv; *data = g_variant_new_boolean(devc->zero); break; case SR_CONF_STREAM: if (!sdi) return SR_ERR; *data = g_variant_new_boolean(FALSE); break; case SR_CONF_TEST: if (!sdi) return SR_ERR; *data = g_variant_new_boolean(FALSE); break; case SR_CONF_MAX_DSO_SAMPLERATE: if (!sdi) return SR_ERR; *data = g_variant_new_uint64(DSCOPE_MAX_SAMPLERATE); break; case SR_CONF_MAX_DSO_SAMPLELIMITS: if (!sdi) return SR_ERR; *data = g_variant_new_uint64(DSCOPE_MAX_DEPTH); break; case SR_CONF_MAX_LOGIC_SAMPLERATE: if (!sdi) return SR_ERR; *data = g_variant_new_uint64(DSCOPE_MAX_SAMPLERATE); break; case SR_CONF_MAX_LOGIC_SAMPLELIMITS: if (!sdi) return SR_ERR; *data = g_variant_new_uint64(DSCOPE_MAX_DEPTH); break; default: return SR_ERR_NA; } return SR_OK; } static int config_set(int id, GVariant *data, struct sr_dev_inst *sdi, struct sr_channel *ch, const struct sr_channel_group *cg ) { struct DSL_context *devc; const char *stropt; int ret, num_probes; struct sr_usb_dev_inst *usb; (void)cg; if (sdi->status != SR_ST_ACTIVE) return SR_ERR; devc = sdi->priv; usb = sdi->conn; if (id == SR_CONF_SAMPLERATE) { devc->cur_samplerate = g_variant_get_uint64(data); if (sdi->mode == LOGIC) { if (devc->cur_samplerate >= SR_MHZ(200)) { adjust_probes(sdi, SR_MHZ(1600)/devc->cur_samplerate); } else { adjust_probes(sdi, 16); } ret = SR_OK; } else if(sdi->mode == DSO) { ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, 0, SR_CONF_SAMPLERATE)); } } else if (id == SR_CONF_CLOCK_TYPE) { devc->clock_type = g_variant_get_boolean(data); ret = SR_OK; } else if (id == SR_CONF_CLOCK_EDGE) { devc->clock_edge = g_variant_get_boolean(data); ret = SR_OK; } else if (id == SR_CONF_INSTANT) { devc->instant = g_variant_get_boolean(data); int num_probes = 0; GSList *l; for (l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; num_probes += probe->enabled; } if (num_probes != 0) { if (devc->instant) devc->limit_samples = DSCOPE_INSTANT_DEPTH / num_probes; else devc->limit_samples = DSCOPE_MAX_DEPTH / num_probes; } ret = SR_OK; } else if (id == SR_CONF_LIMIT_SAMPLES) { devc->limit_samples = g_variant_get_uint64(data); ret = SR_OK; } else if (id == SR_CONF_DEVICE_MODE) { sdi->mode = g_variant_get_int16(data); ret = SR_OK; if (sdi->mode == LOGIC) { num_probes = devc->profile->dev_caps & DEV_CAPS_16BIT ? 16 : 8; } else if (sdi->mode == DSO) { sdi->mode = DSO; num_probes = devc->profile->dev_caps & DEV_CAPS_16BIT ? MAX_DSO_PROBES_NUM : 1; ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, NULL, SR_CONF_DSO_SYNC)); if (ret != SR_OK) sr_dbg("%s: DSO configuration sync failed", __func__); ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, sdi->channels->data, SR_CONF_VDIV)); if (ret == SR_OK) sr_dbg("%s: Initial setting for DSO mode", __func__); else sr_dbg("%s: Initial setting for DSO mode failed", __func__); devc->cur_samplerate = DSCOPE_MAX_SAMPLERATE / num_probes; devc->limit_samples = DSCOPE_MAX_DEPTH / num_probes; } else if (sdi->mode == ANALOG){ num_probes = devc->profile->dev_caps & DEV_CAPS_16BIT ? MAX_ANALOG_PROBES_NUM : 1; } sr_dev_probes_free(sdi); set_probes(sdi, num_probes); sr_dbg("%s: setting mode to %d", __func__, sdi->mode); } else if (id == SR_CONF_OPERATION_MODE) { stropt = g_variant_get_string(data, NULL); ret = SR_OK; if (!strcmp(stropt, opmodes[SR_OP_NORMAL])) { devc->op_mode = SR_OP_NORMAL; } else if (!strcmp(stropt, opmodes[SR_OP_INTERNAL_TEST])) { devc->op_mode = SR_OP_INTERNAL_TEST; } else if (!strcmp(stropt, opmodes[SR_OP_EXTERNAL_TEST])) { devc->op_mode = SR_OP_EXTERNAL_TEST; } else if (!strcmp(stropt, opmodes[SR_OP_LOOPBACK_TEST])) { devc->op_mode = SR_OP_LOOPBACK_TEST; } else { ret = SR_ERR; } sr_dbg("%s: setting pattern to %d", __func__, devc->op_mode); } else if (id == SR_CONF_THRESHOLD) { stropt = g_variant_get_string(data, NULL); ret = SR_OK; if (!strcmp(stropt, thresholds[SR_TH_3V3])) { devc->th_level = SR_TH_3V3; } else if (!strcmp(stropt, thresholds[SR_TH_5V0])) { devc->th_level = SR_TH_5V0; } else { ret = SR_ERR; } if ((ret = command_fpga_config(usb->devhdl)) != SR_OK) { sr_err("Send FPGA configure command failed!"); } else { /* Takes >= 10ms for the FX2 to be ready for FPGA configure. */ g_usleep(10 * 1000); char filename[256]; sprintf(filename,"%s%s",config_path,devc->profile->fpga_bit33); const char *fpga_bit = filename; ret = fpga_config(usb->devhdl, fpga_bit); if (ret != SR_OK) { sr_err("Configure FPGA failed!"); } } sr_dbg("%s: setting threshold to %d", __func__, devc->th_level); } else if (id == SR_CONF_FILTER) { stropt = g_variant_get_string(data, NULL); ret = SR_OK; if (!strcmp(stropt, filters[SR_FILTER_NONE])) { devc->filter = SR_FILTER_NONE; } else if (!strcmp(stropt, filters[SR_FILTER_1T])) { devc->filter = SR_FILTER_1T; } else { ret = SR_ERR; } sr_dbg("%s: setting threshold to %d", __func__, devc->th_level); } else if (id == SR_CONF_EN_CH) { ch->enabled = g_variant_get_boolean(data); if (sdi->mode == DSO) { ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, ch, SR_CONF_EN_CH)); uint16_t channel_cnt = 0; GSList *l; for (l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; channel_cnt += probe->enabled; } if (channel_cnt != 0) ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, 0, SR_CONF_SAMPLERATE)); } if (ret == SR_OK) sr_dbg("%s: setting ENABLE of channel %d to %d", __func__, ch->index, ch->enabled); else sr_dbg("%s: setting ENABLE of channel %d to %d", __func__, ch->index, ch->enabled); } else if (id == SR_CONF_VDIV) { ch->vdiv = g_variant_get_uint64(data); if (sdi->mode == DSO) { ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, ch, SR_CONF_VDIV)); } if (ret == SR_OK) sr_dbg("%s: setting VDIV of channel %d to %d mv", __func__, ch->index, ch->vdiv); else sr_dbg("%s: setting VDIV of channel %d to %d mv failed", __func__, ch->index, ch->vdiv); } else if (id == SR_CONF_FACTOR) { ch->vfactor = g_variant_get_uint64(data); } else if (id == SR_CONF_VPOS) { ch->vpos = g_variant_get_double(data); if (sdi->mode == DSO) { ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, ch, SR_CONF_VPOS)); } if (ret == SR_OK) sr_dbg("%s: setting VPOS of channel %d to %d mv", __func__, ch->index, ch->vpos); else sr_dbg("%s: setting VPOS of channel %d to %d mv failed", __func__, ch->index, ch->vpos); } else if (id == SR_CONF_TIMEBASE) { devc->timebase = g_variant_get_uint64(data); } else if (id == SR_CONF_COUPLING) { ch->coupling = g_variant_get_byte(data); if (sdi->mode == DSO) { ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, ch, SR_CONF_COUPLING)); } if (ret == SR_OK) sr_dbg("%s: setting AC COUPLING of channel %d to %d", __func__, ch->index, ch->coupling); else sr_dbg("%s: setting AC COUPLING of channel %d to %d failed", __func__, ch->index, ch->coupling); } else if (id == SR_CONF_TRIGGER_SLOPE) { devc->trigger_slope = g_variant_get_byte(data); if (sdi->mode == DSO) { ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_SLOPE)); } if (ret == SR_OK) sr_dbg("%s: setting DSO Trigger Slope to %d", __func__, devc->trigger_slope); else sr_dbg("%s: setting DSO Trigger Slope to %d failed", __func__, devc->trigger_slope); } else if (id == SR_CONF_TRIGGER_SOURCE) { devc->trigger_source = g_variant_get_byte(data); if (sdi->mode == DSO) { ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_SOURCE)); } if (ret == SR_OK) sr_dbg("%s: setting DSO Trigger Source to %d", __func__, devc->trigger_source); else sr_dbg("%s: setting DSO Trigger Source to %d failed", __func__, devc->trigger_source); } else if (id == SR_CONF_TRIGGER_VALUE) { ch->trig_value = g_variant_get_byte(data); if (sdi->mode == DSO) { ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, ch, SR_CONF_TRIGGER_VALUE)); } if (ret == SR_OK) sr_dbg("%s: setting channel %d Trigger Value to %d", __func__, ch->index, ch->trig_value); else sr_dbg("%s: setting DSO Trigger Value to %d failed", __func__, ch->index, ch->trig_value); } else if (id == SR_CONF_HORIZ_TRIGGERPOS) { uint16_t channel_cnt = 0; GSList *l; for (l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; channel_cnt += probe->enabled; } devc->trigger_hrate = g_variant_get_byte(data); devc->trigger_hpos = devc->trigger_hrate * channel_cnt * devc->limit_samples / 200.0; if (sdi->mode == DSO) { ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, 1, SR_CONF_HORIZ_TRIGGERPOS)); } if (ret == SR_OK) sr_dbg("%s: setting DSO Horiz Trigger Position to %d", __func__, devc->trigger_hpos); else sr_dbg("%s: setting DSO Horiz Trigger Position to %d failed", __func__, devc->trigger_hpos); } else if (id == SR_CONF_TRIGGER_HOLDOFF) { devc->trigger_holdoff = g_variant_get_uint64(data); if (sdi->mode == DSO) { ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_HOLDOFF)); } if (ret == SR_OK) sr_dbg("%s: setting Trigger Holdoff Time to %d", __func__, devc->trigger_holdoff); else sr_dbg("%s: setting Trigger Holdoff Time to %d failed", __func__, devc->trigger_holdoff); } else if (id == SR_CONF_ZERO) { devc->zero = g_variant_get_boolean(data); } else if (id == SR_CONF_ZERO_SET) { GSList *l; for(l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; zero_info.zero_addr = zero_base_addr + probe->index * sizeof(struct cmd_zero_info); zero_info.vpos_l = (probe->index == 0) ? mstatus.ch0_vpos_mid : mstatus.ch1_vpos_mid; zero_info.vpos_h = (probe->index == 0) ? mstatus.ch0_vpos_mid >> 8 : mstatus.ch1_vpos_mid >> 8; zero_info.voff_l = (probe->index == 0) ? mstatus.ch0_voff_mid : mstatus.ch1_voff_mid; zero_info.voff_h = (probe->index == 0) ? mstatus.ch0_voff_mid >> 8 : mstatus.ch1_voff_mid >> 8; zero_info.vcntr_l = (probe->index == 0) ? mstatus.ch0_vcntr : mstatus.ch1_vcntr; zero_info.vcntr_h = (probe->index == 0) ? mstatus.ch0_vcntr >> 8 : mstatus.ch1_vcntr >> 8; zero_info.adc_off = (probe->index == 0) ? mstatus.ch0_adc_off + (mstatus.ch0_adc_sign << 7) : mstatus.ch1_adc_off + (mstatus.ch1_adc_sign << 7); ret = command_wr_nvm(usb->devhdl, (unsigned char *)&zero_info, sizeof(struct cmd_zero_info)); if (ret != SR_OK) sr_err("DSO channel %d Set Zero command failed!", probe->index); } comb_info.comb_addr = comb_base_addr; comb_info.comb0_low_off = mstatus.comb0_off; comb_info.comb0_hig_off = mstatus.comb0_off >> 8; comb_info.comb1_low_off = mstatus.comb1_off; comb_info.comb1_hig_off = mstatus.comb1_off >> 8; comb_info.comb_sign = mstatus.comb_sign; ret = command_wr_nvm(usb->devhdl, (unsigned char *)&comb_info, sizeof(struct cmd_comb_info)); if (ret != SR_OK) sr_err("DSO Set Comb command failed!"); else devc->zero = FALSE; } else { ret = SR_ERR_NA; } return ret; } static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { GVariant *gvar; GVariantBuilder gvb; (void)sdi; (void)cg; switch (key) { case SR_CONF_SCAN_OPTIONS: // *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32, // hwopts, ARRAY_SIZE(hwopts), sizeof(int32_t)); *data = g_variant_new_from_data(G_VARIANT_TYPE("ai"), hwopts, ARRAY_SIZE(hwopts)*sizeof(int32_t), TRUE, NULL, NULL); break; case SR_CONF_DEVICE_OPTIONS: // *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32, // hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t)); *data = g_variant_new_from_data(G_VARIANT_TYPE("ai"), hwcaps, ARRAY_SIZE(hwcaps)*sizeof(int32_t), TRUE, NULL, NULL); break; case SR_CONF_DEVICE_CONFIGS: // *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32, // hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t)); *data = g_variant_new_from_data(G_VARIANT_TYPE("ai"), hwoptions, ARRAY_SIZE(hwoptions)*sizeof(int32_t), TRUE, NULL, NULL); break; case SR_CONF_DEVICE_SESSIONS: *data = g_variant_new_from_data(G_VARIANT_TYPE("ai"), sessions, ARRAY_SIZE(sessions)*sizeof(int32_t), TRUE, NULL, NULL); break; case SR_CONF_SAMPLERATE: g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}")); // gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates, // ARRAY_SIZE(samplerates), sizeof(uint64_t)); gvar = g_variant_new_from_data(G_VARIANT_TYPE("at"), samplerates, ARRAY_SIZE(samplerates)*sizeof(uint64_t), TRUE, NULL, NULL); g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar); *data = g_variant_builder_end(&gvb); break; case SR_CONF_LIMIT_SAMPLES: g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}")); gvar = g_variant_new_from_data(G_VARIANT_TYPE("at"), samplecounts, ARRAY_SIZE(samplecounts)*sizeof(uint64_t), TRUE, NULL, NULL); g_variant_builder_add(&gvb, "{sv}", "samplecounts", gvar); *data = g_variant_builder_end(&gvb); break; case SR_CONF_TRIGGER_TYPE: *data = g_variant_new_string(TRIGGER_TYPE); break; case SR_CONF_OPERATION_MODE: *data = g_variant_new_strv(opmodes, ARRAY_SIZE(opmodes)); break; case SR_CONF_THRESHOLD: *data = g_variant_new_strv(thresholds, ARRAY_SIZE(thresholds)); break; case SR_CONF_FILTER: *data = g_variant_new_strv(filters, ARRAY_SIZE(filters)); break; default: return SR_ERR_NA; } return SR_OK; } static void abort_acquisition(struct DSL_context *devc) { int i; int ret; struct sr_usb_dev_inst *usb; devc->num_samples = -1; sr_info("%s: Stopping", __func__); /* Stop GPIF acquisition */ usb = ((struct sr_dev_inst *)devc->cb_data)->conn; if ((ret = command_stop_acquisition (usb->devhdl)) != SR_OK) sr_err("Stop DSCope acquisition failed!"); else sr_info("Stop DSCope acquisition!"); ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen((struct sr_dev_inst *)devc->cb_data, NULL, SR_CONF_ZERO_OVER)); if (ret != SR_OK) sr_err("DSO zero over command failed!"); /* Cancel exist transfers */ if (devc->num_transfers) for (i = devc->num_transfers - 1; i >= 0; i--) { if (devc->transfers[i]) libusb_cancel_transfer(devc->transfers[i]); } } static void finish_acquisition(struct DSL_context *devc) { struct sr_datafeed_packet packet; int i, ret; struct sr_usb_dev_inst *usb; sr_err("finish acquisition: send SR_DF_END packet"); /* Terminate session. */ packet.type = SR_DF_END; sr_session_send(devc->cb_data, &packet); sr_err("finish acquisition: remove fds from polling"); /* Remove fds from polling. */ for (i = 0; devc->usbfd[i] != -1; i++) sr_source_remove(devc->usbfd[i]); g_free(devc->usbfd); if (devc->num_transfers != 0) { devc->num_transfers = 0; g_free(devc->transfers); } } static void free_transfer(struct libusb_transfer *transfer) { struct DSL_context *devc; unsigned int i; devc = transfer->user_data; g_free(transfer->buffer); transfer->buffer = NULL; libusb_free_transfer(transfer); for (i = 0; i < devc->num_transfers; i++) { if (devc->transfers[i] == transfer) { devc->transfers[i] = NULL; break; } } devc->submitted_transfers--; if (devc->submitted_transfers == 0 && devc->status != DSL_TRIGGERED) finish_acquisition(devc); } static void resubmit_transfer(struct libusb_transfer *transfer) { int ret; if ((ret = libusb_submit_transfer(transfer)) == LIBUSB_SUCCESS) return; free_transfer(transfer); /* TODO: Stop session? */ sr_err("%s: %s", __func__, libusb_error_name(ret)); } static struct sr_config * new_config(int key, GVariant *data) { struct sr_config *config; if (!(config = g_try_malloc0(sizeof(struct sr_config)))) { sr_err("META config malloc failed."); return NULL; } config->key = key; config->data = data; return config; } static void receive_transfer(struct libusb_transfer *transfer) { gboolean packet_has_error = FALSE; struct sr_datafeed_packet packet; struct sr_datafeed_logic logic; struct sr_datafeed_dso dso; struct sr_datafeed_analog analog; struct sr_datafeed_meta meta; struct DSL_context *devc; int trigger_offset, i, sample_width, cur_sample_count; int trigger_offset_bytes; uint8_t *cur_buf; //GTimeVal cur_time; //g_get_current_time(&cur_time); //sr_info("receive_transfer: current time %d sec %d usec", cur_time.tv_sec, cur_time.tv_usec); devc = transfer->user_data; /* * If acquisition has already ended, just free any queued up * transfer that come in. */ if (devc->num_samples == -1) { free_transfer(transfer); return; } sr_info("receive_transfer(): status %d; timeout %d; received %d bytes.", transfer->status, transfer->timeout, transfer->actual_length); /* Save incoming transfer before reusing the transfer struct. */ cur_buf = transfer->buffer; sample_width = 2; cur_sample_count = transfer->actual_length / sample_width; switch (transfer->status) { case LIBUSB_TRANSFER_NO_DEVICE: //abort_acquisition(devc); free_transfer(transfer); devc->status = DSL_ERROR; return; case LIBUSB_TRANSFER_COMPLETED: case LIBUSB_TRANSFER_TIMED_OUT: /* We may have received some data though. */ break; default: packet_has_error = TRUE; break; } if (transfer->actual_length == 0 || packet_has_error) { devc->empty_transfer_count++; if (devc->empty_transfer_count > MAX_EMPTY_TRANSFERS) { /* * The FX2 gave up. End the acquisition, the frontend * will work out that the samplecount is short. */ //abort_acquisition(devc); free_transfer(transfer); devc->status = DSL_ERROR; } else { resubmit_transfer(transfer); } return; } else { devc->empty_transfer_count = 0; } trigger_offset = 0; if (devc->trigger_stage >= 0) { for (i = 0; i < cur_sample_count; i++) { const uint16_t cur_sample = devc->sample_wide ? *((const uint16_t*)cur_buf + i) : *((const uint8_t*)cur_buf + i); if ((cur_sample & devc->trigger_mask[devc->trigger_stage]) == devc->trigger_value[devc->trigger_stage]) { /* Match on this trigger stage. */ devc->trigger_buffer[devc->trigger_stage] = cur_sample; devc->trigger_stage++; if (devc->trigger_stage == NUM_TRIGGER_STAGES || devc->trigger_mask[devc->trigger_stage] == 0) { /* Match on all trigger stages, we're done. */ trigger_offset = i + 1; /* * TODO: Send pre-trigger buffer to session bus. * Tell the frontend we hit the trigger here. */ packet.type = SR_DF_TRIGGER; packet.payload = NULL; sr_session_send(devc->cb_data, &packet); /* * Send the samples that triggered it, * since we're skipping past them. */ packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.unitsize = sizeof(*devc->trigger_buffer); logic.length = devc->trigger_stage * logic.unitsize; logic.data = devc->trigger_buffer; sr_session_send(devc->cb_data, &packet); devc->trigger_stage = TRIGGER_FIRED; break; } } else if (devc->trigger_stage > 0) { /* * We had a match before, but not in the next sample. However, we may * have a match on this stage in the next bit -- trigger on 0001 will * fail on seeing 00001, so we need to go back to stage 0 -- but at * the next sample from the one that matched originally, which the * counter increment at the end of the loop takes care of. */ i -= devc->trigger_stage; if (i < -1) i = -1; /* Oops, went back past this buffer. */ /* Reset trigger stage. */ devc->trigger_stage = 0; } } } if (devc->trigger_stage == TRIGGER_FIRED) { /* Send the incoming transfer to the session bus. */ trigger_offset_bytes = trigger_offset * sample_width; // check packet type if ((*(struct sr_dev_inst *)(devc->cb_data)).mode == LOGIC) { packet.type = SR_DF_LOGIC; packet.payload = &logic; logic.length = transfer->actual_length - trigger_offset_bytes; logic.unitsize = sample_width; logic.data_error = 0; logic.data = cur_buf + trigger_offset_bytes; } else if ((*(struct sr_dev_inst *)(devc->cb_data)).mode == DSO) { uint16_t channel_cnt = 0; uint16_t channel_en_cnt = 0; GSList *l; struct sr_dev_inst *sdi = devc->cb_data; for (l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; channel_cnt ++; channel_en_cnt += probe->enabled; } if (channel_en_cnt == 0) channel_en_cnt = 1; if (!devc->instant) { const uint32_t mstatus_offset = devc->limit_samples / (channel_cnt/channel_en_cnt); mstatus.ch0_max = *((const uint8_t*)cur_buf + mstatus_offset*2 + 1*2); mstatus.ch0_min = *((const uint8_t*)cur_buf + mstatus_offset*2 + 3); mstatus.ch0_period = *((const uint32_t*)cur_buf + mstatus_offset/2 + 2/2); mstatus.ch0_period += ((uint64_t)*((const uint32_t*)cur_buf + mstatus_offset/2 + 4/2)) << 32; mstatus.ch0_pcnt = *((const uint32_t*)cur_buf + mstatus_offset/2 + 6/2); mstatus.ch1_max = *((const uint8_t*)cur_buf + mstatus_offset*2 + 9*2); mstatus.ch1_min = *((const uint8_t*)cur_buf + mstatus_offset*2 + 19); mstatus.ch1_period = *((const uint32_t*)cur_buf + mstatus_offset/2 + 10/2); mstatus.ch1_period += ((uint64_t)*((const uint32_t*)cur_buf + mstatus_offset/2 + 12/2)) << 32; mstatus.ch1_pcnt = *((const uint32_t*)cur_buf + mstatus_offset/2 + 14/2); mstatus.vlen = *((const uint32_t*)cur_buf + mstatus_offset/2 + 16/2) & 0x7fffffff; mstatus.stream_mode = *((const uint32_t*)cur_buf + mstatus_offset/2 + 16/2) & 0x80000000; mstatus.sample_divider = *((const uint32_t*)cur_buf + mstatus_offset/2 + 18/2); mstatus.zeroing = (*((const uint16_t*)cur_buf + mstatus_offset + 128) & 0x8000) != 0; mstatus.ch0_vpos_mid = *((const uint16_t*)cur_buf + mstatus_offset + 128) & 0x7fff; mstatus.ch0_voff_mid = *((const uint16_t*)cur_buf + mstatus_offset + 129); mstatus.ch0_vcntr = *((const uint16_t*)cur_buf + mstatus_offset + 130); mstatus.ch0_adc_off = *((const uint8_t*)cur_buf + mstatus_offset*2 + 131*2); mstatus.ch0_adc_sign = *((const uint8_t*)cur_buf + mstatus_offset*2 + 131*2+1); mstatus.ch1_vpos_mid = *((const uint16_t*)cur_buf + mstatus_offset + 132); mstatus.ch1_voff_mid = *((const uint16_t*)cur_buf + mstatus_offset + 133); mstatus.ch1_vcntr = *((const uint16_t*)cur_buf + mstatus_offset + 134); mstatus.ch1_adc_off = *((const uint8_t*)cur_buf + mstatus_offset*2 + 135*2); mstatus.ch1_adc_sign = *((const uint8_t*)cur_buf + mstatus_offset*2 + 135*2+1); mstatus.comb0_off = *((const uint16_t*)cur_buf + mstatus_offset + 136); mstatus.comb1_off = *((const uint16_t*)cur_buf + mstatus_offset + 137); mstatus.comb_sign = *((const uint8_t*)cur_buf + mstatus_offset*2 + 138*2); } else { mstatus.vlen = instant_buffer_size; } const uint32_t divider = devc->zero ? 0x1 : (uint32_t)ceil(DSCOPE_MAX_SAMPLERATE * 1.0 / devc->cur_samplerate / channel_en_cnt); if ((mstatus.sample_divider == divider && mstatus.vlen != 0 && mstatus.vlen <= (transfer->actual_length - 512) / sample_width) || devc->instant) { mstatus_valid = devc->instant ? FALSE : TRUE; packet.type = SR_DF_DSO; packet.payload = &dso; dso.probes = (*(struct sr_dev_inst *)(devc->cb_data)).channels; //dso.num_samples = (transfer->actual_length - 512) / sample_width; cur_sample_count = 2 * mstatus.vlen / channel_en_cnt ; dso.num_samples = cur_sample_count; dso.mq = SR_MQ_VOLTAGE; dso.unit = SR_UNIT_VOLT; dso.mqflags = SR_MQFLAG_AC; dso.data = cur_buf + trigger_offset_bytes; } else { mstatus_valid = FALSE; } } else { packet.type = SR_DF_ANALOG; packet.payload = &analog; analog.probes = (*(struct sr_dev_inst *)(devc->cb_data)).channels; analog.num_samples = transfer->actual_length / sample_width; analog.mq = SR_MQ_VOLTAGE; analog.unit = SR_UNIT_VOLT; analog.mqflags = SR_MQFLAG_AC; analog.data = cur_buf + trigger_offset_bytes; } if (devc->limit_samples) { const uint64_t remain_length= (devc->limit_samples - devc->num_samples) * sample_width; logic.length = min(logic.length, remain_length); /* in test mode, check data content*/ if (devc->op_mode == SR_OP_INTERNAL_TEST) { //for (i = 0; i < logic.length / sample_width; i++) { for (i = 0; i < logic.length / 2; i++) { // const uint16_t cur_sample = devc->sample_wide ? // *((const uint16_t*)cur_buf + i) : // *((const uint8_t*)cur_buf + i); const uint16_t cur_sample = *((const uint16_t*)cur_buf + i); if (test_init == 1) { test_sample_value = cur_sample; test_init = 0; } if (cur_sample != test_sample_value) { logic.data_error = 1; break; } test_sample_value++; } } if (devc->op_mode == SR_OP_EXTERNAL_TEST) { for (i = 0; i < logic.length / 2; i++) { const uint16_t cur_sample = *((const uint16_t*)cur_buf + i); if (test_init == 1) { test_sample_value = cur_sample; test_init = 0; } if (cur_sample != test_sample_value) { logic.data_error = 1; sr_err("exp: %d; act: %d", test_sample_value, cur_sample); break; } test_sample_value = (test_sample_value + 1) % 65001; //test_sample_value = test_sample_value + 1; } } /* send data to session bus */ sr_session_send(devc->cb_data, &packet); } devc->num_samples += cur_sample_count; if (((*(struct sr_dev_inst *)(devc->cb_data)).mode == LOGIC || devc->instant) && devc->limit_samples && (unsigned int)devc->num_samples >= devc->limit_samples) { //abort_acquisition(devc); free_transfer(transfer); devc->status = DSL_STOP; return; } } else { /* * TODO: Buffer pre-trigger data in capture * ratio-sized buffer. */ } resubmit_transfer(transfer); } static unsigned int to_bytes_per_ms(struct DSL_context *devc) { if (devc->cur_samplerate > SR_MHZ(100)) return SR_MHZ(100) / 1000 * (devc->sample_wide ? 2 : 1); else return devc->cur_samplerate / 1000 * (devc->sample_wide ? 2 : 1); } static size_t get_buffer_size(struct DSL_context *devc) { size_t s; /* * The buffer should be large enough to hold 10ms of data and * a multiple of 512. */ s = single_buffer_time * to_bytes_per_ms(devc); //s = to_bytes_per_ms(devc->cur_samplerate); return (s + 511) & ~511; } static unsigned int get_number_of_transfers(struct DSL_context *devc) { unsigned int n; size_t total_size; total_size = min(devc->limit_samples * (devc->sample_wide ? 2 : 1), total_buffer_time * to_bytes_per_ms(devc)); /* Total buffer size should be able to hold about 500ms of data. */ //n = 500 * to_bytes_per_ms(devc) / get_buffer_size(devc); n = ceil(total_size * 1.0 / get_buffer_size(devc)); if (n > NUM_SIMUL_TRANSFERS) return NUM_SIMUL_TRANSFERS; return n; //return 1; } static unsigned int get_timeout(struct DSL_context *devc) { size_t total_size; unsigned int timeout; total_size = get_buffer_size(devc) * get_number_of_transfers(devc); timeout = total_size / to_bytes_per_ms(devc); //return timeout + timeout / 4; /* Leave a headroom of 25% percent. */ return timeout * 4; } static int dev_transfer_start(const struct sr_dev_inst *sdi) { struct DSL_context *devc; struct sr_usb_dev_inst *usb; struct libusb_transfer *transfer; unsigned int i, timeout, num_transfers; int ret; unsigned char *buf; size_t size; int dso_buffer_size; devc = sdi->priv; usb = sdi->conn; // timeout = get_timeout(devc); // num_transfers = get_number_of_transfers(devc); // size = get_buffer_size(devc); timeout = 500; #ifndef _WIN32 num_transfers = 1; #else num_transfers = buffer_cnt; #endif uint16_t channel_en_cnt = 0; uint16_t channel_cnt = 0; GSList *l; for (l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; channel_en_cnt += probe->enabled; channel_cnt++; } if (devc->instant) dso_buffer_size = instant_buffer_size * channel_cnt; else dso_buffer_size = devc->limit_samples * channel_en_cnt + 512; size = (sdi->mode == ANALOG) ? cons_buffer_size : ((sdi->mode == DSO) ? dso_buffer_size : buffer_size); devc->submitted_transfers = 0; devc->transfers = g_try_malloc0(sizeof(*devc->transfers) * num_transfers); if (!devc->transfers) { sr_err("USB transfers malloc failed."); return SR_ERR_MALLOC; } devc->num_transfers = num_transfers; for (i = 0; i < num_transfers; i++) { if (!(buf = g_try_malloc(size))) { sr_err("USB transfer buffer malloc failed."); return SR_ERR_MALLOC; } transfer = libusb_alloc_transfer(0); libusb_fill_bulk_transfer(transfer, usb->devhdl, 6 | LIBUSB_ENDPOINT_IN, buf, size, receive_transfer, devc, 0); if ((ret = libusb_submit_transfer(transfer)) != 0) { sr_err("Failed to submit transfer: %s.", libusb_error_name(ret)); libusb_free_transfer(transfer); g_free(buf); abort_acquisition(devc); return SR_ERR; } devc->transfers[i] = transfer; devc->submitted_transfers++; } devc->status = DSL_DATA; return SR_OK; } static int receive_data(int fd, int revents, const struct sr_dev_inst *sdi) { int completed = 0; struct timeval tv; struct drv_context *drvc; struct DSL_context *devc; (void)fd; (void)revents; drvc = di->priv; devc = sdi->priv; if (devc->num_samples != -1 && (devc->status == DSL_STOP || devc->status == DSL_ERROR)) { sr_info("%s: Stopping", __func__); abort_acquisition(devc); } tv.tv_sec = tv.tv_usec = 0; libusb_handle_events_timeout_completed(drvc->sr_ctx->libusb_ctx, &tv, &completed); return TRUE; } static void receive_trigger_pos(struct libusb_transfer *transfer) { struct DSL_context *devc; struct sr_datafeed_packet packet; struct sr_datafeed_logic logic; struct sr_datafeed_dso dso; struct sr_datafeed_analog analog; struct ds_trigger_pos *trigger_pos; int ret; devc = transfer->user_data; sr_info("receive_trigger_pos(): status %d; timeout %d; received %d bytes.", transfer->status, transfer->timeout, transfer->actual_length); if (devc->num_samples == -1) { free_transfer(transfer); return; } trigger_pos = (struct ds_trigger_pos *)transfer->buffer; switch (transfer->status) { case LIBUSB_TRANSFER_COMPLETED: if (transfer->actual_length == sizeof(struct ds_trigger_pos)) { packet.type = SR_DF_TRIGGER; packet.payload = trigger_pos; sr_session_send(devc->cb_data, &packet); devc->status = DSL_TRIGGERED; free_transfer(transfer); devc->num_transfers = 0; devc->empty_transfer_count = 0; } else { free_transfer(transfer); devc->status = DSL_ERROR; } break; case LIBUSB_TRANSFER_TIMED_OUT: devc->empty_transfer_count++; if (devc->empty_transfer_count > MAX_EMPTY_TRANSFERS) { /* * The FX2 gave up. End the acquisition, the frontend * will work out that the samplecount is short. */ //abort_acquisition(devc); free_transfer(transfer); devc->status = DSL_ERROR; } else { resubmit_transfer(transfer); } break; case LIBUSB_TRANSFER_CANCELLED: resubmit_transfer(transfer); break; default: //abort_acquisition(devc); free_transfer(transfer); devc->status = DSL_ERROR; break; } if (devc->status == DSL_TRIGGERED) { if ((ret = dev_transfer_start(devc->cb_data)) != SR_OK) { sr_err("%s: could not start data transfer" "(%d)%d", __func__, ret, errno); } } } static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data) { struct DSL_context *devc; struct drv_context *drvc; struct sr_usb_dev_inst *usb; struct libusb_transfer *transfer; struct ds_trigger_pos *trigger_pos; const struct libusb_pollfd **lupfd; unsigned int i; int ret; int transferred; struct sr_datafeed_packet packet; int header_transferred; test_init = 1; if (sdi->status != SR_ST_ACTIVE) return SR_ERR_DEV_CLOSED; drvc = di->priv; devc = sdi->priv; usb = sdi->conn; //devc->cb_data = cb_data; devc->cb_data = sdi; devc->num_samples = 0; devc->empty_transfer_count = 0; devc->status = DSL_INIT; devc->num_transfers = 0; devc->submitted_transfers = 0; /* Configures devc->trigger_* and devc->sample_wide */ if (configure_probes(sdi) != SR_OK) { sr_err("Failed to configure probes."); return SR_ERR; } /* Stop Previous GPIF acquisition */ if ((ret = command_stop_acquisition (usb->devhdl)) != SR_OK) { sr_err("Stop DSCope acquisition failed!"); abort_acquisition(devc); return ret; } else { sr_info("Stop Previous DSCope acquisition!"); } /* Setting FPGA before acquisition start*/ if ((ret = command_fpga_setting(usb->devhdl, sizeof(struct DSL_setting) / sizeof(uint16_t))) != SR_OK) { sr_err("Send FPGA setting command failed!"); } else { if ((ret = fpga_setting(sdi)) != SR_OK) { sr_err("Configure FPGA failed!"); abort_acquisition(devc); return ret; } } // if (sdi->mode == DSO) { // GSList *l; // for(l = sdi->channels; l; l = l->next) { // struct sr_channel *probe = (struct sr_channel *)l->data; // ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, probe, SR_CONF_COUPLING)); // if (ret != SR_OK) { // sr_err("Set COUPLING of channel %d command failed!", probe->index); // return ret; // } // ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, probe, SR_CONF_VPOS)); // if (ret != SR_OK) { // sr_err("Set VDIV of channel %d command failed!", probe->index); // return ret; // } // } // } if ((ret = command_start_acquisition (usb->devhdl, devc->cur_samplerate, devc->sample_wide, (sdi->mode == LOGIC))) != SR_OK) { abort_acquisition(devc); return ret; } test_sample_value = 0; /* setup callback function for data transfer */ lupfd = libusb_get_pollfds(drvc->sr_ctx->libusb_ctx); for (i = 0; lupfd[i]; i++); if (!(devc->usbfd = g_try_malloc(sizeof(struct libusb_pollfd) * (i + 1)))) return SR_ERR; for (i = 0; lupfd[i]; i++) { sr_source_add(lupfd[i]->fd, lupfd[i]->events, get_timeout(devc), receive_data, sdi); devc->usbfd[i] = lupfd[i]->fd; } devc->usbfd[i] = -1; free(lupfd); /* poll trigger status transfer*/ if (!(trigger_pos = g_try_malloc0(sizeof(struct ds_trigger_pos)))) { sr_err("USB trigger_pos buffer malloc failed."); return SR_ERR_MALLOC; } devc->transfers = g_try_malloc0(sizeof(*devc->transfers)); if (!devc->transfers) { sr_err("USB trigger_pos transfer malloc failed."); return SR_ERR_MALLOC; } devc->num_transfers = 1; transfer = libusb_alloc_transfer(0); libusb_fill_bulk_transfer(transfer, usb->devhdl, 6 | LIBUSB_ENDPOINT_IN, trigger_pos, sizeof(struct ds_trigger_pos), receive_trigger_pos, devc, 0); if ((ret = libusb_submit_transfer(transfer)) != 0) { sr_err("Failed to submit trigger_pos transfer: %s.", libusb_error_name(ret)); libusb_free_transfer(transfer); g_free(trigger_pos); abort_acquisition(devc); return SR_ERR; } devc->transfers[0] = transfer; devc->submitted_transfers++; devc->status = DSL_START; mstatus_valid = FALSE; mstatus.zeroing = devc->zero; /* Send header packet to the session bus. */ //std_session_send_df_header(cb_data, LOG_PREFIX); std_session_send_df_header(sdi, LOG_PREFIX); return SR_OK; } static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data) { (void)cb_data; struct DSL_context *devc; devc = sdi->priv; devc->status = DSL_STOP; //abort_acquisition(sdi->priv); return SR_OK; } static int dev_test(struct sr_dev_inst *sdi) { if (sdi) { struct sr_usb_dev_inst *usb; struct version_info vi; int ret; usb = sdi->conn; ret = command_get_fw_version(usb->devhdl, &vi); if (ret != SR_OK) { sr_err("Device don't exist!"); return SR_ERR; } else { return SR_OK; } } else { return SR_ERR; } } static int dev_status_get(struct sr_dev_inst *sdi, struct sr_status *status, int begin, int end) { (void)begin; (void)end; if (sdi) { struct DSL_context *devc; devc = sdi->priv; if (mstatus_valid) { *status = mstatus; if (devc->zero) return SR_ERR; else return SR_OK; } else { return SR_ERR; } } else { return SR_ERR; } } SR_PRIV struct sr_dev_driver DSCope_driver_info = { .name = "DSCope", .longname = "DSCope (generic driver for DScope oscilloscope)", .api_version = 1, .init = init, .cleanup = cleanup, .scan = scan, .dev_list = dev_list, .dev_mode_list = dev_mode_list, .dev_clear = dev_clear, .config_get = config_get, .config_set = config_set, .config_list = config_list, .dev_open = dev_open, .dev_close = dev_close, .dev_test = dev_test, .dev_status_get = dev_status_get, .dev_acquisition_start = dev_acquisition_start, .dev_acquisition_stop = dev_acquisition_stop, .priv = NULL, };