## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2011-2014 Uwe Hermann ## Copyright (C) 2016 DreamSourceLab ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, write to the Free Software ## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ## import sigrokdecode as srd from math import floor, ceil ''' OUTPUT_PYTHON format: Packet: [, ] This is the list of s and their respective values: - 'STARTBIT': The data is the (integer) value of the start bit (0/1). - 'DATA': This is always a tuple containing two items: - 1st item: the (integer) value of the UART data. Valid values range from 0 to 512 (as the data can be up to 9 bits in size). - 2nd item: the list of individual data bits and their ss/es numbers. - 'PARITYBIT': The data is the (integer) value of the parity bit (0/1). - 'STOPBIT': The data is the (integer) value of the stop bit (0 or 1). - 'INVALID STARTBIT': The data is the (integer) value of the start bit (0/1). - 'INVALID STOPBIT': The data is the (integer) value of the stop bit (0/1). - 'PARITY ERROR': The data is a tuple with two entries. The first one is the expected parity value, the second is the actual parity value. - TODO: Frame error? ''' # Given a parity type to check (odd, even, zero, one), the value of the # parity bit, the value of the data, and the length of the data (5-9 bits, # usually 8 bits) return True if the parity is correct, False otherwise. # 'none' is _not_ allowed as value for 'parity_type'. def parity_ok(parity_type, parity_bit, data, num_data_bits): # Handle easy cases first (parity bit is always 1 or 0). if parity_type == 'zero': return parity_bit == 0 elif parity_type == 'one': return parity_bit == 1 # Count number of 1 (high) bits in the data (and the parity bit itself!). ones = bin(data).count('1') + parity_bit # Check for odd/even parity. if parity_type == 'odd': return (ones % 2) == 1 elif parity_type == 'even': return (ones % 2) == 0 class SamplerateError(Exception): pass class Decoder(srd.Decoder): api_version = 2 id = '0:uart' name = '0:UART' longname = 'Universal Asynchronous Receiver/Transmitter' desc = 'Asynchronous, serial bus.' license = 'gplv2+' inputs = ['logic'] outputs = ['uart'] channels = ( {'id': 'rxtx', 'name': 'RX/TX', 'desc': 'UART transceive line'}, ) options = ( {'id': 'baudrate', 'desc': 'Baud rate', 'default': 9600}, {'id': 'num_data_bits', 'desc': 'Data bits', 'default': 8, 'values': (5, 6, 7, 8, 9)}, {'id': 'parity_type', 'desc': 'Parity type', 'default': 'none', 'values': ('none', 'odd', 'even', 'zero', 'one')}, {'id': 'parity_check', 'desc': 'Check parity?', 'default': 'yes', 'values': ('yes', 'no')}, {'id': 'num_stop_bits', 'desc': 'Stop bits', 'default': 1.0, 'values': (0.0, 0.5, 1.0, 1.5)}, {'id': 'bit_order', 'desc': 'Bit order', 'default': 'lsb-first', 'values': ('lsb-first', 'msb-first')}, {'id': 'format', 'desc': 'Data format', 'default': 'ascii', 'values': ('ascii', 'dec', 'hex', 'oct', 'bin')}, {'id': 'invert', 'desc': 'Invert Signal?', 'default': 'no', 'values': ('yes', 'no')}, ) annotations = ( ('108', 'data', 'data'), ('7', 'start', 'start bits'), ('6', 'parity-ok', 'parity OK bits'), ('0', 'parity-err', 'parity error bits'), ('1', 'stop', 'stop bits'), ('1000', 'warnings', 'warnings'), ('109', 'data-bits', 'data bits'), ) annotation_rows = ( ('data', 'RX/TX', (0, 1, 2, 3, 4)), #('data-bits', 'Bits', (6,)), #('warnings', 'Warnings', (5,)), ) binary = ( ('rxtx', 'RX/TX dump'), ) def put_ann_bit(self, width, data): s = self.bitstart self.put(floor(s), floor(s + width), self.out_ann, data) def put_python_bit(self, width, data): s = self.bitstart self.put(floor(s), floor(s + width), self.out_python, data) def put_ann_byte(self, data): ss, s = self.bytestart, self.bitstart self.put(floor(ss), floor(s + self.bit_width), self.out_ann, data) def put_python_byte(self, data): ss, s = self.bytestart, self.bitstart self.put(floor(ss), floor(s + self.bit_width), self.out_python, data) def put_binary_byte(self, data): ss, s = self.bytestart, self.bitstart self.put(floor(ss), floor(s + self.bit_width), self.out_binary, data) def __init__(self): self.samplerate = None self.samplenum = 0 self.startbit = -1 self.bitcount = 0 self.databyte = 0 self.paritybit = -1 self.stopbit1 = -1 self.bitstart = -1 self.bytestart = -1 self.state = 'FIND START' self.oldbit = -1 self.databits = [] def start(self): self.out_python = self.register(srd.OUTPUT_PYTHON) self.out_binary = self.register(srd.OUTPUT_BINARY) self.out_ann = self.register(srd.OUTPUT_ANN) if not self.samplerate: raise SamplerateError('Cannot decode without samplerate.') if self.samplerate < self.options['baudrate']*4: raise SamplerateError('Samplerate is too low for current baudrate setting, 4x at least!') if self.options['invert'] == 'yes': self.exp_logic = 1 else: self.exp_logic = 0 def metadata(self, key, value): if key == srd.SRD_CONF_SAMPLERATE: self.samplerate = value # The width of one UART bit in number of samples. self.bit_width = float(self.samplerate) / float(self.options['baudrate']) def frame_start(self, signal): # Save the sample number where the start bit begins. self.bitstart = self.samplenum self.state = 'GET START BIT' def get_start_bit(self, signal): self.startbit = signal # The startbit must be 0. If not, we report an error. #if self.startbit != 0: #self.put_python_bit(self.bit_width, ['INVALID STARTBIT', 0, self.startbit]) #self.put_ann_bit(self.bit_width, [5, ['Frame error', 'Frame err', 'FE']]) # TODO: Abort? Ignore rest of the frame? self.bitcount = 0 self.databyte = 0 self.state = 'GET DATA BITS' #self.put_python_bit(self.bit_width, ['STARTBIT', 0, self.startbit]) self.put_ann_bit(self.bit_width, [1, ['Start bit', 'Start', 'S']]) def get_data_bits(self, signal): # Save the sample number of where the bit begins. self.bitstart += self.bit_width if self.bitcount == 0 : self.bytestart = self.bitstart # Get the next data bit in LSB-first or MSB-first fashion. if self.options['bit_order'] == 'lsb-first': self.databyte >>= 1 self.databyte |= \ (signal << (self.options['num_data_bits'] - 1)) else: self.databyte <<= 1 self.databyte |= (signal << 0) #self.put_ann_bit(self.bit_width, [6, ['%d' % signal]]) # Store individual data bits and their start/end samplenumbers. #s, halfbit = self.samplenum, int(self.bit_width / 2) #self.databits.append([signal, s - halfbit, s + halfbit]) # Return here, unless we already received all data bits. if self.bitcount < self.options['num_data_bits'] - 1: self.bitcount += 1 return if self.options['parity_type'] == 'none': self.state = 'GET STOP BITS' else: self.state = 'GET PARITY BIT' #self.put_python_byte(['DATA', 0, (self.databyte, self.databits)]) b, f = self.databyte, self.options['format'] if f == 'ascii': c = chr(b) if b in range(30, 126 + 1) else '[%02X]' % b self.put_ann_byte([0, [c]]) elif f == 'dec': self.put_ann_byte([0, [str(b)]]) elif f == 'hex': self.put_ann_byte([0, [hex(b)[2:].zfill(2).upper()]]) elif f == 'oct': self.put_ann_byte([0, [oct(b)[2:].zfill(3)]]) elif f == 'bin': self.put_ann_byte([0, [bin(b)[2:].zfill(8)]]) #self.put_binary_byte([0, bytes([b])]) #self.put_binary_byte([2, bytes([b])]) #self.databits = [] def get_parity_bit(self, signal): # Save the sample number of where the bit begins. self.bitstart += self.bit_width self.paritybit = signal self.state = 'GET STOP BITS' if parity_ok(self.options['parity_type'], self.paritybit, self.databyte, self.options['num_data_bits']): # self.put_python_bit(self.bit_width, ['PARITYBIT', 0, self.paritybit]) self.put_ann_bit(self.bit_width, [2, ['Parity bit', 'Parity', 'P']]) else: # # TODO: Return expected/actual parity values. # self.put_python_bit(self.bit_width, ['PARITY ERROR', 0, (0, 1)]) # FIXME: Dummy tuple... self.put_ann_bit(self.bit_width, [3, ['Parity error', 'Parity err', 'PE']]) # TODO: Currently only supports 1 stop bit. def get_stop_bits(self, signal): # Save the sample number of where the bit begins. self.bitstart += self.bit_width #self.stopbit1 = signal # Stop bits must be 1. If not, we report an error. #if self.stopbit1 != 1: # self.put_python_bit(self.bit_width, ['INVALID STOPBIT', 0, self.stopbit1]) # self.put_ann_bit(self.bit_width, [5, ['Frame error', 'Frame err', 'FE']]) # TODO: Abort? Ignore the frame? Other? self.state = 'FIND START' #self.put_python_bit(int(self.bit_width * self.options['num_stop_bits']), ['STOPBIT', 0, self.stopbit1]) self.put_ann_bit(int(self.bit_width * self.options['num_stop_bits']), [4, ['Stop bit', 'Stop', 'T']]) def decode(self, ss, es, logic): for (self.samplenum, pins) in logic: # In default case, the iteration gap is 1 logic.logic_mask = 0 logic.edge_index = 0 (signal,) = pins if self.options['invert'] == 'yes': signal = not signal # State machine. if self.state == 'FIND START': if (self.oldbit == 1 and signal == 0): self.frame_start(signal) logic.itercnt += (self.bit_width - 1) / 2.0 else: logic.exp_logic = self.exp_logic logic.logic_mask = 1 logic.cur_pos = self.samplenum signal = 1 elif self.state == 'GET START BIT': self.get_start_bit(signal) logic.itercnt += self.bit_width elif self.state == 'GET DATA BITS': self.get_data_bits(signal) logic.itercnt += self.bit_width elif self.state == 'GET PARITY BIT': self.get_parity_bit(signal) logic.itercnt += self.bit_width elif self.state == 'GET STOP BITS': self.get_stop_bits(signal) logic.itercnt += (self.options['num_stop_bits'] - 0.75) * self.bit_width signal = 0 # Save current RX/TX values for the next round. self.oldbit = signal