/* * This file is part of the libsigrok project. * * Copyright (C) 2017 DreamSourceLab * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "../../libsigrok-internal.h" #include "command.h" #include "dsl.h" #include "../../log.h" #include #include #include #undef LOG_PREFIX #define LOG_PREFIX "dsl: " SR_PRIV int dsl_secuReset(const struct sr_dev_inst *sdi); SR_PRIV int dsl_secuWrite(const struct sr_dev_inst *sdi, uint16_t cmd, uint16_t din); SR_PRIV gboolean dsl_isSecuReady(const struct sr_dev_inst *sdi); SR_PRIV gboolean dsl_isSecuPass(const struct sr_dev_inst *sdi); SR_PRIV uint16_t dsl_secuRead(const struct sr_dev_inst *sdi); static const int32_t probeOptions[] = { SR_CONF_PROBE_COUPLING, SR_CONF_PROBE_VDIV, SR_CONF_PROBE_MAP_DEFAULT, SR_CONF_PROBE_MAP_UNIT, SR_CONF_PROBE_MAP_MIN, SR_CONF_PROBE_MAP_MAX, }; static const uint8_t probeCoupling[] = { SR_DC_COUPLING, SR_AC_COUPLING, }; const char *probeMapUnits[] = { "V", "A", "℃", "℉", "g", "m", "m/s", }; static const char *probe_names[] = { "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", NULL, }; static const gboolean default_ms_en[] = { FALSE, /* DSO_MS_BEGIN */ TRUE, /* DSO_MS_FREQ */ FALSE, /* DSO_MS_PERD */ TRUE, /* DSO_MS_VMAX */ TRUE, /* DSO_MS_VMIN */ FALSE, /* DSO_MS_VRMS */ FALSE, /* DSO_MS_VMEA */ FALSE, /* DSO_MS_VP2P */ }; SR_PRIV void dsl_probe_init(struct sr_dev_inst *sdi) { unsigned int i, j; GSList *l; struct DSL_context *devc = sdi->priv; for (l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; probe->bits = channel_modes[devc->ch_mode].unit_bits; probe->vdiv = 1000; probe->vfactor = 1; probe->cali_fgain0 = 1; probe->cali_fgain1 = 1; probe->cali_fgain2 = 1; probe->cali_fgain3 = 1; probe->cali_comb_fgain0 = 1; probe->cali_comb_fgain1 = 1; probe->cali_comb_fgain2 = 1; probe->cali_comb_fgain3 = 1; probe->offset = (1 << (probe->bits - 1)); probe->coupling = SR_DC_COUPLING; probe->trig_value = (1 << (probe->bits - 1)); probe->vpos_trans = devc->profile->dev_caps.default_pwmtrans; probe->comb_comp = devc->profile->dev_caps.default_comb_comp; probe->digi_fgain = 0; probe->map_default = TRUE; probe->map_unit = probeMapUnits[0]; probe->map_min = -(probe->vdiv * probe->vfactor * DS_CONF_DSO_VDIVS / 2000.0); probe->map_max = probe->vdiv * probe->vfactor * DS_CONF_DSO_VDIVS / 2000.0; if (devc->profile->dev_caps.vdivs && probe->vga_ptr == NULL) { for (i = 0; devc->profile->dev_caps.vdivs[i]; i++); probe->vga_ptr = g_try_malloc((i+1)*sizeof(struct DSL_vga)); for (i = 0; devc->profile->dev_caps.vdivs[i]; i++) { (probe->vga_ptr + i)->id = devc->profile->dev_caps.vga_id; (probe->vga_ptr + i)->key = devc->profile->dev_caps.vdivs[i]; for (j = 0; j < ARRAY_SIZE(vga_defaults); j++) { if (vga_defaults[j].id == devc->profile->dev_caps.vga_id && vga_defaults[j].key == devc->profile->dev_caps.vdivs[i]) { (probe->vga_ptr+i)->vgain = vga_defaults[j].vgain; (probe->vga_ptr+i)->preoff = vga_defaults[j].preoff; (probe->vga_ptr + i)->preoff_comp = 0; } } } // end flag must have (probe->vga_ptr + i)->id = 0; (probe->vga_ptr + i)->key = 0; (probe->vga_ptr+i)->vgain = 0; (probe->vga_ptr+i)->preoff = 0; (probe->vga_ptr + i)->preoff_comp = 0; } } } SR_PRIV int dsl_setup_probes(struct sr_dev_inst *sdi, int num_probes) { uint16_t j; struct sr_channel *probe; struct DSL_context *devc = sdi->priv; for (j = 0; j < num_probes; j++) { if (!(probe = sr_channel_new(j, channel_modes[devc->ch_mode].type, TRUE, probe_names[j]))) return SR_ERR; sdi->channels = g_slist_append(sdi->channels, probe); } dsl_probe_init(sdi); return SR_OK; } SR_PRIV int dsl_adjust_probes(struct sr_dev_inst *sdi, int num_probes) { uint16_t j; struct sr_channel *probe; struct DSL_context *devc = sdi->priv; GSList *l; assert(num_probes > 0); j = g_slist_length(sdi->channels); while(j < num_probes) { if (!(probe = sr_channel_new(j, channel_modes[devc->ch_mode].type, TRUE, probe_names[j]))) return SR_ERR; sdi->channels = g_slist_append(sdi->channels, probe); j++; } while(j > num_probes) { sdi->channels = g_slist_delete_link(sdi->channels, g_slist_last(sdi->channels)); j--; } for(l = sdi->channels; l; l = l->next) { probe = (struct sr_channel *)l->data; probe->enabled = TRUE; probe->type = channel_modes[devc->ch_mode].type; } return SR_OK; } SR_PRIV const GSList *dsl_mode_list(const struct sr_dev_inst *sdi) { struct DSL_context *devc; GSList *l = NULL; unsigned int i; devc = sdi->priv; for (i = 0; i < ARRAY_SIZE(sr_mode_list); i++) { if (devc->profile->dev_caps.mode_caps & (1 << i)) l = g_slist_append(l, &sr_mode_list[i]); } return l; } SR_PRIV void dsl_adjust_samplerate(struct DSL_context *devc) { int i; for (i = 0; devc->profile->dev_caps.samplerates[i]; i++) { if (devc->profile->dev_caps.samplerates[i] > channel_modes[devc->ch_mode].max_samplerate) break; } devc->samplerates_max_index = i-1; for (i = 0; devc->profile->dev_caps.samplerates[i]; i++) { if (devc->profile->dev_caps.samplerates[i] >= channel_modes[devc->ch_mode].min_samplerate) break; } devc->samplerates_min_index = i; assert(devc->samplerates_max_index >= devc->samplerates_min_index); if (devc->cur_samplerate > devc->profile->dev_caps.samplerates[devc->samplerates_max_index]) devc->cur_samplerate = devc->profile->dev_caps.samplerates[devc->samplerates_max_index]; if (devc->cur_samplerate < devc->profile->dev_caps.samplerates[devc->samplerates_min_index]) devc->cur_samplerate = devc->profile->dev_caps.samplerates[devc->samplerates_min_index]; } SR_PRIV int dsl_en_ch_num(const struct sr_dev_inst *sdi) { GSList *l; int channel_en_cnt = 0; for (l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; channel_en_cnt += probe->enabled; } channel_en_cnt += (channel_en_cnt == 0); return channel_en_cnt; } /** * Check the USB configuration to determine if this is an dsl device. * * @return TRUE if the device's configuration profile match dsl hardware * configuration, FALSE otherwise. */ SR_PRIV gboolean dsl_check_conf_profile(libusb_device *dev) { struct libusb_device_descriptor des; struct libusb_device_handle *hdl; gboolean ret; unsigned char strdesc[64]; hdl = NULL; ret = FALSE; while (!ret) { /* Assume the FW has not been loaded, unless proven wrong. */ if (libusb_get_device_descriptor(dev, &des) != 0) break; if (libusb_open(dev, &hdl) != 0) break; if (libusb_get_string_descriptor_ascii(hdl, des.iManufacturer, strdesc, sizeof(strdesc)) < 0) break; if (strncmp((const char *)strdesc, "DreamSourceLab", 14)) break; if (libusb_get_string_descriptor_ascii(hdl, des.iProduct, strdesc, sizeof(strdesc)) < 0) break; if (strncmp((const char *)strdesc, "USB-based DSL Instrument v2", 27)) break; /* If we made it here, it must be an dsl device. */ ret = TRUE; } if (hdl) libusb_close(hdl); return ret; } static int hw_dev_open(struct sr_dev_driver *di, struct sr_dev_inst *sdi) { libusb_device **devlist; libusb_device *dev_handel=NULL; struct sr_usb_dev_inst *usb; struct libusb_device_descriptor des; struct DSL_context *devc; struct drv_context *drvc; struct version_info vi; int ret, skip, i, device_count; struct ctl_rd_cmd rd_cmd; uint8_t rd_cmd_data[2]; drvc = di->priv; devc = sdi->priv; usb = sdi->conn; if (usb->usb_dev == NULL){ sr_err("%s", "hw_dev_open(), usb->usb_dev is null."); return SR_ERR; } if (sdi->status == SR_ST_ACTIVE) { /* Device is already in use. */ sr_detail("The usb device is opened, handle:%p", usb->usb_dev); return SR_OK; } if (sdi->status == SR_ST_INITIALIZING) { sr_info("%s", "The device instance is still boosting."); } dev_handel = usb->usb_dev; sr_info("Open usb device instance, handle: %p", dev_handel); if (libusb_open(dev_handel, &usb->devhdl) != 0){ sr_err("Failed to open device: %s, handle:%p", libusb_error_name(ret), dev_handel); return SR_ERR; } //sr_info("------------Open returns the libusb_device_handle: %p, struct:%p", usb->devhdl, usb); if (usb->address == 0xff){ /* * First time we touch this device after FW * upload, so we don't know the address yet. */ usb->address = libusb_get_device_address(dev_handel); } rd_cmd.header.dest = DSL_CTL_FW_VERSION; rd_cmd.header.size = 2; rd_cmd.data = rd_cmd_data; if ((ret = command_ctl_rd(usb->devhdl, rd_cmd)) != SR_OK) { sr_err("Failed to get firmware version."); return ret; } vi.major = rd_cmd_data[0]; vi.minor = rd_cmd_data[1]; /* * Different versions may have incompatible issue, * Mark for up level process. */ if (vi.major != DSL_REQUIRED_VERSION_MAJOR) { sr_err("Expected firmware version %d.%d, " "got %d.%d.", DSL_REQUIRED_VERSION_MAJOR, DSL_REQUIRED_VERSION_MINOR, vi.major, vi.minor); sdi->status = SR_ST_INCOMPATIBLE; } else { sdi->status = SR_ST_ACTIVE; } sr_info("Opened device %p on %d.%d, " "interface %d, firmware %d.%d.", usb->usb_dev, usb->bus, usb->address, USB_INTERFACE, vi.major, vi.minor); if ((sdi->status != SR_ST_ACTIVE) && (sdi->status != SR_ST_INCOMPATIBLE)){ return SR_ERR; } return SR_OK; } SR_PRIV int dsl_configure_probes(const struct sr_dev_inst *sdi) { struct DSL_context *devc; struct sr_channel *probe; GSList *l; int probe_bit, stage, i; char *tc; devc = sdi->priv; for (i = 0; i < NUM_TRIGGER_STAGES; i++) { devc->trigger_mask[i] = 0; devc->trigger_value[i] = 0; } stage = -1; for (l = sdi->channels; l; l = l->next) { probe = (struct sr_channel *)l->data; if (probe->enabled == FALSE) continue; probe_bit = 1 << (probe->index); if (!(probe->trigger)) continue; stage = 0; for (tc = probe->trigger; *tc; tc++) { devc->trigger_mask[stage] |= probe_bit; if (*tc == '1') devc->trigger_value[stage] |= probe_bit; stage++; if (stage > NUM_TRIGGER_STAGES) return SR_ERR; } } return SR_OK; } SR_PRIV uint64_t dsl_channel_depth(const struct sr_dev_inst *sdi) { struct DSL_context *devc = sdi->priv; int ch_num = dsl_en_ch_num(sdi); return (devc->profile->dev_caps.hw_depth / (ch_num ? ch_num : 1)) & ~SAMPLES_ALIGN; } SR_PRIV int dsl_hdl_version(const struct sr_dev_inst *sdi, uint8_t *value) { struct sr_usb_dev_inst *usb; struct libusb_device_handle *hdl; struct ctl_rd_cmd rd_cmd; int ret; uint8_t rdata[HDL_VERSION_ADDR+1]; usb = sdi->conn; hdl = usb->devhdl; rd_cmd.header.dest = DSL_CTL_I2C_STATUS; rd_cmd.header.offset = 0; rd_cmd.header.size = HDL_VERSION_ADDR+1; rd_cmd.data = rdata; if ((ret = command_ctl_rd(hdl, rd_cmd)) != SR_OK) { sr_err("Sent DSL_CTL_I2C_STATUS command failed."); return SR_ERR; } *value = rdata[HDL_VERSION_ADDR]; return SR_OK; } SR_PRIV int dsl_wr_reg(const struct sr_dev_inst *sdi, uint8_t addr, uint8_t value) { struct sr_usb_dev_inst *usb; struct libusb_device_handle *hdl; struct ctl_wr_cmd wr_cmd; int ret; usb = sdi->conn; hdl = usb->devhdl; wr_cmd.header.dest = DSL_CTL_I2C_REG; wr_cmd.header.offset = addr; wr_cmd.header.size = 1; wr_cmd.data[0] = value; if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK) { sr_err("Sent DSL_CTL_I2C_REG command failed."); return SR_ERR; } return SR_OK; } SR_PRIV int dsl_rd_reg(const struct sr_dev_inst *sdi, uint8_t addr, uint8_t *value) { struct sr_usb_dev_inst *usb; struct ctl_rd_cmd rd_cmd; int ret; usb = sdi->conn; rd_cmd.header.dest = DSL_CTL_I2C_STATUS; rd_cmd.header.offset = addr; rd_cmd.header.size = 1; rd_cmd.data = value; if ((ret = command_ctl_rd(usb->devhdl, rd_cmd)) != SR_OK) { sr_err("Sent DSL_CTL_I2C_STATUS read command failed."); return SR_ERR; } return SR_OK; } SR_PRIV int dsl_wr_ext(const struct sr_dev_inst *sdi, uint8_t addr, uint8_t value) { struct sr_usb_dev_inst *usb; struct libusb_device_handle *hdl; struct ctl_wr_cmd wr_cmd; struct DSL_context *devc = sdi->priv; uint8_t rdata; int ret; if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_POGOPIN) { usb = sdi->conn; hdl = usb->devhdl; wr_cmd.header.dest = DSL_CTL_I2C_EXT; wr_cmd.header.offset = addr; wr_cmd.header.size = 1; wr_cmd.data[0] = value; if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK) { sr_err("Sent DSL_CTL_I2C_EXT command failed."); return SR_ERR; } } else { // write addr + wr ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_TXR_OFF, EI2C_AWR); ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_STA | bmEI2C_WR); // check done ret = dsl_rd_reg(sdi, EI2C_ADDR+EI2C_SR_OFF, &rdata); if (rdata & bmEI2C_RXNACK) { ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_STO | bmEI2C_WR); return SR_ERR; } // write offset + wr ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_TXR_OFF, addr); ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_WR); // check done ret = dsl_rd_reg(sdi, EI2C_ADDR+EI2C_SR_OFF, &rdata); if (rdata & bmEI2C_RXNACK) { ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_STO | bmEI2C_WR); return SR_ERR; } // write value + wr ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_TXR_OFF, value); ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_STO | bmEI2C_WR); // check done ret = dsl_rd_reg(sdi, EI2C_ADDR+EI2C_SR_OFF, &rdata); if (rdata & bmEI2C_RXNACK) { ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_STO | bmEI2C_WR); return SR_ERR; } } return ret; } SR_PRIV int dsl_rd_ext(const struct sr_dev_inst *sdi, unsigned char *ctx, uint16_t addr, uint8_t len) { struct sr_usb_dev_inst *usb; struct libusb_device_handle *hdl; struct ctl_rd_cmd rd_cmd; struct DSL_context *devc = sdi->priv; uint8_t rdata; int ret; if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_POGOPIN) { usb = sdi->conn; hdl = usb->devhdl; rd_cmd.header.dest = DSL_CTL_I2C_EXT; rd_cmd.header.size = len; rd_cmd.header.offset = addr; rd_cmd.data = ctx; if ((ret = command_ctl_rd(hdl, rd_cmd)) != SR_OK) { sr_err("Sent DSL_CTL_I2C_EXT read command failed."); return SR_ERR; } } else { // write addr + wr ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_TXR_OFF, EI2C_AWR); ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_STA | bmEI2C_WR); // check done ret = dsl_rd_reg(sdi, EI2C_ADDR+EI2C_SR_OFF, &rdata); if (rdata & bmEI2C_RXNACK) { ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_STO | bmEI2C_WR); return SR_ERR; } // write offset + wr ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_TXR_OFF, addr); ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_WR); // check done ret = dsl_rd_reg(sdi, EI2C_ADDR+EI2C_SR_OFF, &rdata); if (rdata & bmEI2C_RXNACK) { ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_STO | bmEI2C_WR); return SR_ERR; } // write read addr + wr ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_TXR_OFF, EI2C_ARD); ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_STA | bmEI2C_WR); // check done ret = dsl_rd_reg(sdi, EI2C_ADDR+EI2C_SR_OFF, &rdata); if (rdata & bmEI2C_RXNACK) { ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_STO | bmEI2C_WR); return SR_ERR; } while(--len) { ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_RD); ret = dsl_rd_reg(sdi, EI2C_ADDR+EI2C_RXR_OFF, ctx); ctx++; } ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_STO | bmEI2C_RD | bmEI2C_NACK); ret = dsl_rd_reg(sdi, EI2C_ADDR+EI2C_RXR_OFF, ctx); } return ret; } SR_PRIV int dsl_wr_dso(const struct sr_dev_inst *sdi, uint64_t cmd) { struct sr_usb_dev_inst *usb; struct libusb_device_handle *hdl; struct ctl_wr_cmd wr_cmd; int ret; usb = sdi->conn; hdl = usb->devhdl; wr_cmd.header.dest = DSL_CTL_I2C_DSO; wr_cmd.header.offset = 0; wr_cmd.header.size = 8; wr_cmd.data[0] = (uint8_t)cmd; wr_cmd.data[1] = (uint8_t)(cmd >> 8); wr_cmd.data[2] = (uint8_t)(cmd >> 16); wr_cmd.data[3] = (uint8_t)(cmd >> 24); wr_cmd.data[4] = (uint8_t)(cmd >> 32); wr_cmd.data[5] = (uint8_t)(cmd >> 40); wr_cmd.data[6] = (uint8_t)(cmd >> 48); wr_cmd.data[7] = (uint8_t)(cmd >> 56); if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK) { sr_err("Sent DSL_CTL_I2C_DSO command failed."); return SR_ERR; } return SR_OK; } SR_PRIV int dsl_wr_nvm(const struct sr_dev_inst *sdi, unsigned char *ctx, uint16_t addr, uint8_t len) { struct sr_usb_dev_inst *usb; struct libusb_device_handle *hdl; struct ctl_wr_cmd wr_cmd; int ret; int i; usb = sdi->conn; hdl = usb->devhdl; wr_cmd.header.dest = DSL_CTL_NVM; wr_cmd.header.offset = addr; wr_cmd.header.size = len; for (i = 0; i < len; i++) wr_cmd.data[i] = *(ctx+i); if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK) { sr_err("Sent DSL_CTL_NVM write command failed."); return SR_ERR; } return SR_OK; } SR_PRIV int dsl_rd_nvm(const struct sr_dev_inst *sdi, unsigned char *ctx, uint16_t addr, uint8_t len) { struct sr_usb_dev_inst *usb; struct libusb_device_handle *hdl; struct ctl_rd_cmd rd_cmd; int ret; usb = sdi->conn; hdl = usb->devhdl; rd_cmd.header.dest = DSL_CTL_NVM; rd_cmd.header.size = len; rd_cmd.header.offset = addr; rd_cmd.data = ctx; if ((ret = command_ctl_rd(hdl, rd_cmd)) != SR_OK) { sr_err("Sent DSL_CTL_NVM read command failed."); return SR_ERR; } return SR_OK; } SR_PRIV int dsl_config_adc(const struct sr_dev_inst *sdi, const struct DSL_adc_config *config) { while(config->dest) { assert((config->cnt > 0) && (config->cnt <= 4)); if (config->delay >0) g_usleep(config->delay*1000); for (int i = 0; i < config->cnt; i++) { dsl_wr_reg(sdi, config->dest, config->byte[i]); } config++; } return SR_OK; } SR_PRIV double dsl_adc_code2fgain(uint8_t code) { double xcode = code & 0x40 ? -(~code & 0x3F) : code & 0x3F; return (1 + xcode / (1 << 13)); } SR_PRIV uint8_t dsl_adc_fgain2code(double gain) { int xratio = (gain - 1) * (1 << 13); uint8_t code = xratio > 63 ? 63 : xratio > 0 ? xratio : xratio < -63 ? 64 : ~(-xratio) & 0x7F; return code; } SR_PRIV int dsl_config_adc_fgain(const struct sr_dev_inst *sdi, uint8_t branch, double gain0, double gain1) { dsl_wr_reg(sdi, ADCC_ADDR, 0x00); dsl_wr_reg(sdi, ADCC_ADDR, dsl_adc_fgain2code(gain0)); dsl_wr_reg(sdi, ADCC_ADDR, dsl_adc_fgain2code(gain1)); dsl_wr_reg(sdi, ADCC_ADDR, 0x34 + branch); return SR_OK; } SR_PRIV int dsl_config_fpga_fgain(const struct sr_dev_inst *sdi) { GSList *l; int ret = SR_OK; for (l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; if (probe->index == 0) { ret = dsl_wr_reg(sdi, ADCC_ADDR+3, (probe->digi_fgain & 0x00FF)); ret = dsl_wr_reg(sdi, ADCC_ADDR+4, (probe->digi_fgain >> 8)); } else if (probe->index == 1) { ret = dsl_wr_reg(sdi, ADCC_ADDR+5, (probe->digi_fgain & 0x00FF)); ret = dsl_wr_reg(sdi, ADCC_ADDR+6, (probe->digi_fgain >>8)); } } return ret; } SR_PRIV int dsl_skew_fpga_fgain(const struct sr_dev_inst *sdi, gboolean comb, double skew[]) { uint8_t fgain_up = 0; uint8_t fgain_dn = 0; GSList *l; gboolean tmp; int ret; for (int i = 0; i <= 7; i++) { tmp = (-skew[i] > 1.6*MAX_ACC_VARIANCE); fgain_up += (tmp << i); } if (comb) { for (l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; if (probe->index == 0) { probe->digi_fgain |= (probe->digi_fgain & 0xFF00) + fgain_up; fgain_up = (probe->digi_fgain & 0x00FF); break; } } ret = dsl_wr_reg(sdi, ADCC_ADDR+3, fgain_up); } else { for (l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; if (probe->index == 0) { probe->digi_fgain |= (fgain_up << 8) + (probe->digi_fgain & 0x00FF); fgain_up = (probe->digi_fgain>>8); break; } } ret = dsl_wr_reg(sdi, ADCC_ADDR+4, fgain_up); } for (int i = 0; i <= 7; i++) { tmp = (skew[i] > 1.6*MAX_ACC_VARIANCE); fgain_dn += (tmp << i); } if (comb) { for (l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; if (probe->index == 1) { probe->digi_fgain |= (probe->digi_fgain & 0xFF00) + fgain_dn; fgain_dn = (probe->digi_fgain & 0x00FF); break; } } ret = dsl_wr_reg(sdi, ADCC_ADDR+5, fgain_dn); } else { for (l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; if (probe->index == 1) { probe->digi_fgain |= (fgain_dn << 8) + (probe->digi_fgain & 0x00FF); fgain_dn = (probe->digi_fgain>>8); break; } } ret = dsl_wr_reg(sdi, ADCC_ADDR+6, fgain_dn); } return ret; } SR_PRIV int dsl_probe_cali_fgain(struct DSL_context *devc, struct sr_channel *probe, double mean, gboolean comb, gboolean reset) { const double UPGAIN = 1.0077; const double DNGAIN = 0.9923; const double MDGAIN = 1; const double ignore_ratio = 2.0; const double ratio = 2.0; double drift; if (reset) { if (comb) { probe->cali_comb_fgain0 = MDGAIN; probe->cali_comb_fgain1 = MDGAIN; probe->cali_comb_fgain2 = MDGAIN; probe->cali_comb_fgain3 = MDGAIN; } else { probe->cali_fgain0 = MDGAIN; probe->cali_fgain1 = MDGAIN; probe->cali_fgain2 = MDGAIN; probe->cali_fgain3 = MDGAIN; } } else { if (comb) { /* * not consist with hmcad1511 datasheet * * byte order | acc_mean | single channel branch (datasheet) * 0 ch0_acc_mean 1 (0->cali_comb_fgain0) * 1 ch1_acc_mean 6 (1->cali_comb_fgain1) * 2 ch0_acc_mean_p1 2 (0->cali_comb_fgain1) * 3 ch1_acc_mean_p1 5 (1->cali_comb_fgain0) * 4 ch0_acc_mean_p2 8 (1->cali_comb_fgain3) * 5 ch1_acc_mean_p2 3 (0->cali_comb_fgain2) * 6 ch0_acc_mean_p3 7 (1->cali_comb_fgain2) * 7 ch1_acc_mean_p3 4 (0->cali_comb_fgain3) */ if (probe->index == 0) { drift = (devc->mstatus.ch0_acc_mean / mean - 1) / ratio; if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio) probe->cali_comb_fgain0 /= (1 + drift); drift = (devc->mstatus.ch0_acc_mean_p1 / mean - 1) / ratio; if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio) probe->cali_comb_fgain1 /= (1 + drift); drift = (devc->mstatus.ch1_acc_mean_p2 / mean - 1) / ratio; if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio) probe->cali_comb_fgain2 /= (1 + drift); drift = (devc->mstatus.ch1_acc_mean_p3 / mean - 1) / ratio; if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio) probe->cali_comb_fgain3 /= (1 + drift); } else { drift = (devc->mstatus.ch1_acc_mean_p1 / mean - 1) / ratio; if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio) probe->cali_comb_fgain0 /= (1 + drift); drift = (devc->mstatus.ch1_acc_mean / mean - 1) / ratio; if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio) probe->cali_comb_fgain1 /= (1 + drift); drift = (devc->mstatus.ch0_acc_mean_p3 / mean - 1) / ratio; if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio) probe->cali_comb_fgain2 /= (1 + drift); drift = (devc->mstatus.ch0_acc_mean_p2 / mean - 1) / ratio; if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio) probe->cali_comb_fgain3 /= (1 + drift); } probe->cali_comb_fgain0 = max(min(probe->cali_comb_fgain0, UPGAIN), DNGAIN); probe->cali_comb_fgain1 = max(min(probe->cali_comb_fgain1, UPGAIN), DNGAIN); probe->cali_comb_fgain2 = max(min(probe->cali_comb_fgain2, UPGAIN), DNGAIN); probe->cali_comb_fgain3 = max(min(probe->cali_comb_fgain3, UPGAIN), DNGAIN); } else { /* * byte order | acc_mean | dual channel branch * 0 ch0_acc_mean 1 (0->cali_fgain0) * 1 ch0_acc_mean_p1 3 (0->cali_fgain2) * 2 ch0_acc_mean_p2 2 (0->cali_fgain1) * 3 ch0_acc_mean_p3 4 (0->cali_fgain3) * 4 ch1_acc_mean 5 (1->cali_fgain0) * 5 ch1_acc_mean_p1 7 (1->cali_fgain2) * 6 ch1_acc_mean_p2 6 (1->cali_fgain1) * 7 ch1_acc_mean_p3 8 (1->cali_fgain3) */ if (probe->index == 0) { drift = (devc->mstatus.ch0_acc_mean / mean - 1) / ratio; if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio) probe->cali_fgain0 /= (1 + drift); drift = (devc->mstatus.ch0_acc_mean_p2 / mean - 1) / ratio; if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio) probe->cali_fgain1 /= (1 + drift); drift = (devc->mstatus.ch0_acc_mean_p1 / mean - 1) / ratio; if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio) probe->cali_fgain2 /= (1 + drift); drift = (devc->mstatus.ch0_acc_mean_p3 / mean - 1) / ratio; if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio) probe->cali_fgain3 /= (1 + drift); } else { drift = (devc->mstatus.ch1_acc_mean / mean - 1) / ratio; if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio) probe->cali_fgain0 /= (1 + drift); drift = (devc->mstatus.ch1_acc_mean_p2 / mean - 1) / ratio; if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio) probe->cali_fgain1 /= (1 + drift); drift = (devc->mstatus.ch1_acc_mean_p1 / mean - 1) / ratio; if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio) probe->cali_fgain2 /= (1 + drift); drift = (devc->mstatus.ch1_acc_mean_p3 / mean - 1) / ratio; if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio) probe->cali_fgain3 /= (1 + drift); } probe->cali_fgain0 = max(min(probe->cali_fgain0, UPGAIN), DNGAIN); probe->cali_fgain1 = max(min(probe->cali_fgain1, UPGAIN), DNGAIN); probe->cali_fgain2 = max(min(probe->cali_fgain2, UPGAIN), DNGAIN); probe->cali_fgain3 = max(min(probe->cali_fgain3, UPGAIN), DNGAIN); } } return SR_OK; } SR_PRIV gboolean dsl_probe_fgain_inrange(struct sr_channel *probe, gboolean comb, double skew[]) { const double UPGAIN = 1.0077; const double DNGAIN = 0.9923; if (comb) { if (probe->index == 0) { if (fabs(skew[0]) > MAX_ACC_VARIANCE && probe->cali_comb_fgain0 > DNGAIN && probe->cali_comb_fgain0 < UPGAIN) return TRUE; if (fabs(skew[1]) > MAX_ACC_VARIANCE && probe->cali_comb_fgain1 > DNGAIN && probe->cali_comb_fgain1 < UPGAIN) return TRUE; if (fabs(skew[6]) > MAX_ACC_VARIANCE && probe->cali_comb_fgain2 > DNGAIN && probe->cali_comb_fgain2 < UPGAIN) return TRUE; if (fabs(skew[7]) > MAX_ACC_VARIANCE && probe->cali_comb_fgain3 > DNGAIN && probe->cali_comb_fgain3 < UPGAIN) return TRUE; } else { if (fabs(skew[5]) > MAX_ACC_VARIANCE && probe->cali_comb_fgain0 > DNGAIN && probe->cali_comb_fgain0 < UPGAIN) return TRUE; if (fabs(skew[4]) > MAX_ACC_VARIANCE && probe->cali_comb_fgain1 > DNGAIN && probe->cali_comb_fgain1 < UPGAIN) return TRUE; if (fabs(skew[3]) > MAX_ACC_VARIANCE && probe->cali_comb_fgain2 > DNGAIN && probe->cali_comb_fgain2 < UPGAIN) return TRUE; if (fabs(skew[2]) > MAX_ACC_VARIANCE && probe->cali_comb_fgain3 > DNGAIN && probe->cali_comb_fgain3 < UPGAIN) return TRUE; } } else { if (probe->index == 0) { if (fabs(skew[0]) > MAX_ACC_VARIANCE && probe->cali_fgain0 > DNGAIN && probe->cali_fgain0 < UPGAIN) return TRUE; if (fabs(skew[2]) > MAX_ACC_VARIANCE && probe->cali_fgain1 > DNGAIN && probe->cali_fgain1 < UPGAIN) return TRUE; if (fabs(skew[1]) > MAX_ACC_VARIANCE && probe->cali_fgain2 > DNGAIN && probe->cali_fgain2 < UPGAIN) return TRUE; if (fabs(skew[3]) > MAX_ACC_VARIANCE && probe->cali_fgain3 > DNGAIN && probe->cali_fgain3 < UPGAIN) return TRUE; } else { if (fabs(skew[4]) > MAX_ACC_VARIANCE && probe->cali_fgain0 > DNGAIN && probe->cali_fgain0 < UPGAIN) return TRUE; if (fabs(skew[6]) > MAX_ACC_VARIANCE && probe->cali_fgain1 > DNGAIN && probe->cali_fgain1 < UPGAIN) return TRUE; if (fabs(skew[5]) > MAX_ACC_VARIANCE && probe->cali_fgain2 > DNGAIN && probe->cali_fgain2 < UPGAIN) return TRUE; if (fabs(skew[7]) > MAX_ACC_VARIANCE && probe->cali_fgain3 > DNGAIN && probe->cali_fgain3 < UPGAIN) return TRUE; } } return FALSE; } SR_PRIV int dsl_rd_probe(const struct sr_dev_inst *sdi, unsigned char *ctx, uint16_t addr, uint8_t len) { struct sr_usb_dev_inst *usb; struct libusb_device_handle *hdl; struct ctl_rd_cmd rd_cmd; int ret; usb = sdi->conn; hdl = usb->devhdl; rd_cmd.header.dest = DSL_CTL_I2C_PROBE; rd_cmd.header.size = len; rd_cmd.header.offset = addr; rd_cmd.data = ctx; if ((ret = command_ctl_rd(hdl, rd_cmd)) != SR_OK) { sr_err("Sent DSL_CTL_NVM read command failed."); return SR_ERR; } return SR_OK; } SR_PRIV int dsl_fpga_arm(const struct sr_dev_inst *sdi) { struct DSL_context *devc; struct sr_usb_dev_inst *usb; struct libusb_device_handle *hdl; struct DSL_setting setting; struct DSL_setting_ext32 setting_ext32; int ret; int transferred; int i; GSList *l; uint32_t tmp_u32; uint64_t tmp_u64; const int ch_num = dsl_en_ch_num(sdi); uint32_t arm_size; struct ctl_wr_cmd wr_cmd; struct ctl_rd_cmd rd_cmd; uint8_t rd_cmd_data; gboolean qutr_trig; gboolean half_trig; devc = sdi->priv; usb = sdi->conn; hdl = usb->devhdl; setting.sync = 0xf5a5f5a5; setting.mode_header = 0x0001; setting.divider_header = 0x0102; setting.count_header = 0x0302; setting.trig_pos_header = 0x0502; setting.trig_glb_header = 0x0701; setting.dso_count_header = 0x0802; setting.ch_en_header = 0x0a02; setting.fgain_header = 0x0c01; setting.trig_header = 0x40a0; setting.end_sync = 0xfa5afa5a; setting_ext32.sync = 0xf5a5f5a5; setting_ext32.trig_header = 0x6060; setting_ext32.align_bytes = 0xffff; setting_ext32.end_sync = 0xfa5afa5a; if (trigger == NULL) { sr_err("%s", "Trigger have'nt inited."); return SR_ERR_CALL_STATUS; } // basic configuration setting.mode = (trigger->trigger_en << TRIG_EN_BIT) + (devc->clock_type << CLK_TYPE_BIT) + (devc->clock_edge << CLK_EDGE_BIT) + (devc->rle_mode << RLE_MODE_BIT) + ((sdi->mode == DSO) << DSO_MODE_BIT) + ((devc->cur_samplerate == devc->profile->dev_caps.half_samplerate) << HALF_MODE_BIT) + ((devc->cur_samplerate == devc->profile->dev_caps.quarter_samplerate) << QUAR_MODE_BIT) + (((sdi->mode == ANALOG) || devc->is_loop) << ANALOG_MODE_BIT) + ((devc->filter == SR_FILTER_1T) << FILTER_BIT) + (devc->instant << INSTANT_BIT) + ((trigger->trigger_mode == SERIAL_TRIGGER) << STRIG_MODE_BIT) + ((devc->stream) << STREAM_MODE_BIT) + ((devc->test_mode == SR_TEST_LOOPBACK) << LPB_TEST_BIT) + ((devc->test_mode == SR_TEST_EXTERNAL) << EXT_TEST_BIT) + ((devc->test_mode == SR_TEST_INTERNAL) << INT_TEST_BIT); // sample rate divider tmp_u32 = (sdi->mode == DSO) ? (uint32_t)ceil(channel_modes[devc->ch_mode].max_samplerate * 1.0 / devc->cur_samplerate / ch_num) : (sdi->mode == ANALOG) ? (uint32_t)ceil(channel_modes[devc->ch_mode].hw_max_samplerate * 1.0 / max(devc->cur_samplerate, channel_modes[devc->ch_mode].hw_min_samplerate)) : (uint32_t)ceil(channel_modes[devc->ch_mode].hw_max_samplerate * 1.0 / devc->cur_samplerate); devc->unit_pitch = ceil(channel_modes[devc->ch_mode].hw_min_samplerate * 1.0 / devc->cur_samplerate); setting.div_h = ((tmp_u32 >= channel_modes[devc->ch_mode].pre_div) ? channel_modes[devc->ch_mode].pre_div - 1U : tmp_u32 - 1U) << 8; tmp_u32 = (uint32_t)ceil(tmp_u32 * 1.0 / channel_modes[devc->ch_mode].pre_div); setting.div_l = tmp_u32 & 0x0000ffff; setting.div_h += tmp_u32 >> 16; // capture counter tmp_u64 = (sdi->mode == DSO) ? (devc->actual_samples / (channel_modes[devc->ch_mode].num / ch_num)) : (devc->actual_samples); tmp_u64 >>= 4; // hardware minimum unit 64 setting.cnt_l = tmp_u64 & 0x0000ffff; setting.cnt_h = tmp_u64 >> 16; tmp_u64 = (sdi->mode == DSO) ? (devc->limit_samples / (channel_modes[devc->ch_mode].num / ch_num)) : (devc->actual_samples); setting.dso_cnt_l = tmp_u64 & 0x0000ffff; setting.dso_cnt_h = tmp_u64 >> 16; // trigger position // must be align to minimum parallel bits tmp_u32 = max((uint32_t)(trigger->trigger_pos / 100.0 * devc->limit_samples), DSLOGIC_ATOMIC_SAMPLES); if (devc->stream) tmp_u32 = min(tmp_u32, dsl_channel_depth(sdi) * 10 / 100); else tmp_u32 = min(tmp_u32, dsl_channel_depth(sdi) * DS_MAX_TRIG_PERCENT / 100); setting.tpos_l = tmp_u32 & DSLOGIC_ATOMIC_MASK; setting.tpos_h = tmp_u32 >> 16; // trigger global settings setting.trig_glb = ((ch_num & 0x1f) << 8) + (trigger->trigger_stages & 0x00ff); // channel enable mapping setting.ch_en_l = 0; setting.ch_en_h = 0; for (l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; if (probe->index < 16) setting.ch_en_l += probe->enabled << probe->index; else setting.ch_en_h += probe->enabled << (probe->index - 16); } // digital fgain for (l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; setting.fgain = probe->digi_fgain; break; } // trigger advanced configuration if (trigger->trigger_mode == SIMPLE_TRIGGER) { qutr_trig = !(devc->profile->dev_caps.feature_caps & CAPS_FEATURE_USB30) && (setting.mode & (1 << QUAR_MODE_BIT)); half_trig = (!(devc->profile->dev_caps.feature_caps & CAPS_FEATURE_USB30) && setting.mode & (1 << HALF_MODE_BIT)) || ((devc->profile->dev_caps.feature_caps & CAPS_FEATURE_USB30) && setting.mode & (1 << QUAR_MODE_BIT)); setting.trig_mask0[0] = ds_trigger_get_mask0(TriggerStages, TriggerProbes-1, 0, qutr_trig, half_trig); setting.trig_mask1[0] = ds_trigger_get_mask1(TriggerStages, TriggerProbes-1, 0, qutr_trig, half_trig); setting.trig_value0[0] = ds_trigger_get_value0(TriggerStages, TriggerProbes-1, 0, qutr_trig, half_trig); setting.trig_value1[0] = ds_trigger_get_value1(TriggerStages, TriggerProbes-1, 0, qutr_trig, half_trig); setting.trig_edge0[0] = ds_trigger_get_edge0(TriggerStages, TriggerProbes-1, 0, qutr_trig, half_trig); setting.trig_edge1[0] = ds_trigger_get_edge1(TriggerStages, TriggerProbes-1, 0, qutr_trig, half_trig); setting_ext32.trig_mask0[0] = ds_trigger_get_mask0(TriggerStages, 2*TriggerProbes-1, TriggerProbes, qutr_trig, half_trig); setting_ext32.trig_mask1[0] = ds_trigger_get_mask1(TriggerStages, 2*TriggerProbes-1, TriggerProbes, qutr_trig, half_trig); setting_ext32.trig_value0[0] = ds_trigger_get_value0(TriggerStages, 2*TriggerProbes-1, TriggerProbes, qutr_trig, half_trig); setting_ext32.trig_value1[0] = ds_trigger_get_value1(TriggerStages, 2*TriggerProbes-1, TriggerProbes, qutr_trig, half_trig); setting_ext32.trig_edge0[0] = ds_trigger_get_edge0(TriggerStages, 2*TriggerProbes-1, TriggerProbes, qutr_trig, half_trig); setting_ext32.trig_edge1[0] = ds_trigger_get_edge1(TriggerStages, 2*TriggerProbes-1, TriggerProbes, qutr_trig, half_trig); setting.trig_logic0[0] = (trigger->trigger_logic[TriggerStages] << 1) + trigger->trigger0_inv[TriggerStages]; setting.trig_logic1[0] = (trigger->trigger_logic[TriggerStages] << 1) + trigger->trigger1_inv[TriggerStages]; setting.trig_count[0] = trigger->trigger0_count[TriggerStages]; for (i = 1; i < NUM_TRIGGER_STAGES; i++) { setting.trig_mask0[i] = 0xffff; setting.trig_mask1[i] = 0xffff; setting.trig_value0[i] = 0; setting.trig_value1[i] = 0; setting.trig_edge0[i] = 0; setting.trig_edge1[i] = 0; setting_ext32.trig_mask0[i] = 0xffff; setting_ext32.trig_mask1[i] = 0xffff; setting_ext32.trig_value0[i] = 0; setting_ext32.trig_value1[i] = 0; setting_ext32.trig_edge0[i] = 0; setting_ext32.trig_edge1[i] = 0; setting.trig_logic0[i] = 2; setting.trig_logic1[i] = 2; setting.trig_count[i] = 0; } } else { for (i = 0; i < NUM_TRIGGER_STAGES; i++) { if (setting.mode & (1 << STRIG_MODE_BIT) && i == STriggerDataStage) { qutr_trig = FALSE; half_trig = FALSE; } else { qutr_trig = !(devc->profile->dev_caps.feature_caps & CAPS_FEATURE_USB30) && (setting.mode & (1 << QUAR_MODE_BIT)); half_trig = (!(devc->profile->dev_caps.feature_caps & CAPS_FEATURE_USB30) && setting.mode & (1 << HALF_MODE_BIT)) || ((devc->profile->dev_caps.feature_caps & CAPS_FEATURE_USB30) && setting.mode & (1 << QUAR_MODE_BIT)); } setting.trig_mask0[i] = ds_trigger_get_mask0(i, TriggerProbes-1 , 0, qutr_trig, half_trig); setting.trig_mask1[i] = ds_trigger_get_mask1(i, TriggerProbes-1, 0, qutr_trig, half_trig); setting.trig_value0[i] = ds_trigger_get_value0(i, TriggerProbes-1, 0, qutr_trig, half_trig); setting.trig_value1[i] = ds_trigger_get_value1(i, TriggerProbes-1, 0, qutr_trig, half_trig); setting.trig_edge0[i] = ds_trigger_get_edge0(i, TriggerProbes-1, 0, qutr_trig, half_trig); setting.trig_edge1[i] = ds_trigger_get_edge1(i, TriggerProbes-1, 0, qutr_trig, half_trig); setting_ext32.trig_mask0[i] = ds_trigger_get_mask0(i, 2*TriggerProbes-1, TriggerProbes, qutr_trig, half_trig); setting_ext32.trig_mask1[i] = ds_trigger_get_mask1(i, 2*TriggerProbes-1, TriggerProbes, qutr_trig, half_trig); setting_ext32.trig_value0[i] = ds_trigger_get_value0(i, 2*TriggerProbes-1, TriggerProbes, qutr_trig, half_trig); setting_ext32.trig_value1[i] = ds_trigger_get_value1(i, 2*TriggerProbes-1, TriggerProbes, qutr_trig, half_trig); setting_ext32.trig_edge0[i] = ds_trigger_get_edge0(i, 2*TriggerProbes-1, TriggerProbes, qutr_trig, half_trig); setting_ext32.trig_edge1[i] = ds_trigger_get_edge1(i, 2*TriggerProbes-1, TriggerProbes, qutr_trig, half_trig); setting.trig_logic0[i] = (trigger->trigger_logic[i] << 1) + trigger->trigger0_inv[i]; setting.trig_logic1[i] = (trigger->trigger_logic[i] << 1) + trigger->trigger1_inv[i]; setting.trig_count[i] = trigger->trigger0_count[i]; } } if (!(devc->profile->usb_speed == LIBUSB_SPEED_SUPER)) { // set GPIF to be wordwide wr_cmd.header.dest = DSL_CTL_WORDWIDE; wr_cmd.header.size = 1; wr_cmd.data[0] = bmWR_WORDWIDE; if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK) { sr_err("Sent DSL_CTL_WORDWIDE command failed."); return SR_ERR; } } // send bulk write control command arm_size = sizeof(struct DSL_setting) / sizeof(uint16_t); wr_cmd.header.dest = DSL_CTL_BULK_WR; wr_cmd.header.size = 3; wr_cmd.data[0] = (uint8_t)arm_size; wr_cmd.data[1] = (uint8_t)(arm_size >> 8); wr_cmd.data[2] = (uint8_t)(arm_size >> 16); if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK) { sr_err("Sent bulk write command of arm FPGA failed."); return SR_ERR; } // check sys_clr dessert rd_cmd.header.dest = DSL_CTL_HW_STATUS; rd_cmd.header.size = 1; rd_cmd_data = 0; rd_cmd.data = &rd_cmd_data; while(1) { if ((ret = command_ctl_rd(hdl, rd_cmd)) != SR_OK) return SR_ERR; if (rd_cmd_data & bmSYS_CLR) break; } // send bulk data // setting ret = libusb_bulk_transfer(hdl, 2 | LIBUSB_ENDPOINT_OUT, (unsigned char *)&setting, sizeof(struct DSL_setting), &transferred, 1000); if (ret < 0) { sr_err("Unable to arm FPGA of dsl device: %s.", libusb_error_name(ret)); return SR_ERR; } else if (transferred != sizeof(struct DSL_setting)) { sr_err("Arm FPGA error: expacted transfer size %d; actually %d", sizeof(struct DSL_setting), transferred); return SR_ERR; } // setting_ext32 if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_LA_CH32) { ret = libusb_bulk_transfer(hdl, 2 | LIBUSB_ENDPOINT_OUT, (unsigned char *)&setting_ext32, sizeof(struct DSL_setting_ext32), &transferred, 1000); if (ret < 0) { sr_err("Unable to arm FPGA(setting_ext32) of dsl device: %s.", libusb_error_name(ret)); return SR_ERR; } else if (transferred != sizeof(struct DSL_setting_ext32)) { sr_err("Arm FPGA(setting_ext32) error: expacted transfer size %d; actually %d", sizeof(struct DSL_setting_ext32), transferred); return SR_ERR; } } // assert INTRDY high (indicate data end) wr_cmd.header.dest = DSL_CTL_INTRDY; wr_cmd.header.size = 1; wr_cmd.data[0] = bmWR_INTRDY; if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK) return SR_ERR; // check FPGA_DONE bit rd_cmd.header.dest = DSL_CTL_HW_STATUS; rd_cmd.header.size = 1; rd_cmd_data = 0; rd_cmd.data = &rd_cmd_data; if ((ret = command_ctl_rd(hdl, rd_cmd)) != SR_OK) return SR_ERR; if (rd_cmd_data & bmGPIF_DONE) { sr_info("Arm FPGA done"); return SR_OK; } else { return SR_ERR; } } SR_PRIV int dsl_fpga_config(struct libusb_device_handle *hdl, const char *filename) { FILE *fw; int chunksize, ret; unsigned char *buf; int transferred; uint64_t filesize; struct ctl_wr_cmd wr_cmd; struct ctl_rd_cmd rd_cmd; uint8_t rd_cmd_data; struct stat f_stat; sr_info("Configure FPGA using \"%s\"", filename); if ((fw = fopen(filename, "rb")) == NULL) { sr_err("Unable to open FPGA bit file %s for reading: %s", filename, strerror(errno)); return SR_ERR; } if (stat(filename, &f_stat) == -1){ fclose(fw); return SR_ERR; } filesize = (uint64_t)f_stat.st_size; if ((buf = g_try_malloc(filesize)) == NULL) { sr_err("FPGA configure buf malloc failed."); fclose(fw); return SR_ERR; } // step0: assert PROG_B low wr_cmd.header.dest = DSL_CTL_PROG_B; wr_cmd.header.size = 1; wr_cmd.data[0] = ~bmWR_PROG_B; if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK){ fclose(fw); g_free(buf); return SR_ERR; } // step1: turn off GREEN/RED led wr_cmd.header.dest = DSL_CTL_LED; wr_cmd.header.size = 1; wr_cmd.data[0] = ~bmLED_GREEN & ~bmLED_RED; if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK){ fclose(fw); g_free(buf); return SR_ERR; } // step2: assert PORG_B high wr_cmd.header.dest = DSL_CTL_PROG_B; wr_cmd.header.size = 1; wr_cmd.data[0] = bmWR_PROG_B; if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK){ fclose(fw); g_free(buf); return SR_ERR; } // step3: wait INIT_B go high rd_cmd.header.dest = DSL_CTL_HW_STATUS; rd_cmd.header.size = 1; rd_cmd_data = 0; rd_cmd.data = &rd_cmd_data; while(1) { if ((ret = command_ctl_rd(hdl, rd_cmd)) != SR_OK){ fclose(fw); g_free(buf); return SR_ERR; } if (rd_cmd_data & bmFPGA_INIT_B) break; } // step4: send config ctl command wr_cmd.header.dest = DSL_CTL_INTRDY; wr_cmd.header.size = 1; wr_cmd.data[0] = (uint8_t)~bmWR_INTRDY; if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK){ fclose(fw); g_free(buf); return SR_ERR; } wr_cmd.header.dest = DSL_CTL_BULK_WR; wr_cmd.header.size = 3; wr_cmd.data[0] = (uint8_t)filesize; wr_cmd.data[1] = (uint8_t)(filesize >> 8); wr_cmd.data[2] = (uint8_t)(filesize >> 16); if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK) { sr_err("Configure FPGA error: send command fpga_config failed."); fclose(fw); g_free(buf); return SR_ERR; } // step5: send config data chunksize = fread(buf, 1, filesize, fw); if (chunksize == EOF){ sr_err("dsl_fpga_config(), f-read returns EOF."); fclose(fw); g_free(buf); return SR_ERR; } if (chunksize == 0){ fclose(fw); g_free(buf); return SR_ERR; } ret = libusb_bulk_transfer(hdl, 2 | LIBUSB_ENDPOINT_OUT, buf, chunksize, &transferred, 1000); fclose(fw); g_free(buf); fw = NULL; buf = NULL; if (ret < 0) { sr_err("Unable to configure FPGA of dsl device: %s.", libusb_error_name(ret)); return SR_ERR; } else if (transferred != chunksize) { sr_err("Configure FPGA error: expacted transfer size %d; actually %d.", chunksize, transferred); return SR_ERR; } // step6: assert INTRDY high (indicate data end) wr_cmd.header.dest = DSL_CTL_INTRDY; wr_cmd.header.size = 1; wr_cmd.data[0] = bmWR_INTRDY; if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK) return SR_ERR; // step7: check GPIF_DONE rd_cmd.header.dest = DSL_CTL_HW_STATUS; rd_cmd.header.size = 1; rd_cmd_data = 0; rd_cmd.data = &rd_cmd_data; while ((ret = command_ctl_rd(hdl, rd_cmd)) == SR_OK) { if (rd_cmd_data & bmGPIF_DONE) { break; } } // step8: assert INTRDY low wr_cmd.header.dest = DSL_CTL_INTRDY; wr_cmd.header.size = 1; wr_cmd.data[0] = (uint8_t)~bmWR_INTRDY; if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK) return SR_ERR; // step9: check FPGA_DONE bit rd_cmd.header.dest = DSL_CTL_HW_STATUS; rd_cmd.header.size = 1; rd_cmd_data = 0; rd_cmd.data = &rd_cmd_data; while ((ret = command_ctl_rd(hdl, rd_cmd)) == SR_OK) { if (rd_cmd_data & bmFPGA_DONE) { // step10: turn on GREEN led wr_cmd.header.dest = DSL_CTL_LED; wr_cmd.data[0] = bmLED_GREEN; if ((ret = command_ctl_wr(hdl, wr_cmd)) == SR_OK) break; } } // step10: recover GPIF to be wordwide wr_cmd.header.dest = DSL_CTL_WORDWIDE; wr_cmd.header.size = 1; wr_cmd.data[0] = bmWR_WORDWIDE; if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK) { sr_err("Sent DSL_CTL_WORDWIDE command failed."); return SR_ERR; } sr_info("FPGA configure done: %d bytes.", chunksize); return SR_OK; } SR_PRIV int dsl_config_get(int id, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel *ch, const struct sr_channel_group *cg) { struct DSL_context *devc = sdi->priv; struct sr_usb_dev_inst *usb; char str[128]; (void)cg; switch (id) { case SR_CONF_CONN: if (!sdi || !sdi->conn) return SR_ERR_ARG; usb = sdi->conn; if (usb->address == 255) /* Device still needs to re-enumerate after firmware * upload, so we don't know its (future) address. */ return SR_ERR; snprintf(str, 128, "%d.%d", usb->bus, usb->address); *data = g_variant_new_string(str); break; case SR_CONF_USB_SPEED: if (!sdi) return SR_ERR; *data = g_variant_new_int32(devc->profile->usb_speed); break; case SR_CONF_USB30_SUPPORT: if (!sdi) return SR_ERR; *data = g_variant_new_boolean((devc->profile->dev_caps.feature_caps & CAPS_FEATURE_USB30) != 0); break; case SR_CONF_LIMIT_SAMPLES: if (!sdi) return SR_ERR; *data = g_variant_new_uint64(devc->limit_samples); break; case SR_CONF_SAMPLERATE: if (!sdi) return SR_ERR; *data = g_variant_new_uint64(devc->cur_samplerate); break; case SR_CONF_RLE_SUPPORT: if (!sdi) return SR_ERR; if ((devc->test_mode != SR_TEST_NONE)) *data = g_variant_new_boolean(FALSE); else *data = g_variant_new_boolean(devc->rle_support); break; case SR_CONF_CLOCK_TYPE: if (!sdi) return SR_ERR; *data = g_variant_new_boolean(devc->clock_type); break; case SR_CONF_CLOCK_EDGE: if (!sdi) return SR_ERR; *data = g_variant_new_boolean(devc->clock_edge); break; case SR_CONF_INSTANT: if (!sdi) return SR_ERR; *data = g_variant_new_boolean(devc->instant); break; case SR_CONF_PROBE_VDIV: if (!ch) return SR_ERR; *data = g_variant_new_uint64(ch->vdiv); break; case SR_CONF_PROBE_FACTOR: if (!ch) return SR_ERR; *data = g_variant_new_uint64(ch->vfactor); break; case SR_CONF_PROBE_OFFSET: if (!ch) return SR_ERR; *data = g_variant_new_uint16(ch->offset); break; case SR_CONF_PROBE_HW_OFFSET: if (!ch) return SR_ERR; *data = g_variant_new_uint16(ch->hw_offset); break; case SR_CONF_TIMEBASE: if (!sdi) return SR_ERR; *data = g_variant_new_uint64(devc->timebase); break; case SR_CONF_MAX_TIMEBASE: if (!sdi) return SR_ERR; *data = g_variant_new_uint64(min(MAX_TIMEBASE, SR_SEC(1) * devc->profile->dev_caps.dso_depth / channel_modes[devc->ch_mode].num / channel_modes[devc->ch_mode].min_samplerate / DS_CONF_DSO_HDIVS)); break; case SR_CONF_MIN_TIMEBASE: if (!sdi) return SR_ERR; *data = g_variant_new_uint64(SR_SEC(1) / channel_modes[devc->ch_mode].hw_max_samplerate); break; case SR_CONF_PROBE_COUPLING: if (!ch) return SR_ERR; *data = g_variant_new_byte(ch->coupling); break; case SR_CONF_PROBE_EN: if (!ch) return SR_ERR; *data = g_variant_new_boolean(ch->enabled); break; case SR_CONF_TRIGGER_SLOPE: if (!sdi) return SR_ERR; *data = g_variant_new_byte(devc->trigger_slope); break; case SR_CONF_TRIGGER_SOURCE: if (!sdi) return SR_ERR; *data = g_variant_new_byte(devc->trigger_source&0x0f); break; case SR_CONF_TRIGGER_CHANNEL: if (!sdi) return SR_ERR; *data = g_variant_new_byte(devc->trigger_source>>4); break; case SR_CONF_TRIGGER_VALUE: if (!ch) return SR_ERR; *data = g_variant_new_byte(ch->trig_value); break; case SR_CONF_HORIZ_TRIGGERPOS: if (!sdi) return SR_ERR; if (sdi->mode == DSO) { *data = g_variant_new_byte(devc->trigger_hrate); } else { *data = g_variant_new_byte(devc->trigger_hpos); } break; case SR_CONF_TRIGGER_HOLDOFF: if (!sdi) return SR_ERR; *data = g_variant_new_uint64(devc->trigger_holdoff); break; case SR_CONF_TRIGGER_MARGIN: if (!sdi) return SR_ERR; *data = g_variant_new_byte(devc->trigger_margin); break; case SR_CONF_HAVE_ZERO: if (!sdi) return SR_ERR; *data = g_variant_new_boolean((devc->profile->dev_caps.feature_caps & CAPS_FEATURE_ZERO) != 0); break; case SR_CONF_ZERO: if (!sdi) return SR_ERR; if (sdi->mode == DSO) *data = g_variant_new_boolean(devc->zero); else *data = g_variant_new_boolean(FALSE); break; case SR_CONF_ZERO_COMB_FGAIN: if (!sdi) return SR_ERR; *data = g_variant_new_boolean(devc->zero_comb_fgain); break; case SR_CONF_ROLL: if (!sdi) return SR_ERR; *data = g_variant_new_boolean(devc->roll); break; case SR_CONF_UNIT_BITS: if (!sdi) return SR_ERR; *data = g_variant_new_byte(channel_modes[devc->ch_mode].unit_bits); break; case SR_CONF_REF_MIN: if (!sdi) return SR_ERR; *data = g_variant_new_uint32(devc->profile->dev_caps.ref_min); break; case SR_CONF_REF_MAX: if (!sdi) return SR_ERR; *data = g_variant_new_uint32(devc->profile->dev_caps.ref_max); break; case SR_CONF_PROBE_MAP_DEFAULT: if (!sdi || !ch) return SR_ERR; *data = g_variant_new_boolean(ch->map_default); break; case SR_CONF_PROBE_MAP_UNIT: if (!sdi || !ch) return SR_ERR; *data = g_variant_new_string(ch->map_unit); break; case SR_CONF_PROBE_MAP_MIN: if (!sdi || !ch) return SR_ERR; *data = g_variant_new_double(ch->map_min); break; case SR_CONF_PROBE_MAP_MAX: if (!sdi || !ch) return SR_ERR; *data = g_variant_new_double(ch->map_max); break; case SR_CONF_ACTUAL_SAMPLES: if (!sdi) return SR_ERR; *data = g_variant_new_uint64(devc->actual_samples); break; case SR_CONF_BANDWIDTH: if (!sdi) return SR_ERR; *data = g_variant_new_boolean((devc->profile->dev_caps.feature_caps & CAPS_FEATURE_20M) != 0); break; case SR_CONF_LA_CH32: if (!sdi) return SR_ERR; *data = g_variant_new_boolean((devc->profile->dev_caps.feature_caps & CAPS_FEATURE_LA_CH32) != 0); break; default: return SR_ERR_NA; } return SR_OK; } SR_PRIV int dsl_config_set(int id, GVariant *data, struct sr_dev_inst *sdi, struct sr_channel *ch, struct sr_channel_group *cg ) { (void)cg; struct DSL_context *devc = sdi->priv; int ret = SR_OK; if (id == SR_CONF_ZERO_COMB) { devc->zero_comb = g_variant_get_boolean(data); } else if (id == SR_CONF_PROBE_MAP_DEFAULT) { ch->map_default = g_variant_get_boolean(data); if (ch->map_default) { ch->map_unit = probeMapUnits[0]; ch->map_min = -(ch->vdiv * ch->vfactor * DS_CONF_DSO_VDIVS / 2000.0); ch->map_max = ch->vdiv * ch->vfactor * DS_CONF_DSO_VDIVS / 2000.0; } } else if (id == SR_CONF_PROBE_MAP_UNIT) { if (ch->map_default) ch->map_unit = probeMapUnits[0]; else ch->map_unit = g_variant_get_string(data, NULL); } else if (id == SR_CONF_PROBE_MAP_MIN) { if (ch->map_default) ch->map_min = -(ch->vdiv * ch->vfactor * DS_CONF_DSO_VDIVS / 2000.0); else ch->map_min = g_variant_get_double(data); } else if (id == SR_CONF_PROBE_MAP_MAX) { if (ch->map_default) ch->map_max = ch->vdiv * ch->vfactor * DS_CONF_DSO_VDIVS / 2000.0; else ch->map_max = g_variant_get_double(data); } else { ret = SR_ERR_NA; } return ret; } SR_PRIV int dsl_config_list(int key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct DSL_context *devc; GVariant *gvar; GVariantBuilder gvb; int i; (void)cg; devc = sdi->priv; switch (key) { case SR_CONF_SAMPLERATE: g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}")); // gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates, // ARRAY_SIZE(samplerates), sizeof(uint64_t)); gvar = g_variant_new_from_data(G_VARIANT_TYPE("at"), devc->profile->dev_caps.samplerates + devc->samplerates_min_index, (devc->samplerates_max_index - devc->samplerates_min_index + 1) * sizeof(uint64_t), TRUE, NULL, NULL); g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar); *data = g_variant_builder_end(&gvb); break; case SR_CONF_PROBE_CONFIGS: *data = g_variant_new_from_data(G_VARIANT_TYPE("ai"), probeOptions, ARRAY_SIZE(probeOptions)*sizeof(int32_t), TRUE, NULL, NULL); break; case SR_CONF_PROBE_VDIV: g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}")); for (i = 0; devc->profile->dev_caps.vdivs[i]; i++); gvar = g_variant_new_from_data(G_VARIANT_TYPE("at"), devc->profile->dev_caps.vdivs, i*sizeof(uint64_t), TRUE, NULL, NULL); g_variant_builder_add(&gvb, "{sv}", "vdivs", gvar); *data = g_variant_builder_end(&gvb); break; case SR_CONF_PROBE_COUPLING: g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}")); gvar = g_variant_new_from_data(G_VARIANT_TYPE("ay"), probeCoupling, ARRAY_SIZE(probeCoupling)*sizeof(uint8_t), TRUE, NULL, NULL); g_variant_builder_add(&gvb, "{sv}", "coupling", gvar); *data = g_variant_builder_end(&gvb); break; case SR_CONF_PROBE_MAP_UNIT: *data = g_variant_new_strv(probeMapUnits, ARRAY_SIZE(probeMapUnits)); break; default: return SR_ERR_NA; } return SR_OK; } SR_PRIV int dsl_dev_open(struct sr_dev_driver *di, struct sr_dev_inst *sdi, gboolean *fpga_done) { struct sr_usb_dev_inst *usb; struct DSL_context *devc; int ret; uint8_t hw_info; struct ctl_rd_cmd rd_cmd; int fdError = 0; devc = sdi->priv; usb = sdi->conn; /* * If the firmware was recently uploaded, no dev_open operation should be called. * Just wait for renumerate -> detach -> attach */ ret = SR_ERR; if (devc->fw_updated > 0) { sr_info("%s: Firmware upload have done."); return SR_ERR; } else { sr_info("%s: Firmware upload was not needed.", __func__); ret = hw_dev_open(di, sdi); } if (ret != SR_OK) { sr_err("%s: Unable to open device.", __func__); return SR_ERR; } assert(usb->devhdl); ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE); if (ret != 0) { switch(ret) { case LIBUSB_ERROR_BUSY: sr_err("%s: Unable to claim USB interface. Another " "program or driver has already claimed it.", __func__); break; case LIBUSB_ERROR_NO_DEVICE: sr_err("%s: Device has been disconnected.", __func__); break; case LIBUSB_ERROR_NOT_FOUND: { sr_err("%s: Unable to claim interface, try again: LIBUSB_ERROR_NOT_FOUND.", __func__); ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE); fdError = 1; } break; default: sr_err("%s: Unable to claim interface, try again: %s.", __func__, libusb_error_name(ret)); break; } if (ret != 0 && fdError == 1){ sr_err("%s: Unable to claim interface, the second time: %s.", __func__, libusb_error_name(ret)); } if (ret != 0){ return SR_ERR; } } rd_cmd.header.dest = DSL_CTL_HW_STATUS; rd_cmd.header.size = 1; hw_info = 0; rd_cmd.data = &hw_info; if ((ret = command_ctl_rd(usb->devhdl, rd_cmd)) != SR_OK) { sr_err("Failed to get hardware infos."); return SR_ERR; } *fpga_done = (hw_info & bmFPGA_DONE) != 0; if (sdi->status == SR_ST_ACTIVE) { if (!(*fpga_done)) { char *fpga_bit; char *res_path = DS_RES_PATH; if (!(fpga_bit = g_try_malloc(strlen(res_path)+strlen(devc->profile->fpga_bit33)+1))) { sr_err("fpag_bit path malloc error!"); return SR_ERR_MALLOC; } strcpy(fpga_bit, res_path); switch(devc->th_level) { case SR_TH_3V3: strcat(fpga_bit, devc->profile->fpga_bit33); break; case SR_TH_5V0: strcat(fpga_bit, devc->profile->fpga_bit50); break; default: return SR_ERR; } ret = dsl_fpga_config(usb->devhdl, fpga_bit); g_free(fpga_bit); if (ret != SR_OK) { sr_err("%s: Configure FPGA failed!", __func__); return SR_ERR; } } else { ret = dsl_wr_reg(sdi, CTR0_ADDR, bmNONE); // dessert clear /* Check HDL version */ ret = dsl_hdl_version(sdi, &hw_info); if ((ret != SR_OK) || (hw_info != DSL_HDL_VERSION)) { sr_err("%s: HDL verison incompatible!", __func__); sdi->status = SR_ST_INCOMPATIBLE; return SR_ERR; } } } // check security uint16_t encryption[SECU_STEPS]; ret = dsl_wr_reg(sdi, CTR0_ADDR, bmNONE); // dessert clear if (dsl_rd_nvm(sdi, (unsigned char *)encryption, SECU_EEP_ADDR, SECU_STEPS*2) != SR_OK) { sr_err("Read EEPROM content failed!"); return SR_ERR; } ret = dsl_secuCheck(sdi, encryption, SECU_STEPS); if (ret != SR_OK) sr_err("Security check failed!"); return SR_OK; } SR_PRIV int dsl_dev_close(struct sr_dev_inst *sdi) { struct sr_usb_dev_inst *usb; usb = sdi->conn; if (usb->devhdl == NULL){ sr_detail("%s", "dsl_dev_close(),libusb_device_handle is null."); return SR_ERR; } sr_info("%s: Closing device %d on %d.%d interface %d.", sdi->driver->name, sdi->index, usb->bus, usb->address, USB_INTERFACE); if (usb->devhdl != NULL){ libusb_release_interface(usb->devhdl, USB_INTERFACE); libusb_close(usb->devhdl); } //sr_info("------------Close the libusb_device_handle:%p, struct:%p", usb->devhdl, usb); usb->devhdl = NULL; sdi->status = SR_ST_INACTIVE; return SR_OK; } SR_PRIV int dsl_dev_acquisition_stop(const struct sr_dev_inst *sdi, void *cb_data) { (void)cb_data; struct DSL_context *devc; struct sr_usb_dev_inst *usb; int ret; struct ctl_wr_cmd wr_cmd; devc = sdi->priv; usb = sdi->conn; if (!devc->abort) { devc->abort = TRUE; dsl_wr_reg(sdi, CTR0_ADDR, bmFORCE_RDY); sr_info("Send command:\"bmFORCE_RDY\""); } else if (devc->status == DSL_FINISH) { /* Stop GPIF acquisition */ wr_cmd.header.dest = DSL_CTL_STOP; wr_cmd.header.size = 0; if ((ret = command_ctl_wr(usb->devhdl, wr_cmd)) != SR_OK) sr_err("%s: Sent acquisition stop command failed!", __func__); else sr_info("%s: Sent acquisition stop command!", __func__); } return SR_OK; } SR_PRIV int dsl_dev_status_get(const struct sr_dev_inst *sdi, struct sr_status *status, gboolean prg) { int ret = SR_ERR; if (sdi) { struct DSL_context *devc; devc = sdi->priv; if (prg || devc->mstatus_valid) { *status = devc->mstatus; ret = SR_OK; } } return ret; } static unsigned int get_single_buffer_time(const struct DSL_context *devc) { if (devc->profile->usb_speed == LIBUSB_SPEED_SUPER) return 10; else return 20; } static unsigned int get_total_buffer_time(const struct DSL_context *devc) { if (devc->profile->usb_speed == LIBUSB_SPEED_SUPER) return 40; else return 100; } static unsigned int to_bytes_per_ms(struct DSL_context *devc) { struct sr_dev_inst *sdi = devc->cb_data; if (sdi->mode == LOGIC) { return ceil(devc->cur_samplerate / 1000.0 * dsl_en_ch_num(sdi) / 8); } else { if (devc->cur_samplerate > SR_MHZ(100)) return SR_MHZ(100) / 1000.0 * dsl_en_ch_num(sdi); else return ceil(max(devc->cur_samplerate, channel_modes[devc->ch_mode].hw_min_samplerate) / 1000.0 * dsl_en_ch_num(sdi)); } } SR_PRIV int dsl_header_size(const struct DSL_context *devc) { int size; if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_USB30) size = SR_KB(1); else size = SR_B(512); return size; } static size_t get_buffer_size(const struct sr_dev_inst *sdi) { size_t s; struct DSL_context *devc; devc = sdi->priv; /* * The buffer should be large enough to hold 10ms of data and * a multiple of 512. */ if (sdi->mode == DSO) { s = (devc->instant) ? devc->profile->dev_caps.dso_depth : devc->actual_samples * dsl_en_ch_num(sdi) + dsl_header_size(devc); } else { s = (devc->stream) ? get_single_buffer_time(devc) * to_bytes_per_ms(devc) : 1024*1024; } if (devc->profile->usb_speed == LIBUSB_SPEED_SUPER) return (s + 1023ULL) & ~1023ULL; else return (s + 511ULL) & ~511ULL; } static unsigned int get_number_of_transfers(const struct sr_dev_inst *sdi) { unsigned int n; struct DSL_context *devc; devc = sdi->priv; #ifndef _WIN32 /* Total buffer size should be able to hold about 100ms of data. */ n = (devc->stream) ? ceil(get_total_buffer_time(devc) * 1.0f * to_bytes_per_ms(devc) / get_buffer_size(sdi)) : 1; #else n = (devc->stream) ? ceil(get_total_buffer_time(devc) * 1.0f * to_bytes_per_ms(devc) / get_buffer_size(sdi)) : (devc->profile->usb_speed == LIBUSB_SPEED_SUPER) ? 16 : 4; #endif if (n > NUM_SIMUL_TRANSFERS) return NUM_SIMUL_TRANSFERS; return n; } SR_PRIV unsigned int dsl_get_timeout(const struct sr_dev_inst *sdi) { size_t total_size; unsigned int timeout; struct DSL_context *devc; devc = sdi->priv; total_size = get_buffer_size(sdi) * get_number_of_transfers(sdi); timeout = total_size / to_bytes_per_ms(devc); if (devc->stream) return timeout + timeout / 4; /* Leave a headroom of 25% percent. */ else return 20; } static void finish_acquisition(struct DSL_context *devc) { struct sr_datafeed_packet packet; sr_info("%s: send SR_DF_END packet", __func__); /* Terminate session. */ packet.type = SR_DF_END; packet.status = SR_PKT_OK; ds_data_forward(devc->cb_data, &packet); if (devc->num_transfers != 0) { devc->num_transfers = 0; g_free(devc->transfers); } devc->status = DSL_FINISH; } static void free_transfer(struct libusb_transfer *transfer) { struct DSL_context *devc; unsigned int i; devc = transfer->user_data; g_free(transfer->buffer); transfer->buffer = NULL; libusb_free_transfer(transfer); for (i = 0; i < devc->num_transfers; i++) { if (devc->transfers[i] == transfer) { devc->transfers[i] = NULL; break; } } if (!devc->is_loop || devc->status != DSL_DATA) devc->submitted_transfers--; if (devc->submitted_transfers == 0) finish_acquisition(devc); } static void resubmit_transfer(struct libusb_transfer *transfer) { int ret; if ((ret = libusb_submit_transfer(transfer)) == LIBUSB_SUCCESS) return; free_transfer(transfer); /* TODO: Stop session? */ sr_err("%s: %s", __func__, libusb_error_name(ret)); } static void get_measure(const struct sr_dev_inst *sdi, uint8_t *buf, uint32_t offset) { uint64_t u64_tmp; struct DSL_context *devc = sdi->priv; GSList *l; devc->mstatus.pkt_id = *((const uint16_t*)buf + offset); devc->mstatus.vlen = *((const uint32_t*)buf + offset/2 + 2/2) & 0x0fffffff; devc->mstatus.stream_mode = (*((const uint32_t*)buf + offset/2 + 2/2) & 0x80000000) != 0; devc->mstatus.measure_valid = *((const uint32_t*)buf + offset/2 + 2/2) & 0x40000000; devc->mstatus.sample_divider = *((const uint32_t*)buf + offset/2 + 4/2) & 0x00ffffff; devc->mstatus.sample_divider_tog = (*((const uint32_t*)buf + offset/2 + 4/2) & 0x80000000) != 0; devc->mstatus.trig_flag = (*((const uint32_t*)buf + offset/2 + 4/2) & 0x40000000) != 0; devc->mstatus.trig_ch = (*((const uint8_t*)buf + offset*2 + 5*2+1) & 0x38) >> 3; devc->mstatus.trig_offset = *((const uint8_t*)buf + offset*2 + 5*2+1) & 0x07; devc->mstatus.ch0_max = *((const uint8_t*)buf + offset*2 + 33*2); devc->mstatus.ch0_min = *((const uint8_t*)buf + offset*2 + 33*2+1); devc->mstatus.ch0_cyc_cnt = *((const uint32_t*)buf + offset/2 + 34/2); devc->mstatus.ch0_cyc_tlen = *((const uint32_t*)buf + offset/2 + 36/2); devc->mstatus.ch0_cyc_plen = *((const uint32_t*)buf + offset/2 + 38/2); devc->mstatus.ch0_cyc_llen = *((const uint32_t*)buf + offset/2 + 40/2); devc->mstatus.ch0_level_valid = (*((const uint32_t*)buf + offset/2 + 42/2) & 0x00008000) != 0; devc->mstatus.ch0_plevel = (*((const uint32_t*)buf + offset/2 + 42/2) & 0x00004000) != 0; devc->mstatus.ch0_high_level = *((const uint8_t*)buf + offset*2 + 43*2); devc->mstatus.ch0_low_level = *((const uint8_t*)buf + offset*2 + 43*2+1); devc->mstatus.ch0_cyc_rlen = *((const uint32_t*)buf + offset/2 + 44/2); devc->mstatus.ch0_cyc_flen = *((const uint32_t*)buf + offset/2 + 46/2); devc->mstatus.ch0_acc_square = *((const uint64_t*)buf + offset/4 + 48/4) & 0x0000FFFFFFFFFFFF; devc->mstatus.ch0_acc_mean = *((const uint32_t*)buf + offset/2 + 52/2); devc->mstatus.ch0_acc_mean_p1 = *((const uint32_t*)buf + offset/2 + 54/2); devc->mstatus.ch0_acc_mean_p2 = *((const uint32_t*)buf + offset/2 + 56/2); devc->mstatus.ch0_acc_mean_p3 = *((const uint32_t*)buf + offset/2 + 58/2); devc->mstatus.ch1_max = *((const uint8_t*)buf + offset*2 + 65*2); devc->mstatus.ch1_min = *((const uint8_t*)buf + offset*2 + 65*2+1); devc->mstatus.ch1_cyc_cnt = *((const uint32_t*)buf + offset/2 + 66/2); devc->mstatus.ch1_cyc_tlen = *((const uint32_t*)buf + offset/2 + 68/2); devc->mstatus.ch1_cyc_plen = *((const uint32_t*)buf + offset/2 + 70/2); devc->mstatus.ch1_cyc_llen = *((const uint32_t*)buf + offset/2 + 72/2); devc->mstatus.ch1_level_valid = (*((const uint32_t*)buf + offset/2 + 74/2) & 0x00008000) != 0; devc->mstatus.ch1_plevel = (*((const uint32_t*)buf + offset/2 + 74/2) & 0x00004000) != 0; devc->mstatus.ch1_high_level = *((const uint8_t*)buf + offset*2 + 75*2); devc->mstatus.ch1_low_level = *((const uint8_t*)buf + offset*2 + 75*2+1); devc->mstatus.ch1_cyc_rlen = *((const uint32_t*)buf + offset/2 + 76/2); devc->mstatus.ch1_cyc_flen = *((const uint32_t*)buf + offset/2 + 78/2); devc->mstatus.ch1_acc_square = *((const uint64_t*)buf + offset/4 + 80/4) & 0x0000FFFFFFFFFFFF; devc->mstatus.ch1_acc_mean = *((const uint32_t*)buf + offset/2 + 84/2); devc->mstatus.ch1_acc_mean_p1 = *((const uint32_t*)buf + offset/2 + 86/2); devc->mstatus.ch1_acc_mean_p2 = *((const uint32_t*)buf + offset/2 + 88/2); devc->mstatus.ch1_acc_mean_p3 = *((const uint32_t*)buf + offset/2 + 90/2); if (!devc->zero_branch) { devc->mstatus.ch0_acc_mean += devc->mstatus.ch0_acc_mean_p1; devc->mstatus.ch0_acc_mean += devc->mstatus.ch0_acc_mean_p2; devc->mstatus.ch0_acc_mean += devc->mstatus.ch0_acc_mean_p3; devc->mstatus.ch1_acc_mean += devc->mstatus.ch1_acc_mean_p1; devc->mstatus.ch1_acc_mean += devc->mstatus.ch1_acc_mean_p2; devc->mstatus.ch1_acc_mean += devc->mstatus.ch1_acc_mean_p3; if (1 == dsl_en_ch_num(sdi)) { u64_tmp = devc->mstatus.ch0_acc_square + devc->mstatus.ch1_acc_square; devc->mstatus.ch0_acc_square = u64_tmp; devc->mstatus.ch1_acc_square = u64_tmp; u64_tmp = devc->mstatus.ch0_acc_mean + devc->mstatus.ch1_acc_mean; devc->mstatus.ch0_acc_mean = u64_tmp; devc->mstatus.ch1_acc_mean = u64_tmp; } } devc->mstatus_valid = FALSE; const uint32_t divider = devc->zero ? 0x1 : (uint32_t)ceil(channel_modes[devc->ch_mode].max_samplerate * 1.0 / devc->cur_samplerate / dsl_en_ch_num(sdi)); if (devc->instant) { devc->mstatus_valid = (devc->mstatus.pkt_id == DSO_PKTID); } else if (devc->mstatus.pkt_id == DSO_PKTID && devc->mstatus.sample_divider == divider && devc->mstatus.vlen != 0) { devc->mstatus_valid = TRUE; } if (devc->mstatus_valid) { for (l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; probe->hw_offset = *((const uint8_t*)buf + offset*2 + (51 + 32*probe->index)*2); } } } static void receive_transfer(struct libusb_transfer *transfer) { struct sr_datafeed_packet packet; struct sr_datafeed_logic logic; struct sr_datafeed_dso dso; struct sr_datafeed_analog analog; uint64_t cur_sample_count = 0; uint8_t *cur_buf = transfer->buffer; struct DSL_context *devc = transfer->user_data; struct sr_dev_inst *sdi = devc->cb_data; if (devc->status == DSL_START) devc->status = DSL_DATA; if (devc->abort) devc->status = DSL_STOP; sr_detail("%llu: receive_transfer(): status %d; timeout %d; received %d bytes.", g_get_monotonic_time(), transfer->status, transfer->timeout, transfer->actual_length); switch (transfer->status) { case LIBUSB_TRANSFER_COMPLETED: case LIBUSB_TRANSFER_TIMED_OUT: /* We may have received some data though. */ break; default: devc->status = DSL_ERROR; break; } packet.status = SR_PKT_OK; if (devc->status == DSL_DATA && transfer->actual_length != 0) { /* Send the incoming transfer to the session bus. */ // check packet type if (sdi->mode == LOGIC) { packet.type = SR_DF_LOGIC; packet.payload = &logic; cur_sample_count = transfer->actual_length * 8 / dsl_en_ch_num(sdi) ; logic.length = transfer->actual_length; logic.format = LA_CROSS_DATA; logic.data_error = 0; logic.data = cur_buf; } else if (sdi->mode == DSO) { if (!devc->instant) { const uint32_t offset = devc->actual_samples / (channel_modes[devc->ch_mode].num/dsl_en_ch_num(sdi)); get_measure(sdi, cur_buf, offset); } else { devc->mstatus.vlen = get_buffer_size(sdi) / channel_modes[devc->ch_mode].num; devc->mstatus.trig_offset = 0; devc->mstatus.sample_divider_tog = FALSE; devc->mstatus_valid = TRUE; } if (devc->mstatus_valid) { devc->roll = (devc->mstatus.stream_mode != 0); packet.type = SR_DF_DSO; packet.payload = &dso; dso.probes = sdi->channels; cur_sample_count = min(channel_modes[devc->ch_mode].num * devc->mstatus.vlen / dsl_en_ch_num(sdi), devc->limit_samples); dso.num_samples = cur_sample_count; dso.mq = SR_MQ_VOLTAGE; dso.unit = SR_UNIT_VOLT; dso.mqflags = SR_MQFLAG_AC; dso.samplerate_tog = (devc->mstatus.sample_divider_tog != 0); dso.trig_flag = (devc->mstatus.trig_flag != 0); dso.trig_ch = devc->mstatus.trig_ch; dso.data = cur_buf + (devc->zero ? 0 : 2*devc->mstatus.trig_offset); } else { packet.type = SR_DF_DSO; packet.status = SR_PKT_DATA_ERROR; } } else if (sdi->mode == ANALOG) { packet.type = SR_DF_ANALOG; packet.payload = &analog; analog.probes = sdi->channels; cur_sample_count = transfer->actual_length / (((channel_modes[devc->ch_mode].unit_bits + 7) / 8) * g_slist_length(analog.probes)); analog.num_samples = cur_sample_count; analog.unit_bits = channel_modes[devc->ch_mode].unit_bits;; analog.unit_pitch = devc->unit_pitch; analog.mq = SR_MQ_VOLTAGE; analog.unit = SR_UNIT_VOLT; analog.mqflags = SR_MQFLAG_AC; analog.data = cur_buf; } if ((devc->limit_samples && devc->num_bytes < devc->actual_bytes) || sdi->mode != LOGIC ) { const uint64_t remain_length= devc->actual_bytes - devc->num_bytes; logic.length = min(logic.length, remain_length); /* send data to session bus */ if (packet.status == SR_PKT_OK) ds_data_forward(sdi, &packet); } devc->num_samples += cur_sample_count; devc->num_bytes += logic.length; if (sdi->mode == LOGIC && devc->limit_samples && devc->num_bytes >= devc->actual_bytes) { devc->status = DSL_STOP; } else if ((sdi->mode == DSO && devc->instant) && devc->limit_samples && devc->num_samples >= devc->actual_samples) { int over_bytes = (devc->num_samples - devc->actual_samples) * dsl_en_ch_num(sdi); if (over_bytes >= devc->instant_tail_bytes) { const uint32_t offset = (transfer->actual_length - over_bytes) / 2; get_measure(sdi, cur_buf, offset); devc->status = DSL_STOP; } else { } } } if (devc->status == DSL_DATA) resubmit_transfer(transfer); else free_transfer(transfer); devc->trf_completed = 1; } static void receive_header(struct libusb_transfer *transfer) { struct DSL_context *devc; struct sr_datafeed_packet packet; struct ds_trigger_pos *trigger_pos; const struct sr_dev_inst *sdi; uint64_t remain_cnt; packet.status = SR_PKT_OK; devc = transfer->user_data; sdi = devc->cb_data; trigger_pos = (struct ds_trigger_pos *)transfer->buffer; if (devc->status != DSL_ABORT) devc->status = DSL_ERROR; if (!devc->abort && transfer->status == LIBUSB_TRANSFER_COMPLETED && trigger_pos->check_id == TRIG_CHECKID) { sr_info("%llu: receive_trigger_pos(): status %d; timeout %d; received %d bytes.", g_get_monotonic_time(), transfer->status, transfer->timeout, transfer->actual_length); remain_cnt = trigger_pos->remain_cnt_h; remain_cnt = (remain_cnt << 32) + trigger_pos->remain_cnt_l; if (transfer->actual_length == dsl_header_size(devc)) { if (sdi->mode != LOGIC || devc->stream || remain_cnt < devc->limit_samples) { if (sdi->mode == LOGIC && (!devc->stream || (devc->status == DSL_ABORT))) { devc->actual_samples = (devc->limit_samples - remain_cnt) & ~SAMPLES_ALIGN; devc->actual_bytes = devc->actual_samples / DSLOGIC_ATOMIC_SAMPLES * dsl_en_ch_num(sdi) * DSLOGIC_ATOMIC_SIZE; devc->actual_samples = devc->actual_bytes / dsl_en_ch_num(sdi) * 8; } packet.type = SR_DF_TRIGGER; packet.payload = trigger_pos; ds_data_forward(sdi, &packet); devc->status = DSL_DATA; } } } else if (!devc->abort) { sr_err("%s: trigger packet data error.", __func__); packet.type = SR_DF_TRIGGER; packet.payload = trigger_pos; packet.status = SR_PKT_DATA_ERROR; ds_data_forward(sdi, &packet); } free_transfer(transfer); } SR_PRIV int dsl_start_transfers(const struct sr_dev_inst *sdi) { struct DSL_context *devc; struct sr_usb_dev_inst *usb; struct libusb_transfer *transfer; unsigned int i, num_transfers; int ret; unsigned char *buf; size_t size; struct ds_trigger_pos *trigger_pos; devc = sdi->priv; usb = sdi->conn; num_transfers = get_number_of_transfers(sdi); size = get_buffer_size(sdi); /* trigger packet transfer */ if (!(trigger_pos = g_try_malloc0(dsl_header_size(devc)))) { sr_err("%s: USB trigger_pos buffer malloc failed.", __func__); return SR_ERR_MALLOC; } devc->transfers = g_try_malloc0(sizeof(*devc->transfers) * (num_transfers + 1)); if (!devc->transfers) { sr_err("%s: USB transfer malloc failed.", __func__); return SR_ERR_MALLOC; } transfer = libusb_alloc_transfer(0); libusb_fill_bulk_transfer(transfer, usb->devhdl, 6 | LIBUSB_ENDPOINT_IN, (unsigned char *)trigger_pos, dsl_header_size(devc), (libusb_transfer_cb_fn)receive_header, devc, 0); if ((ret = libusb_submit_transfer(transfer)) != 0) { sr_err("%s: Failed to submit trigger_pos transfer: %s.", __func__, libusb_error_name(ret)); libusb_free_transfer(transfer); g_free(trigger_pos); devc->status = DSL_ERROR; return SR_ERR; } else { devc->num_transfers++; devc->transfers[0] = transfer; devc->submitted_transfers++; } /* data packet transfer */ for (i = 1; i <= num_transfers; i++) { if (!(buf = g_try_malloc(size))) { sr_err("%s: USB transfer buffer malloc failed.", __func__); return SR_ERR_MALLOC; } transfer = libusb_alloc_transfer(0); libusb_fill_bulk_transfer(transfer, usb->devhdl, 6 | LIBUSB_ENDPOINT_IN, buf, size, (libusb_transfer_cb_fn)receive_transfer, devc, 0); if ((ret = libusb_submit_transfer(transfer)) != 0) { sr_err("%s: Failed to submit transfer: %s.", __func__, libusb_error_name(ret)); libusb_free_transfer(transfer); g_free(buf); devc->status = DSL_ERROR; devc->abort = TRUE; return SR_ERR; } devc->transfers[i] = transfer; devc->submitted_transfers++; devc->num_transfers++; } return SR_OK; } SR_PRIV int dsl_destroy_device(const struct sr_dev_inst *sdi) { assert(sdi); struct sr_dev_driver *driver; driver = sdi->driver; if (driver->dev_close){ driver->dev_close(sdi); } if (sdi->conn) { if (sdi->dev_type == DEV_TYPE_USB) sr_usb_dev_inst_free(sdi->conn); else if (sdi->dev_type == DEV_TYPE_SERIAL) sr_serial_dev_inst_free(sdi->conn); } sr_dev_inst_free(sdi); } SR_PRIV int sr_option_value_to_code(int config_id, const char *value, const struct lang_text_map_item *array, int num) { int i; struct lang_text_map_item *p; assert(array); assert(value); p = array; for (i = 0; i < num; i++){ if (p->config_id == config_id){ if (strcmp(value, p->en_name) == 0){ return p->id; } if (p->cn_name != NULL && strcmp(value, p->cn_name) == 0){ return p->id; } } p++; } sr_err("Unkown lang text value:%s,config id:%d", value, config_id); return -1; } /* * security low level operations */ SR_PRIV int dsl_secuReset(const struct sr_dev_inst *sdi) { if (dsl_wr_reg(sdi, SEC_CTRL_ADDR, 0) != SR_OK) goto Err; if (dsl_wr_reg(sdi, SEC_CTRL_ADDR + 1, 0) != SR_OK) goto Err; g_usleep(10*1000); if (dsl_wr_reg(sdi, SEC_CTRL_ADDR, 1) != SR_OK) goto Err; if (dsl_wr_reg(sdi, SEC_CTRL_ADDR + 1, 0) != SR_OK) goto Err; return SR_OK; Err: sr_err("Sent dsl_wr_reg(SEC_XXX_ADDR) command failed."); return SR_ERR; } SR_PRIV int dsl_secuWrite(const struct sr_dev_inst *sdi, uint16_t cmd, uint16_t din) { if (dsl_wr_reg(sdi, SEC_DATA_ADDR, din) != SR_OK) goto Err; if (dsl_wr_reg(sdi, SEC_DATA_ADDR + 1, (din >> 8)) != SR_OK) goto Err; if (dsl_wr_reg(sdi, SEC_CTRL_ADDR, cmd) != SR_OK) goto Err; if (dsl_wr_reg(sdi, SEC_CTRL_ADDR + 1, (cmd >> 8)) != SR_OK) goto Err; return SR_OK; Err: sr_err("Sent dsl_wr_reg(SEC_XXX_ADDR) command failed."); return SR_ERR; } SR_PRIV gboolean dsl_isSecuReady(const struct sr_dev_inst *sdi) { uint8_t temp; if (dsl_rd_reg(sdi, SEC_CTRL_ADDR, &temp) != SR_OK) goto Err; if (temp & bmSECU_READY) return TRUE; else return FALSE; Err: sr_err("Sent dsl_rd_reg(SEC_XXX_ADDR) command failed."); return FALSE; } SR_PRIV gboolean dsl_isSecuPass(const struct sr_dev_inst *sdi) { uint8_t temp; if (dsl_rd_reg(sdi, SEC_CTRL_ADDR, &temp) != SR_OK) goto Err; if (temp & bmSECU_PASS) return TRUE; else return FALSE; Err: sr_err("Sent dsl_rd_reg(SEC_XXX_ADDR) command failed."); return FALSE; } SR_PRIV uint16_t dsl_secuRead(const struct sr_dev_inst *sdi) { uint16_t sec; if (dsl_rd_reg(sdi, SEC_DATA_ADDR + 1, (uint8_t*)&sec) != SR_OK) goto Err; sec <<= 8; if (dsl_rd_reg(sdi, SEC_DATA_ADDR, (uint8_t*)&sec) != SR_OK) goto Err; return sec; Err: sr_err("Sent dsl_rd_reg(SEC_XXX_ADDR) command failed."); return 0; } /* * security API interface */ SR_PRIV int dsl_secuCheck(const struct sr_dev_inst *sdi, uint16_t* encryption, int steps) { int tryCnt = SECU_TRY_CNT; dsl_secuReset(sdi); if (dsl_isSecuPass(sdi)) return SR_ERR; dsl_secuWrite(sdi, SECU_START, 0); while(steps--) { if (dsl_isSecuPass(sdi)) return SR_ERR; while(!dsl_isSecuReady(sdi)) { if (tryCnt-- == 0) { sr_err("Get security ready failed."); return SR_ERR; } } if (dsl_secuRead(sdi) != 0) return SR_ERR; dsl_secuWrite(sdi, SECU_CHECK, encryption[steps]); } return SR_OK; }