## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2020 Analog Devices Inc. ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see . ## import sigrokdecode as srd slave_address = { 0x00: ['GND', 'GND', 'GND', 'G'], 0x01: ['FLOAT', 'FLOAT', 'FLOAT', 'F'], 0x02: ['VCC', 'VCC', 'VCC', 'V'], } commands = { 0x00: ['Write Input Register', 'Write In Reg', 'Wr In Reg', 'WIR'], 0x01: ['Update DAC', 'Update', 'U'], 0x03: ['Write and Power Up DAC', 'Write & Power Up', 'W&PU'], 0x04: ['Power Down DAC', 'Power Down', 'PD'], 0x0F: ['No Operation', 'No Op', 'NO'], } addresses = { 0x00: ['DAC A', 'A'], 0x01: ['DAC B', 'B'], 0x0F: ['All DACs', 'All'], } input_voltage_format = ['%.6fV', '%.2fV'] class Decoder(srd.Decoder): api_version = 3 id = 'ltc26x7' name = 'LTC26x7' longname = 'Linear Technology LTC26x7' desc = 'Linear Technology LTC26x7 16-/14-/12-bit rail-to-rail DACs.' license = 'gplv2+' inputs = ['i2c'] outputs = [] tags = ['IC', 'Analog/digital'] options = ( {'id': 'chip', 'desc': 'Chip', 'default': 'ltc2607', 'values': ('ltc2607', 'ltc2617', 'ltc2627'), 'idn':'dec_ltc26x7_opt_chip'}, {'id': 'vref', 'desc': 'Reference voltage (V)', 'default': 1.5, 'idn':'dec_ltc26x7_opt_vref'}, ) annotations = ( ('slave_addr', 'Slave address'), ('command', 'Command'), ('address', 'Address'), ('dac_a_voltage', 'DAC A voltage'), ('dac_b_voltage', 'DAC B voltage'), ) annotation_rows = ( ('addr_cmd', 'Address/command', (0, 1, 2)), ('dac_a_voltages', 'DAC A voltages', (3,)), ('dac_b_voltages', 'DAC B voltages', (4,)), ) def __init__(self): self.reset() def reset(self): self.state = 'IDLE' self.ss = -1 self.data = 0x00 self.dac_val = 0 def start(self): self.out_ann = self.register(srd.OUTPUT_ANN) def convert_ternary_str(self, n): if n == 0: return [0, 0, 0] nums = [] while n: n, r = divmod(n, 3) nums.append(r) while len(nums) < 3: nums.append(0) return list(reversed(nums)) def handle_slave_addr(self, data): if data == 0x73: ann = ['Global address', 'Global addr', 'Glob addr', 'GA'] self.put(self.ss, self.es, self.out_ann, [0, ann]) return ann = ['CA2=%s CA1=%s CA0=%s', '2=%s 1=%s 0=%s', '%s %s %s', '%s %s %s'] addr = 0 for i in range(7): if i in [2, 3]: continue offset = i if i > 3: offset -= 2 mask = 1 << i if data & mask: mask = 1 << offset addr |= mask addr -= 0x04 ternary_values = self.convert_ternary_str(addr) for i in range(len(ann)): ann[i] = ann[i] % (slave_address[ternary_values[0]][i], slave_address[ternary_values[1]][i], slave_address[ternary_values[2]][i]) self.put(self.ss, self.es, self.out_ann, [0, ann]) def handle_cmd_addr(self, data): cmd_val = (data >> 4) & 0x0F self.dac_val = (data & 0x0F) sm = (self.ss + self.es) // 2 self.put(self.ss, sm, self.out_ann, [1, commands[cmd_val]]) self.put(sm, self.es, self.out_ann, [2, addresses[self.dac_val]]) def handle_data(self, data): self.data = (self.data << 8) & 0xFF00 self.data += data if self.options['chip'] == 'ltc2617': self.data = (self.data >> 2) self.data = (self.options['vref'] * self.data) / 0x3FFF elif self.options['chip'] == 'ltc2627': self.data = (self.data >> 4) self.data = (self.options['vref'] * self.data) / 0x0FFF else: self.data = (self.options['vref'] * self.data) / 0xFFFF ann = [] for format in input_voltage_format: ann.append(format % self.data) self.data = 0 if self.dac_val == 0x0F: # All DACs (A and B). self.put(self.ss, self.es, self.out_ann, [3 + 0, ann]) self.put(self.ss, self.es, self.out_ann, [3 + 1, ann]) else: self.put(self.ss, self.es, self.out_ann, [3 + self.dac_val, ann]) def decode(self, ss, es, data): cmd, databyte = data self.es = es # State machine. if self.state == 'IDLE': # Wait for an I²C START condition. if cmd != 'START': return self.state = 'GET SLAVE ADDR' elif self.state == 'GET SLAVE ADDR': # Wait for an address write operation. if cmd != 'ADDRESS WRITE': return self.ss = ss self.handle_slave_addr(databyte) self.ss = -1 self.state = 'GET CMD ADDR' elif self.state == 'GET CMD ADDR': if cmd != 'DATA WRITE': return self.ss = ss self.handle_cmd_addr(databyte) self.ss = -1 self.state = 'WRITE DATA' elif self.state == 'WRITE DATA': if cmd == 'DATA WRITE': if self.ss == -1: self.ss = ss self.data = databyte return self.handle_data(databyte) self.ss = -1 elif cmd == 'STOP': self.state = 'IDLE' else: return