## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2020 Analog Devices Inc. ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see . ## import sigrokdecode as srd from common.srdhelper import SrdIntEnum from .lists import * WORD_SIZE = 8 class Channel(): MISO, MOSI = range(2) class Operation(): READ, WRITE = range(2) class BitType(): ENABLE = {1: ['Enable %s', 'En %s', '%s '], 0: ['Disable %s', 'Dis %s', '!%s '],} SOURCE = {1: ['Involve %s', 'Inv %s', '%s'], 0: ['Not involve %s', 'Not inv %s', '!%s'],} INTERRUPT = {1: ['INT2 %s', 'I2: %s '], 0: ['INT1 %s', 'I1:%s '],} AC_DC = {1: ['%s ac', 'ac'], 0: ['%s dc', 'dc'],} UNUSED = {1: ['N/A'], 0: ['N/A'],} OTHER = 0 class Bit(): def __init__(self, name, type, values=None): self.value = 0 self.name = name self.type = type self.values = values def set_value(self, value): self.value = value def get_bit_annotation(self): if self.type == BitType.OTHER: annotation = self.values[self.value].copy() else: annotation = self.type[self.value].copy() for index in range(len(annotation)): if '%s' in annotation[index]: annotation[index] = str(annotation[index] % self.name) return annotation Ann = SrdIntEnum.from_str('Ann', 'READ WRITE MB REG_ADDRESS REG_DATA WARNING') St = SrdIntEnum.from_str('St', 'IDLE ADDRESS_BYTE DATA') class Decoder(srd.Decoder): api_version = 3 id = 'adxl345' name = 'ADXL345' longname = 'Analog Devices ADXL345' desc = 'Analog Devices ADXL345 3-axis accelerometer.' license = 'gplv2+' inputs = ['spi'] outputs = [] tags = ['IC', 'Sensor'] annotations = ( ('read', 'Read'), ('write', 'Write'), ('mb', 'Multiple bytes'), ('reg-address', 'Register address'), ('reg-data', 'Register data'), ('warning', 'Warning'), ) annotation_rows = ( ('reg', 'Registers', (Ann.READ, Ann.WRITE, Ann.MB, Ann.REG_ADDRESS)), ('data', 'Data', (Ann.REG_DATA, Ann.WARNING)), ) def __init__(self): self.reset() def reset(self): self.mosi, self.miso = [], [] self.reg = [] self.operation = None self.address = 0 self.data = -1 self.state = St.IDLE self.ss, self.es = -1, -1 self.samples_per_bit = 0 def start(self): self.out_ann = self.register(srd.OUTPUT_ANN) def putx(self, data): self.put(self.ss, self.es, self.out_ann, data) def putb(self, data, index): start = self.ss + (self.samples_per_bit * index) self.put(start, start + self.samples_per_bit, self.out_ann, data) def putbs(self, data, start_index, stop_index): start_index = self.reverse_bit_index(start_index, WORD_SIZE) stop_index = self.reverse_bit_index(stop_index, WORD_SIZE) start = self.ss + (self.samples_per_bit * start_index) stop = start + (self.samples_per_bit * (stop_index - start_index + 1)) self.put(start, stop, self.out_ann, data) def handle_reg_with_scaling_factor(self, data, factor, name, unit, error_msg): if data == 0 and error_msg is not None: self.putx([Ann.WARNING, error_msg]) else: result = (data * factor) / 1000 self.putx([Ann.REG_DATA, ['%s: %f %s' % (name, result, unit), '%f %s' % (result, unit)]]) def handle_reg_bit_msg(self, bit, index, en_msg, dis_msg): self.putb([Ann.REG_DATA, [en_msg if bit else dis_msg]], index) def interpret_bits(self, data, bits): bits_values = [] for offset in range(8): bits_values.insert(0, (data & (1 << offset)) >> offset) for index in range(len(bits)): if bits[index] is None: continue bit = bits[index] bit.set_value(bits_values[index]) self.putb([Ann.REG_DATA, bit.get_bit_annotation()], index) return list(reversed(bits_values)) def reverse_bit_index(self, index, word_size): return word_size - index - 1 def get_decimal_number(self, bits, start_index, stop_index): number = 0 interval = range(start_index, stop_index + 1, 1) for index, offset in zip(interval, range(len(interval))): bit = bits[index] number = number | (bit << offset) return number def get_axis_value(self, data, axis): if self.data != - 1: data <<= 8 self.data |= data self.put(self.start_index, self.es, self.out_ann, [Ann.REG_DATA, ['%s: 0x%04X' % (axis, self.data), str(data)]]) self.data = -1 else: self.putx([Ann.REG_DATA, [str(data)]]) def handle_reg_0x1d(self, data): self.handle_reg_with_scaling_factor(data, 62.5, 'Threshold', 'g', error_messages['undesirable']) def handle_reg_0x1e(self, data): self.handle_reg_with_scaling_factor(data, 15.6, 'OFSX', 'g', None) def handle_reg_0x1f(self, data): self.handle_reg_with_scaling_factor(data, 15.6, 'OFSY', 'g', None) def handle_reg_0x20(self, data): self.handle_reg_with_scaling_factor(data, 15.6, 'OFSZ', 'g', None) def handle_reg_0x21(self, data): self.handle_reg_with_scaling_factor(data, 0.625, 'Duration', 's', error_messages['dis_single_double']) def handle_reg_0x22(self, data): self.handle_reg_with_scaling_factor(data, 1.25, 'Latency', 's', error_messages['dis_double']) def handle_reg_0x23(self, data): self.handle_reg_with_scaling_factor(data, 1.25, 'Window', 's', error_messages['dis_double']) def handle_reg_0x24(self, data): self.handle_reg_0x1d(data) def handle_reg_0x25(self, data): self.handle_reg_0x1d(data) def handle_reg_0x26(self, data): self.handle_reg_with_scaling_factor(data, 1000, 'Time', 's', error_messages['interrupt']) def handle_reg_0x27(self, data): bits = [Bit('ACT', BitType.AC_DC), Bit('ACT_X', BitType.ENABLE), Bit('ACT_Y', BitType.ENABLE), Bit('ACT_Z', BitType.ENABLE), Bit('INACT', BitType.AC_DC), Bit('INACT_X', BitType.ENABLE), Bit('INACT_Y', BitType.ENABLE), Bit('INACT_Z', BitType.ENABLE)] self.interpret_bits(data, bits) def handle_reg_0x28(self, data): self.handle_reg_0x1d(data) def handle_reg_0x29(self, data): self.handle_reg_with_scaling_factor(data, 5, 'Time', 's', error_messages['undesirable']) def handle_reg_0x2a(self, data): bits = [Bit('', BitType.UNUSED), Bit('', BitType.UNUSED), Bit('', BitType.UNUSED), Bit('', BitType.UNUSED), Bit('', BitType.OTHER, {1: ['Suppressed', 'Suppr', 'S'], 0: ['Unsuppressed', 'Unsuppr', 'Uns'],}), Bit('TAP_X', BitType.ENABLE), Bit('TAP_Y', BitType.ENABLE), Bit('TAP_Z', BitType.ENABLE)] self.interpret_bits(data, bits) def handle_reg_0x2b(self, data): bits = [Bit('', BitType.UNUSED), Bit('ACT_X', BitType.SOURCE), Bit('ACT_Y', BitType.SOURCE), Bit('ACT_Z', BitType.SOURCE), Bit('', BitType.OTHER, {1: ['Asleep', 'Asl'], 0: ['Not asleep', 'Not asl', '!Asl'],}), Bit('TAP_X', BitType.SOURCE), Bit('TAP_Y', BitType.SOURCE), Bit('TAP_Z', BitType.SOURCE)] self.interpret_bits(data, bits) def handle_reg_0x2c(self, data): bits = [Bit('', BitType.UNUSED), Bit('', BitType.UNUSED), Bit('', BitType.UNUSED), Bit('', BitType.OTHER, {1: ['Reduce power', 'Reduce pw', 'Red pw'], 0: ['Normal operation', 'Normal op', 'Norm op'],})] bits_values = self.interpret_bits(data, bits) start_index, stop_index = 0, 3 rate = self.get_decimal_number(bits_values, start_index, stop_index) self.putbs([Ann.REG_DATA, ['%f' % rate_code[rate]]], stop_index, start_index) def handle_reg_0x2d(self, data): bits = [Bit('', BitType.UNUSED), Bit('', BitType.UNUSED), Bit('', BitType.OTHER, {1: ['Link'], 0: ['Unlink'], }), Bit('AUTO_SLEEP', BitType.ENABLE), Bit('', BitType.OTHER, {1: ['Measurement mode', 'Measurement', 'Meas'], 0: ['Standby mode', 'Standby'], }), Bit('', BitType.OTHER, {1: ['Sleep mode', 'Sleep', 'Slp'], 0: ['Normal mode', 'Normal', 'Nrm'],})] bits_values = self.interpret_bits(data, bits) start_index, stop_index = 0, 1 wakeup = self.get_decimal_number(bits_values, start_index, stop_index) frequency = 2 ** (~wakeup & 0x03) self.putbs([Ann.REG_DATA, ['%d Hz' % frequency]], stop_index, start_index) def handle_reg_0x2e(self, data): bits = [Bit('DATA_READY', BitType.ENABLE), Bit('SINGLE_TAP', BitType.ENABLE), Bit('DOUBLE_TAP', BitType.ENABLE), Bit('Activity', BitType.ENABLE), Bit('Inactivity', BitType.ENABLE), Bit('FREE_FALL', BitType.ENABLE), Bit('Watermark', BitType.ENABLE), Bit('Overrun', BitType.ENABLE)] self.interpret_bits(data, bits) def handle_reg_0x2f(self, data): bits = [Bit('DATA_READY', BitType.INTERRUPT), Bit('SINGLE_TAP', BitType.INTERRUPT), Bit('DOUBLE_TAP', BitType.INTERRUPT), Bit('Activity', BitType.INTERRUPT), Bit('Inactivity', BitType.INTERRUPT), Bit('FREE_FALL', BitType.INTERRUPT), Bit('Watermark', BitType.INTERRUPT), Bit('Overrun', BitType.INTERRUPT)] self.interpret_bits(data, bits) def handle_reg_0x30(self, data): bits = [Bit('DATA_READY', BitType.SOURCE), Bit('SINGLE_TAP', BitType.SOURCE), Bit('DOUBLE_TAP', BitType.SOURCE), Bit('Activity', BitType.SOURCE), Bit('Inactivity', BitType.SOURCE), Bit('FREE_FALL', BitType.SOURCE), Bit('Watermark', BitType.SOURCE), Bit('Overrun', BitType.SOURCE)] self.interpret_bits(data, bits) def handle_reg_0x31(self, data): bits = [Bit('SELF_TEST', BitType.ENABLE), Bit('', BitType.OTHER, {1: ['3-wire SPI', '3-SPI'], 0: ['4-wire SPI', '4-SPI'],}), Bit('', BitType.OTHER, {1: ['INT ACT LOW', 'INT LOW'], 0: ['INT ACT HIGH', 'INT HIGH'],}), Bit('', BitType.UNUSED), Bit('', BitType.OTHER, {1: ['Full resolution', 'Full res'], 0: ['10-bit mode', '10-bit'],}), Bit('', BitType.OTHER, {1: ['MSB mode', 'MSB'], 0: ['LSB mode', 'LSB'],})] bits_values = self.interpret_bits(data, bits) start_index, stop_index = 0, 1 range_g = self.get_decimal_number(bits_values, start_index, stop_index) result = 2 ** (range_g + 1) self.putbs([Ann.REG_DATA, ['+/-%d g' % result]], stop_index, start_index) def handle_reg_0x32(self, data): self.data = data self.putx([Ann.REG_DATA, [str(data)]]) def handle_reg_0x33(self, data): self.get_axis_value(data, 'X') def handle_reg_0x34(self, data): self.handle_reg_0x32(data) def handle_reg_0x35(self, data): self.get_axis_value(data, 'Y') def handle_reg_0x36(self, data): self.handle_reg_0x32(data) def handle_reg_0x37(self, data): self.get_axis_value(data, 'Z') def handle_reg_0x38(self, data): bits = [None, None, Bit('', BitType.OTHER, {1: ['Trig-INT2', 'INT2'], 0: ['Trig-INT1', 'INT1'], })] bits_values = self.interpret_bits(data, bits) start_index, stop_index = 6, 7 fifo = self.get_decimal_number(bits_values, start_index, stop_index) self.putbs([Ann.REG_DATA, [fifo_modes[fifo]]], stop_index, start_index) start_index, stop_index = 0, 4 samples = self.get_decimal_number(bits_values, start_index, stop_index) self.putbs([Ann.REG_DATA, ['Samples: %d' % samples, '%d' % samples]], stop_index, start_index) def handle_reg_0x39(self, data): bits = [Bit('', BitType.OTHER, {1: ['Triggered', 'Trigg'], 0: ['Not triggered', 'Not trigg'],}), Bit('', BitType.UNUSED)] bits_values = self.interpret_bits(data, bits) start_index, stop_index = 0, 5 entries = self.get_decimal_number(bits_values, start_index, stop_index) self.putbs([Ann.REG_DATA, ['Entries: %d' % entries, '%d' % entries]], stop_index, start_index) def get_bit(self, channel): if (channel == Channel.MOSI and self.mosi is None) or \ (channel == Channel.MISO and self.miso is None): raise Exception('No available data') mosi_bit, miso_bit = 0, 0 if self.miso is not None: if len(self.mosi) < 0: raise Exception('No available data') miso_bit = self.miso.pop(0) if self.miso is not None: if len(self.miso) < 0: raise Exception('No available data') mosi_bit = self.mosi.pop(0) if channel == Channel.MOSI: return mosi_bit return miso_bit def decode(self, ss, es, data): ptype = data[0] if ptype == 'CS-CHANGE': cs_old, cs_new = data[1:] if cs_old is not None and cs_old == 1 and cs_new == 0: self.ss, self.es = ss, es self.state = St.ADDRESS_BYTE else: self.state = St.IDLE elif ptype == 'BITS': if data[1] is not None: self.mosi = list(reversed(data[1])) if data[2] is not None: self.miso = list(reversed(data[2])) if self.mosi is None and self.miso is None: return if self.state == St.ADDRESS_BYTE: # OPERATION BIT op_bit = self.get_bit(Channel.MOSI) self.put(op_bit[1], op_bit[2], self.out_ann, [Ann.READ if op_bit[0] else Ann.WRITE, operations[op_bit[0]]]) self.operation = Operation.READ if op_bit[0] else Operation.WRITE # MULTIPLE-BYTE BIT mb_bit = self.get_bit(Channel.MOSI) self.put(mb_bit[1], mb_bit[2], self.out_ann, [Ann.MB, number_bytes[mb_bit[0]]]) # REGISTER 6-BIT ADDRESS self.address = 0 start_sample = self.mosi[0][1] addr_bit = [] for i in range(6): addr_bit = self.get_bit(Channel.MOSI) self.address |= addr_bit[0] self.address <<= 1 self.address >>= 1 self.put(start_sample, addr_bit[2], self.out_ann, [Ann.REG_ADDRESS, ['ADDRESS: {$}', 'ADDR: {$}', '{$}', '@%02X' % self.address]]) self.ss = -1 self.state = St.DATA elif self.state == St.DATA: self.reg.extend(self.mosi if self.operation == Operation.WRITE else self.miso) self.mosi, self.miso = [], [] if self.ss == -1: self.ss, self.es = self.reg[0][1], es self.samples_per_bit = self.reg[0][2] - self.ss if len(self.reg) < 8: return else: reg_value = 0 reg_bit = [] for offset in range(7, -1, -1): reg_bit = self.reg.pop(0) mask = reg_bit[0] << offset reg_value |= mask if self.address < 0x00 or self.address > 0x39: return if self.address in [0x32, 0x34, 0x36]: self.start_index = self.ss if 0x1D > self.address >= 0x00: self.put(self.ss, reg_bit[2], self.out_ann, [Ann.REG_ADDRESS, [str(self.address)]]) self.put(self.ss, reg_bit[2], self.out_ann, [Ann.REG_DATA, [str(reg_value)]]) else: self.put(self.ss, reg_bit[2], self.out_ann, [Ann.REG_ADDRESS, registers[self.address]]) handle_reg = getattr(self, 'handle_reg_0x%02x' % self.address) handle_reg(reg_value) self.reg = [] self.address += 1 self.ss = -1