### ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2020 DreamSourceLab ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see . ## import sigrokdecode as srd from collections import namedtuple Data = namedtuple('Data', ['ss', 'es', 'val']) # Key: (CPOL, CPHA). Value: SPI mode. # Clock polarity (CPOL) = 0/1: Clock is low/high when inactive. # Clock phase (CPHA) = 0/1: Data is valid on the leading/trailing clock edge. spi_mode = { (0, 0): 0, # Mode 0 (0, 1): 1, # Mode 1 (1, 0): 2, # Mode 2 (1, 1): 3, # Mode 3 } class ChannelError(Exception): pass class Decoder(srd.Decoder): api_version = 3 id = 'qspi' name = 'QSPI' longname = 'Quad Serial Peripheral Interface' desc = 'Full-duplex, synchronous, serial bus.' license = 'gplv2+' inputs = ['logic'] outputs = ['spi'] tags = ['Embedded/industrial'] channels = ( {'id': 'clk', 'type': 0, 'name': 'CLK', 'desc': 'Clock'}, {'id': 'io0', 'type': 107, 'name': 'IO0', 'desc': 'Data i/o 0'}, ) optional_channels = ( {'id': 'io1', 'type': 107, 'name': 'IO1', 'desc': 'Data i/o 1'}, {'id': 'io2', 'type': 107, 'name': 'IO2', 'desc': 'Data i/o 2'}, {'id': 'io3', 'type': 107, 'name': 'IO3', 'desc': 'Data i/o 3'}, {'id': 'cs', 'type': -1, 'name': 'CS#', 'desc': 'Chip-select'}, ) options = ( {'id': 'cs_polarity', 'desc': 'CS# polarity', 'default': 'active-low', 'values': ('active-low', 'active-high')}, {'id': 'cpol', 'desc': 'Clock polarity (CPOL)', 'default': 0, 'values': (0, 1)}, {'id': 'cpha', 'desc': 'Clock phase (CPHA)', 'default': 0, 'values': (0, 1)}, {'id': 'bitorder', 'desc': 'Bit order', 'default': 'msb-first', 'values': ('msb-first', 'lsb-first')}, {'id': 'wordsize', 'desc': 'Word size', 'default': 8}, ) annotations = ( ('106', 'data', 'data'), ) annotation_rows = ( ('data', 'data', (0,)), ) def __init__(self): self.reset() def reset(self): self.samplerate = None self.bitcount = 0 self.data = 0 self.bits = [] self.ss_block = -1 self.samplenum = -1 self.ss_transfer = -1 self.cs_was_deasserted = False self.have_cs = self.have_io1 = self.have_io3 = None def start(self): self.out_ann = self.register(srd.OUTPUT_ANN) self.bw = (self.options['wordsize'] + 7) // 8 def metadata(self, key, value): if key == srd.SRD_CONF_SAMPLERATE: self.samplerate = value def putw(self, data): self.put(self.ss_block, self.samplenum, self.out_ann, data) def putdata(self): # Pass bits and then data to the next PD up the stack. ss, es = self.bits[-1][1], self.bits[0][2] # Dataword annotations. self.put(ss, es, self.out_ann, [0, ['%02X' % self.data]]) def reset_decoder_state(self): self.data = 0 self.bits = [] self.bitcount = 0 def cs_asserted(self, cs): active_low = (self.options['cs_polarity'] == 'active-low') return (cs == 0) if active_low else (cs == 1) def handle_bit(self, datapins, clk, cs): # If this is the first bit of a dataword, save its sample number. if self.bitcount == 0: self.ss_block = self.samplenum self.cs_was_deasserted = \ not self.cs_asserted(cs) if self.have_cs else False bo = self.options['bitorder'] ws = self.options['wordsize'] if self.have_io3: nibws = ws >> 2 elif self.have_io1: nibws = ws >> 1 else: nibws = ws # Receive bit into our shift register. if self.have_io3: for i in range(4): if bo == 'msb-first': self.data |= datapins[i] << (ws - 1 - self.bitcount*4 - i) else: self.data |= datapins[3-i] << (self.bitcount*4 + i) elif self.have_io1: for i in range(2): if bo == 'msb-first': self.data |= datapins[i+2] << (ws - 1 - self.bitcount*2 - i) else: self.data |= datapins[3-i] << (self.bitcount*2 + i) else: if bo == 'msb-first': self.data |= datapins[3] << (ws - 1 - self.bitcount) else: self.data |= datapins[3] << self.bitcount # Guesstimate the endsample for this bit (can be overridden below). es = self.samplenum if self.bitcount > 0: es += self.samplenum - self.bits[0][1] self.bits.insert(0, [datapins[3], self.samplenum, es]) if self.bitcount > 0: self.bits[1][2] = self.samplenum self.bitcount += 1 # Continue to receive if not enough bits were received, yet. if self.bitcount != nibws: return self.putdata() self.reset_decoder_state() def find_clk_edge(self, datapins, clk, cs, first): if self.have_cs and (first or (self.matched & (0b1 << self.have_cs))): # Send all CS# pin value changes. oldcs = None if first else 1 - cs # Reset decoder state when CS# changes (and the CS# pin is used). self.reset_decoder_state() # We only care about samples if CS# is asserted. if self.have_cs and not self.cs_asserted(cs): return # Ignore sample if the clock pin hasn't changed. if first or not (self.matched & (0b1 << 0)): return # Found the correct clock edge, now get the SPI bit(s). self.handle_bit(datapins, clk, cs) def decode(self): # The CLK & IO0 input is mandatory. Other signals are (individually) # optional. Tell stacked decoders when we don't have a CS# signal. if not self.has_channel(0): raise ChannelError('CLK pin required.') self.have_io1 = self.has_channel(2) self.have_io3 = self.has_channel(3) & self.has_channel(4) self.have_cs = self.has_channel(5) # We want all CLK changes. We want all CS changes if CS is used. # Map 'have_cs' from boolean to an integer index. This simplifies # evaluation in other locations. # Sample data on rising/falling clock edge (depends on mode). mode = spi_mode[self.options['cpol'], self.options['cpha']] if mode == 0 or mode == 3: # Sample on rising clock edge wait_cond = [{0: 'r'}] else: # Sample on falling clock edge wait_cond = [{0: 'f'}] if self.have_cs: self.have_cs = len(wait_cond) wait_cond.append({5: 'e'}) # "Pixel compatibility" with the v2 implementation. Grab and # process the very first sample before checking for edges. The # previous implementation did this by seeding old values with # None, which led to an immediate "change" in comparison. (clk, d0, d1, d2, d3, cs) = self.wait({}) d = (d3, d2, d1, d0); self.find_clk_edge(d, clk, cs, True) while True: (clk, d0, d1, d2, d3, cs) = self.wait(wait_cond) d = (d3, d2, d1, d0); self.find_clk_edge(d, clk, cs, False)#