## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2012-2015 Uwe Hermann ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, write to the Free Software ## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ## import sigrokdecode as srd dacs = { 0: 'DACA', 1: 'DACB', 2: 'DACC', 3: 'DACD', } class Decoder(srd.Decoder): api_version = 2 id = 'tlc5620' name = 'TI TLC5620' longname = 'Texas Instruments TLC5620' desc = 'Texas Instruments TLC5620 8-bit quad DAC.' license = 'gplv2+' inputs = ['logic'] outputs = ['tlc5620'] channels = ( {'id': 'clk', 'name': 'CLK', 'desc': 'Serial interface clock'}, {'id': 'data', 'name': 'DATA', 'desc': 'Serial interface data'}, ) optional_channels = ( {'id': 'load', 'name': 'LOAD', 'desc': 'Serial interface load control'}, {'id': 'ldac', 'name': 'LDAC', 'desc': 'Load DAC'}, ) options = ( {'id': 'vref_a', 'desc': 'Reference voltage DACA (V)', 'default': 3.3}, {'id': 'vref_b', 'desc': 'Reference voltage DACB (V)', 'default': 3.3}, {'id': 'vref_c', 'desc': 'Reference voltage DACC (V)', 'default': 3.3}, {'id': 'vref_d', 'desc': 'Reference voltage DACD (V)', 'default': 3.3}, ) annotations = ( ('dac-select', 'DAC select'), ('gain', 'Gain'), ('value', 'DAC value'), ('data-latch', 'Data latch point'), ('ldac-fall', 'LDAC falling edge'), ('bit', 'Bit'), ('reg-write', 'Register write'), ('voltage-update', 'Voltage update'), ('voltage-update-all', 'Voltage update (all DACs)'), ('invalid-cmd', 'Invalid command'), ) annotation_rows = ( ('bits', 'Bits', (5,)), ('fields', 'Fields', (0, 1, 2)), ('registers', 'Registers', (6, 7)), ('voltage-updates', 'Voltage updates', (8,)), ('events', 'Events', (3, 4)), ('errors', 'Errors', (9,)), ) def __init__(self): self.oldpins = self.oldclk = self.oldload = self.oldldac = None self.bits = [] self.ss_dac_first = None self.ss_dac = self.es_dac = 0 self.ss_gain = self.es_gain = 0 self.ss_value = self.es_value = 0 self.dac_select = self.gain = self.dac_value = None self.dacval = {'A': '?', 'B': '?', 'C': '?', 'D': '?'} self.gains = {'A': '?', 'B': '?', 'C': '?', 'D': '?'} def start(self): self.out_ann = self.register(srd.OUTPUT_ANN) def handle_11bits(self): # Only look at the last 11 bits, the rest is ignored by the TLC5620. if len(self.bits) > 11: self.bits = self.bits[-11:] # If there are less than 11 bits, something is probably wrong. if len(self.bits) < 11: ss, es = self.samplenum, self.samplenum if len(self.bits) >= 2: ss = self.bits[0][1] es = self.bits[-1][1] + (self.bits[1][1] - self.bits[0][1]) self.put(ss, es, self.out_ann, [9, ['Command too short']]) self.bits = [] return False self.ss_dac = self.bits[0][1] self.es_dac = self.ss_gain = self.bits[2][1] self.es_gain = self.ss_value = self.bits[3][1] self.clock_width = self.es_gain - self.ss_gain self.es_value = self.bits[10][1] + self.clock_width # Guessed. if self.ss_dac_first is None: self.ss_dac_first = self.ss_dac s = ''.join(str(i[0]) for i in self.bits[:2]) self.dac_select = s = dacs[int(s, 2)] self.put(self.ss_dac, self.es_dac, self.out_ann, [0, ['DAC select: %s' % s, 'DAC sel: %s' % s, 'DAC: %s' % s, 'D: %s' % s, s, s[3]]]) self.gain = g = 1 + self.bits[2][0] self.put(self.ss_gain, self.es_gain, self.out_ann, [1, ['Gain: x%d' % g, 'G: x%d' % g, 'x%d' % g]]) s = ''.join(str(i[0]) for i in self.bits[3:]) self.dac_value = v = int(s, 2) self.put(self.ss_value, self.es_value, self.out_ann, [2, ['DAC value: %d' % v, 'Value: %d' % v, 'Val: %d' % v, 'V: %d' % v, '%d' % v]]) # Emit an annotation for each bit. for i in range(1, 11): self.put(self.bits[i - 1][1], self.bits[i][1], self.out_ann, [5, [str(self.bits[i - 1][0])]]) self.put(self.bits[10][1], self.bits[10][1] + self.clock_width, self.out_ann, [5, [str(self.bits[10][0])]]) self.bits = [] return True def handle_falling_edge_load(self): if not self.handle_11bits(): return s, v, g = self.dac_select, self.dac_value, self.gain self.put(self.samplenum, self.samplenum, self.out_ann, [3, ['Falling edge on LOAD', 'LOAD fall', 'F']]) vref = self.options['vref_%s' % self.dac_select[3].lower()] v = '%.2fV' % (vref * (v / 256) * self.gain) if self.ldac == 0: # If LDAC is low, the voltage is set immediately. self.put(self.ss_dac, self.es_value, self.out_ann, [7, ['Setting %s voltage to %s' % (s, v), '%s=%s' % (s, v)]]) else: # If LDAC is high, the voltage is not set immediately, but rather # stored in a register. When LDAC goes low all four DAC voltages # (DAC A/B/C/D) will be set at the same time. self.put(self.ss_dac, self.es_value, self.out_ann, [6, ['Setting %s register value to %s' % \ (s, v), '%s=%s' % (s, v)]]) # Save the last value the respective DAC was set to. self.dacval[self.dac_select[-1]] = str(self.dac_value) self.gains[self.dac_select[-1]] = self.gain def handle_falling_edge_ldac(self): self.put(self.samplenum, self.samplenum, self.out_ann, [4, ['Falling edge on LDAC', 'LDAC fall', 'LDAC', 'L']]) # Don't emit any annotations if we didn't see any register writes. if self.ss_dac_first is None: return # Calculate voltages based on Vref and the per-DAC gain. dacval = {} for key, val in self.dacval.items(): if val == '?': dacval[key] = '?' else: vref = self.options['vref_%s' % key.lower()] v = vref * (int(val) / 256) * self.gains[key] dacval[key] = '%.2fV' % v s = ''.join(['DAC%s=%s ' % (d, dacval[d]) for d in 'ABCD']).strip() self.put(self.ss_dac_first, self.samplenum, self.out_ann, [8, ['Updating voltages: %s' % s, s, s.replace('DAC', '')]]) self.ss_dac_first = None def handle_new_dac_bit(self): self.bits.append([self.datapin, self.samplenum]) def decode(self, ss, es, data): for (self.samplenum, pins) in data: data.itercnt += 1 # Ignore identical samples early on (for performance reasons). if self.oldpins == pins: continue self.oldpins, (clk, self.datapin, load, ldac) = pins, pins self.ldac = ldac # DATA is shifted in the DAC on the falling CLK edge (MSB-first). # A falling edge of LOAD will latch the data. if self.oldload == 1 and load == 0: self.handle_falling_edge_load() if self.oldldac == 1 and ldac == 0: self.handle_falling_edge_ldac() if self.oldclk == 1 and clk == 0: self.handle_new_dac_bit() self.oldclk = clk self.oldload = load self.oldldac = ldac