/* * This file is part of the libsigrok project. * * Copyright (C) 2013 Bert Vermeulen * Copyright (C) 2013 DreamSourceLab * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "../../libsigrok-internal.h" #include "dsl.h" #include "command.h" #include "../../log.h" #undef LOG_PREFIX #define LOG_PREFIX "dslogic: " static int dev_destroy(struct sr_dev_inst *sdi); static const char *maxHeights[] = { "1X", "2X", "3X", "4X", "5X", }; /** Device buffer mode */ enum DSLOGIC_BUFFER_OPT_MODE { /** Stop immediately */ SR_BUF_STOP = 0, /** Upload captured data */ SR_BUF_UPLOAD = 1, }; static const struct sr_list_item opmode_list[] = { {LO_OP_BUFFER,"Buffer Mode"}, {LO_OP_STREAM,"Stream Mode"}, {LO_OP_INTEST,"Internal Test"}, //{OP_EXTEST,"External Test"}, // Removed //{OP_LPTEST,"DRAM Loopback Test"}, {-1, NULL}, }; static const struct sr_list_item bufoption_list[] = { {SR_BUF_STOP, "Stop immediately"}, {SR_BUF_UPLOAD,"Upload captured data"}, {-1, NULL}, }; static const struct sr_list_item threshold_list[] = { {SR_TH_3V3, "1.8/2.5/3.3V Level"}, {SR_TH_5V0,"5.0V Level"}, {-1, NULL}, }; static const struct sr_list_item filter_list[] = { {SR_FILTER_NONE, "None"}, {SR_FILTER_1T,"1 Sample Clock"}, {-1, NULL}, }; #define CHANNEL_MODE_LIST_LEN 25 static struct sr_list_item channel_mode_list[CHANNEL_MODE_LIST_LEN]; static struct lang_text_map_item lang_text_map[] = { {SR_CONF_OPERATION_MODE, LO_OP_BUFFER, "Buffer Mode", "Buffer模式"}, {SR_CONF_OPERATION_MODE, LO_OP_STREAM, "Stream Mode", "Stream模式"}, {SR_CONF_OPERATION_MODE, LO_OP_INTEST, "Internal Test", "内部测试"}, {SR_CONF_OPERATION_MODE, LO_OP_EXTEST, "External Test", "外部测试"}, {SR_CONF_OPERATION_MODE, LO_OP_LPTEST, "DRAM Loopback Test", "内存回环测试"}, {SR_CONF_BUFFER_OPTIONS, SR_BUF_STOP, "Stop immediately", "立即停止"}, {SR_CONF_BUFFER_OPTIONS, SR_BUF_UPLOAD, "Upload captured data", "上传已采集的数据"}, {SR_CONF_THRESHOLD, SR_TH_3V3, "1.8/2.5/3.3V Level", NULL}, {SR_CONF_THRESHOLD, SR_TH_5V0, "5.0V Level", NULL}, {SR_CONF_FILTER, SR_FILTER_NONE, "None", "无"}, {SR_CONF_FILTER, SR_FILTER_1T, "1 Sample Clock", "1个采样周期"}, }; static struct sr_list_item channel_mode_cn_map[] = { {DSL_STREAM20x16, "使用16个通道(最大采样率 20MHz)"}, {DSL_STREAM25x12, "使用12个通道(最大采样率 25MHz)"}, {DSL_STREAM50x6, "使用6个通道(最大采样率 50MHz)"}, {DSL_STREAM100x3, "使用3个通道(最大采样率 100MHz)"}, {DSL_STREAM20x16_3DN2, "使用16个通道(最大采样率 20MHz)"}, {DSL_STREAM25x12_3DN2, "使用12个通道(最大采样率 25MHz)"}, {DSL_STREAM50x6_3DN2, "使用6个通道(最大采样率 50MHz)"}, {DSL_STREAM100x3_3DN2,"使用3个通道(最大采样率 100MHz)"}, {DSL_STREAM10x32_32_3DN2, "使用32个通道(最大采样率 10MHz)"}, {DSL_STREAM20x16_32_3DN2, "使用16个通道(最大采样率 20MHz)"}, {DSL_STREAM25x12_32_3DN2, "使用12个通道(最大采样率 25MHz)"}, {DSL_STREAM50x6_32_3DN2, "使用6个通道(最大采样率 50MHz)"}, {DSL_STREAM100x3_32_3DN2, "使用3个通道(最大采样率 100MHz)"}, {DSL_STREAM50x32, "使用32个通道(最大采样率 50MHz)"}, {DSL_STREAM100x30, "使用30个通道(最大采样率 100MHz)"}, {DSL_STREAM250x12, "使用12个通道(最大采样率 250MHz)"}, {DSL_STREAM125x16_16, "使用16个通道(最大采样率 125MHz)"}, {DSL_STREAM250x12_16, "使用12个通道(最大采样率 250MHz)"}, {DSL_STREAM500x6, "使用6个通道(最大采样率 500MHz)"}, {DSL_STREAM1000x3, "使用3个通道(最大采样率 1GHz)"}, // LA Buffer {DSL_BUFFER100x16, "使用通道 0~15 (最大采样率 100MHz)"}, {DSL_BUFFER200x8, "使用通道 0~7 (最大采样率 200MHz)"}, {DSL_BUFFER400x4, "使用通道 0~3 (最大采样率 400MHz)"}, {DSL_BUFFER250x32, "使用通道 0~31 (最大采样率 250MHz)"}, {DSL_BUFFER500x16, "使用通道 0~15 (最大采样率 500MHz)"}, {DSL_BUFFER1000x8, "使用通道 0~7 (最大采样率 1GHz)"}, // DAQ {DSL_ANALOG10x2, "使用通道 0~1 (最大采样率 10MHz)"}, {DSL_ANALOG10x2_500, "使用通道 0~1 (最大采样率 10MHz)"}, // OSC {DSL_DSO200x2, "使用通道 0~1 (最大采样率 200MHz)"}, {DSL_DSO1000x2, "使用通道 0~1 (最大采样率 1GHz)"} }; static const int32_t hwoptions[] = { SR_CONF_OPERATION_MODE, SR_CONF_BUFFER_OPTIONS, SR_CONF_THRESHOLD, SR_CONF_FILTER, SR_CONF_MAX_HEIGHT, SR_CONF_RLE_SUPPORT, SR_CONF_CLOCK_TYPE, SR_CONF_CLOCK_EDGE, }; static const int32_t hwoptions_pro[] = { SR_CONF_OPERATION_MODE, SR_CONF_BUFFER_OPTIONS, SR_CONF_VTH, SR_CONF_FILTER, SR_CONF_MAX_HEIGHT, SR_CONF_RLE_SUPPORT, SR_CONF_CLOCK_TYPE, SR_CONF_CLOCK_EDGE, }; static const int32_t sessions[] = { SR_CONF_MAX_HEIGHT, SR_CONF_OPERATION_MODE, SR_CONF_BUFFER_OPTIONS, SR_CONF_CHANNEL_MODE, SR_CONF_SAMPLERATE, SR_CONF_LIMIT_SAMPLES, SR_CONF_RLE_SUPPORT, SR_CONF_CLOCK_TYPE, SR_CONF_CLOCK_EDGE, SR_CONF_THRESHOLD, SR_CONF_FILTER, SR_CONF_TRIGGER_SLOPE, SR_CONF_TRIGGER_SOURCE, SR_CONF_HORIZ_TRIGGERPOS, SR_CONF_TRIGGER_HOLDOFF, SR_CONF_TRIGGER_MARGIN, }; static const int32_t sessions_pro[] = { SR_CONF_MAX_HEIGHT, SR_CONF_OPERATION_MODE, SR_CONF_BUFFER_OPTIONS, SR_CONF_CHANNEL_MODE, SR_CONF_SAMPLERATE, SR_CONF_LIMIT_SAMPLES, SR_CONF_RLE_SUPPORT, SR_CONF_CLOCK_TYPE, SR_CONF_CLOCK_EDGE, SR_CONF_VTH, SR_CONF_FILTER, SR_CONF_TRIGGER_SLOPE, SR_CONF_TRIGGER_SOURCE, SR_CONF_TRIGGER_CHANNEL, SR_CONF_HORIZ_TRIGGERPOS, SR_CONF_TRIGGER_HOLDOFF, SR_CONF_TRIGGER_MARGIN, }; static uint16_t opmodes_show_count = 3; SR_PRIV struct sr_dev_driver DSLogic_driver_info; static struct sr_dev_driver *di = &DSLogic_driver_info; static struct DSL_context *DSLogic_dev_new(const struct DSL_profile *prof) { struct DSL_context *devc; unsigned int i; assert(prof); if (!(devc = g_try_malloc(sizeof(struct DSL_context)))) { sr_err("Device context malloc failed."); return NULL; } for (i = 0; i < ARRAY_SIZE(channel_modes); i++){ if(channel_modes[i].id != i) assert(0); } devc->channel = NULL; devc->profile = prof; devc->fw_updated = 0; devc->cur_samplerate = prof->dev_caps.default_samplerate; devc->limit_samples = prof->dev_caps.default_samplelimit; devc->clock_type = FALSE; devc->clock_edge = FALSE; devc->rle_mode = FALSE; devc->instant = FALSE; devc->op_mode = LO_OP_STREAM; devc->test_mode = SR_TEST_NONE; devc->ch_mode = prof->dev_caps.default_channelmode; devc->stream = (devc->op_mode == LO_OP_STREAM); devc->buf_options = SR_BUF_UPLOAD; devc->th_level = SR_TH_3V3; devc->vth = 1.0; devc->filter = SR_FILTER_NONE; devc->timebase = 10000; devc->trigger_slope = DSO_TRIGGER_RISING; devc->trigger_source = DSO_TRIGGER_AUTO; devc->trigger_hpos = 0x0; devc->trigger_hrate = 0; devc->trigger_holdoff = 0; devc->zero = FALSE; devc->zero_branch = FALSE; devc->zero_comb_fgain = FALSE; devc->zero_comb = FALSE; devc->status = DSL_FINISH; devc->is_loop = 0; devc->mstatus_valid = FALSE; devc->data_lock = FALSE; devc->max_height = 0; devc->trigger_margin = 8; devc->trigger_channel = 0; dsl_adjust_samplerate(devc); return devc; } static int init(struct sr_context *sr_ctx) { return std_hw_init(sr_ctx, di, LOG_PREFIX); } static GSList *scan(GSList *options) { struct drv_context *drvc; struct DSL_context *devc; struct sr_dev_inst *sdi; struct sr_usb_dev_inst *usb; struct sr_config *src; const struct DSL_profile *prof; GSList *l, *devices, *conn_devices; struct libusb_device_descriptor des; libusb_device **devlist; libusb_device *device_handle = NULL; int devcnt, ret, i, j; const char *conn; enum libusb_speed usb_speed; struct sr_usb_dev_inst *usb_dev_info; uint8_t bus; uint8_t address; int isProduct; int num; drvc = di->priv; num = 0; if (options != NULL) sr_info("%s", "Scan DSLogic device with options."); else sr_info("%s", "Scan DSLogic device."); conn = NULL; for (l = options; l; l = l->next) { src = l->data; switch (src->key) { case SR_CONF_CONN: conn = g_variant_get_string(src->data, NULL); break; } } if (conn){ sr_info("%s", "Find usb device with connect config."); conn_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn); } else conn_devices = NULL; /* Find all DSLogic compatible devices and upload firmware to them. */ devices = NULL; devlist = NULL; libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); if (devlist == NULL){ sr_info("%s: Failed to call libusb_get_device_list(), it returns a null list.", __func__); return NULL; } for (i = 0; devlist[i]; i++) { device_handle = devlist[i]; if (conn) { usb = NULL; for (l = conn_devices; l; l = l->next) { usb = l->data; if (usb->bus == libusb_get_bus_number(device_handle) && usb->address == libusb_get_device_address(device_handle)) break; } if (!l) /* This device matched none of the ones that * matched the conn specification. */ continue; } if ((ret = libusb_get_device_descriptor(device_handle, &des)) != 0) { sr_warn("Failed to get device descriptor: %s.", libusb_error_name(ret)); continue; } // The vendor id is not right. if (des.idVendor != DS_VENDOR_ID) continue; usb_speed = libusb_get_device_speed(device_handle); if ((usb_speed != LIBUSB_SPEED_HIGH) && (usb_speed != LIBUSB_SPEED_SUPER)){ sr_info("scan(): The idVendor is right, but the usb speed is too low, speed type:%d", usb_speed); continue; } /* Check manufactory id and product id, and speed type. */ prof = NULL; for (j = 0; supported_DSLogic[j].vid; j++) { if (des.idVendor == supported_DSLogic[j].vid && des.idProduct == supported_DSLogic[j].pid && usb_speed == supported_DSLogic[j].usb_speed) { prof = &supported_DSLogic[j]; break; } } /* Skip if the device was not found. */ if (prof == NULL){ isProduct = 0; //Mybe is a dscope device. for (j = 0; supported_DSCope[j].vid; j++) { if (des.idVendor == supported_DSCope[j].vid && des.idProduct == supported_DSCope[j].pid && usb_speed == supported_DSCope[j].usb_speed) { isProduct = 1; break; } } if (isProduct == 0){ sr_info("scan(): The profile is not matched, idVendor:%02X, idProduct:%02X", des.idVendor, des.idProduct); } continue; } if (sr_usb_device_is_exists(device_handle)){ sr_detail("Device is exists, handle: %p", device_handle); continue; } bus = libusb_get_bus_number(device_handle); address = libusb_get_device_address(device_handle); sr_info("Found a new device,handle:%p,bus:%d,address:%d", device_handle, bus, address); devc = DSLogic_dev_new(prof); if (!devc) return NULL; sdi = sr_dev_inst_new(channel_modes[devc->ch_mode].mode, SR_ST_INITIALIZING, prof->vendor, prof->model, prof->model_version); if (!sdi) { g_free(devc); return NULL; } sdi->priv = devc; sdi->driver = di; sdi->dev_type = DEV_TYPE_USB; sdi->handle = (ds_device_handle)device_handle; /* Fill in probelist according to this device's profile. */ if (dsl_setup_probes(sdi, channel_modes[devc->ch_mode].num) != SR_OK){ sr_err("%s", "dsl_setup_probes() error"); dev_destroy(sdi); return NULL; } devices = g_slist_append(devices, sdi); num++; if (dsl_check_conf_profile(device_handle)) { /* Already has the firmware, so fix the new address. */ sr_info("Found a DSLogic device,name:\"%s\",handle:%p", prof->model,device_handle); usb_dev_info = sr_usb_dev_inst_new(bus, address); usb_dev_info->usb_dev = device_handle; sdi->conn = usb_dev_info; sdi->status = SR_ST_INACTIVE; } else { char *firmware; char *res_path = DS_RES_PATH; if (!(firmware = g_try_malloc(strlen(res_path)+strlen(prof->firmware)+1))) { sr_err("Firmware path malloc error!"); return NULL; } strcpy(firmware, res_path); strcat(firmware, prof->firmware); sr_info("Install firmware bin file, device:\"%s\", file:\"%s\"", prof->model, firmware); if (ezusb_upload_firmware(device_handle, USB_CONFIGURATION, firmware) == SR_OK) /* Store when this device's FW was updated. */ devc->fw_updated = g_get_monotonic_time(); else sr_err("Firmware upload failed for " "device %d.", devcnt); g_free(firmware); usb_dev_info = sr_usb_dev_inst_new(bus, 0xff); usb_dev_info->usb_dev = device_handle; sdi->conn = usb_dev_info; } } libusb_free_device_list(devlist, 0); if (conn_devices){ g_slist_free_full(conn_devices, (GDestroyNotify)sr_usb_dev_inst_free); } sr_info("Fond new DSLogic device count: %d", num); return devices; } static const GSList *dev_mode_list(const struct sr_dev_inst *sdi) { return dsl_mode_list(sdi); } static uint64_t dso_cmd_gen(const struct sr_dev_inst *sdi, struct sr_channel* ch, int id) { struct DSL_context *devc; uint64_t cmd = 0; int channel_cnt = 0; GSList *l; struct sr_channel *en_probe = ch; devc = sdi->priv; switch (id) { case SR_CONF_PROBE_VDIV: case SR_CONF_PROBE_EN: case SR_CONF_TIMEBASE: case SR_CONF_PROBE_COUPLING: for (l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; if (probe->enabled) { channel_cnt += probe->index + 0x1; en_probe = probe; } } if (channel_cnt == 0) return 0x0; // --VDBS if (channel_cnt != 1) en_probe = ch; switch(en_probe->vdiv){ case 5: cmd += 0x247000; break; case 10: cmd += 0x23D000; break; case 20: cmd += 0x22F000; break; case 50: cmd += 0x21C800; break; case 100: cmd += 0x20E800; break; case 200: cmd += 0x200800; break; case 500: cmd += 0x2F000; break; case 1000: cmd += 0x21100; break; case 2000: cmd += 0x13000; break; case 5000: cmd += 0x00800; break; default: cmd += 0x21100; break; } // --DC/AC if (channel_cnt == 1) { for (l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; if (probe->coupling == SR_AC_COUPLING) cmd += 0x100000; break; } } else { if(ch->coupling == SR_AC_COUPLING) cmd += 0x100000; } // --Channel if (sdi->mode != LOGIC) { if(channel_cnt == 1) cmd += 0xC00000; else if(ch->index == 0) cmd += 0x400000; else if(ch->index == 1) cmd += 0x800000; else cmd += 0x000000; } // --Header cmd += 0x55000000; break; case SR_CONF_SAMPLERATE: for (l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; channel_cnt += probe->enabled; } cmd += 0x18; uint32_t divider = (uint32_t)ceil(channel_modes[devc->ch_mode].max_samplerate * 1.0 / devc->cur_samplerate / channel_cnt); cmd += divider << 8; break; case SR_CONF_HORIZ_TRIGGERPOS: cmd += 0x20; cmd += devc->trigger_hpos << 8; break; case SR_CONF_TRIGGER_SLOPE: cmd += 0x28; cmd += devc->trigger_slope << 8; break; case SR_CONF_TRIGGER_SOURCE: cmd += 0x30; cmd += devc->trigger_source << 8; break; case SR_CONF_TRIGGER_VALUE: cmd += 0x38; for (l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; cmd += probe->trig_value << (8 * (probe->index + 1)); } break; case SR_CONF_TRIGGER_MARGIN: cmd += 0x40; cmd += ((uint64_t)devc->trigger_margin << 8); break; case SR_CONF_TRIGGER_HOLDOFF: cmd += 0x58; cmd += devc->trigger_holdoff << 8; break; case SR_CONF_DSO_SYNC: cmd = 0xa5a5a500; break; default: cmd = 0xFFFFFFFF; } return cmd; } static int dso_init(const struct sr_dev_inst *sdi) { int ret; GSList *l; for(l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, probe, SR_CONF_PROBE_COUPLING)); if (ret != SR_OK) { sr_err("DSO set coupling of channel %d command failed!", probe->index); return ret; } ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, probe, SR_CONF_PROBE_VDIV)); if (ret != SR_OK) { sr_err("Set VDIV of channel %d command failed!", probe->index); return ret; } } ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, 0, SR_CONF_SAMPLERATE)); if (ret != SR_OK) { sr_err("Set Sample Rate command failed!"); return ret; } ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_HORIZ_TRIGGERPOS)); if (ret != SR_OK) { sr_err("Set Horiz Trigger Position command failed!"); return ret; } ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_HOLDOFF)); if (ret != SR_OK) { sr_err("Set Trigger Holdoff Time command failed!"); return ret; } ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_SLOPE)); if (ret != SR_OK) { sr_err("Set Trigger Slope command failed!"); return ret; } ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_SOURCE)); if (ret != SR_OK) { sr_err("Set Trigger Source command failed!"); return ret; } ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_VALUE)); if (ret != SR_OK) { sr_err("Set Trigger Value command failed!"); return ret; } ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_MARGIN)); if (ret != SR_OK) { sr_err("Set Trigger Margin command failed!"); return ret; } return ret; } static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel *ch, const struct sr_channel_group *cg) { struct DSL_context *devc = sdi->priv; int ret; assert(sdi); assert(sdi->priv); ret = dsl_config_get(id, data, sdi, ch, cg); if (ret != SR_OK) { switch (id) { case SR_CONF_OPERATION_MODE: *data = g_variant_new_int16(devc->op_mode); break; case SR_CONF_FILTER: *data = g_variant_new_int16(devc->filter); break; case SR_CONF_RLE: *data = g_variant_new_boolean(devc->rle_mode); break; case SR_CONF_TEST: *data = g_variant_new_boolean(devc->test_mode != SR_TEST_NONE); break; case SR_CONF_WAIT_UPLOAD: if (devc->buf_options == SR_BUF_UPLOAD && devc->status == DSL_START) { devc->status = DSL_ABORT; dsl_wr_reg(sdi, CTR0_ADDR, bmFORCE_STOP); *data = g_variant_new_boolean(TRUE); } else { *data = g_variant_new_boolean(FALSE); } break; case SR_CONF_BUFFER_OPTIONS: *data = g_variant_new_int16(devc->buf_options); break; case SR_CONF_CHANNEL_MODE: *data = g_variant_new_int16(devc->ch_mode); break; case SR_CONF_MAX_HEIGHT: *data = g_variant_new_string(maxHeights[devc->max_height]); break; case SR_CONF_MAX_HEIGHT_VALUE: *data = g_variant_new_byte(devc->max_height); break; case SR_CONF_THRESHOLD: *data = g_variant_new_int16(devc->th_level); break; case SR_CONF_VTH: *data = g_variant_new_double(devc->vth); break; case SR_CONF_STREAM: *data = g_variant_new_boolean(devc->stream); break; case SR_CONF_MAX_DSO_SAMPLERATE: *data = g_variant_new_uint64(channel_modes[devc->ch_mode].max_samplerate); break; case SR_CONF_MAX_DSO_SAMPLELIMITS: *data = g_variant_new_uint64(devc->profile->dev_caps.dso_depth); break; case SR_CONF_HW_DEPTH: *data = g_variant_new_uint64(dsl_channel_depth(sdi)); break; case SR_CONF_VLD_CH_NUM: *data = g_variant_new_int16(channel_modes[devc->ch_mode].vld_num); break; case SR_CONF_TOTAL_CH_NUM: *data = g_variant_new_int16(devc->profile->dev_caps.total_ch_num); break; default: return SR_ERR_NA; } } return SR_OK; } static int config_set(int id, GVariant *data, struct sr_dev_inst *sdi, struct sr_channel *ch, struct sr_channel_group *cg ) { struct DSL_context *devc; const char *stropt; int ret, num_probes = 0; struct sr_usb_dev_inst *usb; unsigned int i; int nv; assert(sdi); assert(sdi->priv); (void)cg; if (sdi->status != SR_ST_ACTIVE) { sr_err("%s: Device is not opened.", __func__); return SR_ERR; } //sr_info("key:%d", id); devc = sdi->priv; usb = sdi->conn; ret = dsl_config_set(id, data, sdi, ch, cg); if (ret == SR_OK) return ret; ret = SR_OK; if (id == SR_CONF_CLOCK_TYPE) { devc->clock_type = g_variant_get_boolean(data); } else if (id == SR_CONF_RLE_SUPPORT) { devc->rle_support = g_variant_get_boolean(data); } else if (id == SR_CONF_CLOCK_EDGE) { devc->clock_edge = g_variant_get_boolean(data); } else if (id == SR_CONF_LIMIT_SAMPLES) { devc->limit_samples = g_variant_get_uint64(data); } else if (id == SR_CONF_PROBE_VDIV) { ch->vdiv = g_variant_get_uint64(data); if (sdi->mode != LOGIC) { ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, ch, SR_CONF_PROBE_VDIV)); } if (ret == SR_OK) sr_dbg("%s: setting VDIV of channel %d to %d mv", __func__, ch->index, ch->vdiv); else sr_dbg("%s: setting VDIV of channel %d to %d mv failed", __func__, ch->index, ch->vdiv); } else if (id == SR_CONF_PROBE_FACTOR) { ch->vfactor = g_variant_get_uint64(data); sr_dbg("%s: setting Factor of channel %d to %d", __func__, ch->index, ch->vfactor); } else if (id == SR_CONF_TIMEBASE) { devc->timebase = g_variant_get_uint64(data); } else if (id == SR_CONF_PROBE_COUPLING) { ch->coupling = g_variant_get_byte(data); if (ch->coupling == SR_GND_COUPLING) ch->coupling = SR_DC_COUPLING; if (sdi->mode != LOGIC) { ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, ch, SR_CONF_PROBE_COUPLING)); } if (ret == SR_OK) sr_dbg("%s: setting AC COUPLING of channel %d to %d", __func__, ch->index, ch->coupling); else sr_dbg("%s: setting AC COUPLING of channel %d to %d failed", __func__, ch->index, ch->coupling); } else if (id == SR_CONF_TRIGGER_SLOPE) { devc->trigger_slope = g_variant_get_byte(data); if (sdi->mode == DSO) { ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_SLOPE)); } if (ret == SR_OK) sr_dbg("%s: setting DSO Trigger Slope to %d", __func__, devc->trigger_slope); else sr_dbg("%s: setting DSO Trigger Slope to %d failed", __func__, devc->trigger_slope); } else if (id == SR_CONF_TRIGGER_VALUE) { ch->trig_value = g_variant_get_byte(data); if (sdi->mode == DSO) { ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, ch, SR_CONF_TRIGGER_VALUE)); } if (ret == SR_OK) sr_dbg("%s: setting channel %d Trigger Value to %d", __func__, ch->index, ch->trig_value); else sr_dbg("%s: setting DSO Trigger Value to %d failed", __func__, ch->index, ch->trig_value); } else if (id == SR_CONF_HORIZ_TRIGGERPOS) { if (sdi->mode == DSO) { devc->trigger_hrate = g_variant_get_byte(data); //devc->trigger_hpos = devc->trigger_hrate * dsl_en_ch_num(sdi) * devc->limit_samples / 200.0; /* * devc->trigger_hpos should be updated before each acquisition * because the samplelimits may changed */ devc->trigger_hpos = devc->trigger_hrate * dsl_en_ch_num(sdi) * devc->limit_samples / 200.0; if ((ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_HORIZ_TRIGGERPOS))) == SR_OK) sr_dbg("%s: setting DSO Horiz Trigger Position to %d", __func__, devc->trigger_hpos); else sr_dbg("%s: setting DSO Horiz Trigger Position to %d failed", __func__, devc->trigger_hpos); } else { devc->trigger_hpos = g_variant_get_byte(data) * devc->limit_samples / 100.0; } } else if (id == SR_CONF_TRIGGER_HOLDOFF) { devc->trigger_holdoff = g_variant_get_uint64(data); if (sdi->mode == DSO) { ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_HOLDOFF)); } if (ret == SR_OK) sr_dbg("%s: setting Trigger Holdoff Time to %d", __func__, devc->trigger_holdoff); else sr_dbg("%s: setting Trigger Holdoff Time to %d failed", __func__, devc->trigger_holdoff); } else if (id == SR_CONF_TRIGGER_MARGIN) { devc->trigger_margin = g_variant_get_byte(data); if (sdi->mode == DSO) { ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_MARGIN)); } if (ret == SR_OK) sr_dbg("%s: setting Trigger Margin to %d", __func__, devc->trigger_margin); else sr_dbg("%s: setting Trigger Margin to %d failed", __func__, devc->trigger_margin); } else if (id == SR_CONF_SAMPLERATE) { if (devc->test_mode == SR_TEST_NONE) { devc->cur_samplerate = g_variant_get_uint64(data); if(sdi->mode != LOGIC) { ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, 0, SR_CONF_SAMPLERATE)); } } } else if (id == SR_CONF_FILTER) { nv = g_variant_get_int16(data); if (nv == SR_FILTER_NONE || nv == SR_FILTER_1T) devc->filter = nv; else ret = SR_ERR; sr_dbg("%s: setting filter to %d", __func__, devc->filter); } else if (id == SR_CONF_RLE) { devc->rle_mode = g_variant_get_boolean(data); } else if (id == SR_CONF_INSTANT) { if (sdi->mode == DSO) { devc->instant = g_variant_get_boolean(data); if (dsl_en_ch_num(sdi) != 0) { if (devc->instant) devc->limit_samples = devc->profile->dev_caps.hw_depth / dsl_en_ch_num(sdi); else devc->limit_samples = devc->profile->dev_caps.dso_depth / dsl_en_ch_num(sdi); } } } else if (id == SR_CONF_DEVICE_MODE) { sdi->mode = g_variant_get_int16(data); if (sdi->mode == LOGIC) { dsl_wr_reg(sdi, CTR0_ADDR, bmSCOPE_CLR); for (i = 0; i < ARRAY_SIZE(channel_modes); i++) { if (channel_modes[i].mode == LOGIC && devc->profile->dev_caps.channels & (1 << i)) { devc->ch_mode = channel_modes[i].id; num_probes = channel_modes[i].num; devc->stream = channel_modes[i].stream; dsl_adjust_samplerate(devc); break; } } } else if (sdi->mode == DSO) { dsl_wr_reg(sdi, CTR0_ADDR, bmSCOPE_SET); ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_DSO_SYNC)); if (ret != SR_OK) sr_dbg("%s: DSO configuration sync failed", __func__); for (i = 0; i < ARRAY_SIZE(channel_modes); i++) { if (channel_modes[i].mode == DSO && devc->profile->dev_caps.channels & (1 << i)) { devc->ch_mode = channel_modes[i].id; num_probes = channel_modes[i].num; devc->stream = channel_modes[i].stream; devc->cur_samplerate = channel_modes[i].max_samplerate / num_probes; dsl_adjust_samplerate(devc); break; } } devc->limit_samples = devc->profile->dev_caps.dso_depth / num_probes; } else if (sdi->mode == ANALOG) { dsl_wr_reg(sdi, CTR0_ADDR, bmSCOPE_SET); ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_DSO_SYNC)); if (ret != SR_OK) sr_dbg("%s: DAQ configuration sync failed", __func__); devc->op_mode = LO_OP_STREAM; devc->test_mode = SR_TEST_NONE; for (i = 0; i < ARRAY_SIZE(channel_modes); i++) { if (channel_modes[i].mode == ANALOG && devc->profile->dev_caps.channels & (1 << i)) { devc->ch_mode = channel_modes[i].id; num_probes = channel_modes[i].num; devc->stream = channel_modes[i].stream; dsl_adjust_samplerate(devc); break; } } } else { ret = SR_ERR; } assert(num_probes != 0); sr_dev_probes_free(sdi); dsl_setup_probes(sdi, num_probes); sr_dbg("%s: setting mode to %d", __func__, sdi->mode); if (sdi->mode != LOGIC) { dso_init(sdi); } } else if (id == SR_CONF_OPERATION_MODE) { nv = g_variant_get_int16(data); if (sdi->mode == LOGIC && devc->op_mode != nv) { if (nv == LO_OP_BUFFER) { devc->op_mode = LO_OP_BUFFER; devc->test_mode = SR_TEST_NONE; devc->stream = FALSE; for (i = 0; i < ARRAY_SIZE(channel_modes); i++) { if (channel_modes[i].mode == LOGIC && channel_modes[i].stream == devc->stream && devc->profile->dev_caps.channels & (1 << i)) { devc->ch_mode = channel_modes[i].id; break; } } } else if (nv == LO_OP_STREAM) { devc->op_mode = LO_OP_STREAM; devc->test_mode = SR_TEST_NONE; devc->stream = TRUE; for (i = 0; i < ARRAY_SIZE(channel_modes); i++) { if (channel_modes[i].mode == LOGIC && channel_modes[i].stream == devc->stream && devc->profile->dev_caps.channels & (1 << i)) { devc->ch_mode = channel_modes[i].id; break; } } } else if (nv == LO_OP_INTEST) { devc->op_mode = LO_OP_INTEST; devc->test_mode = SR_TEST_INTERNAL; devc->ch_mode = devc->profile->dev_caps.intest_channel; devc->stream = !(devc->profile->dev_caps.feature_caps & CAPS_FEATURE_BUF); } else { ret = SR_ERR; } dsl_adjust_probes(sdi, channel_modes[devc->ch_mode].num); dsl_adjust_samplerate(devc); if (devc->op_mode == LO_OP_INTEST) { devc->cur_samplerate = devc->stream ? channel_modes[devc->ch_mode].max_samplerate / 10 : SR_MHZ(100); devc->limit_samples = devc->stream ? devc->cur_samplerate * 3 : devc->profile->dev_caps.hw_depth / dsl_en_ch_num(sdi); } } sr_dbg("%s: setting pattern to %d", __func__, devc->op_mode); } else if (id == SR_CONF_BUFFER_OPTIONS) { nv = g_variant_get_int16(data); if (sdi->mode == LOGIC && (nv == SR_BUF_STOP || nv == SR_BUF_UPLOAD)) { devc->buf_options = nv; } } else if (id == SR_CONF_CHANNEL_MODE) { nv = g_variant_get_int16(data); if (sdi->mode == LOGIC) { for (i = 0; i < ARRAY_SIZE(channel_modes); i++) { if (devc->profile->dev_caps.channels & (1 << i)) { if (channel_modes[i].id == nv) { devc->ch_mode = nv; break; } } } dsl_adjust_probes(sdi, channel_modes[devc->ch_mode].num); dsl_adjust_samplerate(devc); } sr_dbg("%s: setting channel mode to %d", __func__, devc->ch_mode); } else if (id == SR_CONF_THRESHOLD) { nv = g_variant_get_int16(data); if (sdi->mode == LOGIC && nv != devc->th_level) { if (nv == SR_TH_3V3) devc->th_level = SR_TH_3V3; else if (nv == SR_TH_5V0) devc->th_level = SR_TH_5V0; else return SR_ERR; char *fpga_bit; char *res_path = DS_RES_PATH; if (!(fpga_bit = g_try_malloc(strlen(res_path) + strlen(devc->profile->fpga_bit33) + 1))) { sr_err("fpag_bit path malloc error!"); return SR_ERR_MALLOC; } strcpy(fpga_bit, res_path); switch(devc->th_level) { case SR_TH_3V3: strcat(fpga_bit, devc->profile->fpga_bit33); break; case SR_TH_5V0: strcat(fpga_bit, devc->profile->fpga_bit50); break; default: return SR_ERR; } ret = dsl_fpga_config(usb->devhdl, fpga_bit); g_free(fpga_bit); if (ret != SR_OK) { sr_err("Configure FPGA failed!"); } sr_dbg("%s: setting threshold to %d", __func__, devc->th_level); } } else if (id == SR_CONF_VTH) { devc->vth = g_variant_get_double(data); if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_MAX25_VTH) ret = dsl_wr_reg(sdi, VTH_ADDR, (uint8_t)(devc->vth/5.0*(2.5/3.3)*255)); else ret = dsl_wr_reg(sdi, VTH_ADDR, (uint8_t)(devc->vth/5.0*255)); } else if (id == SR_CONF_MAX_HEIGHT) { stropt = g_variant_get_string(data, NULL); for (i = 0; i < ARRAY_SIZE(maxHeights); i++) { if (!strcmp(stropt, maxHeights[i])) { devc->max_height = i; break; } } sr_dbg("%s: setting Signal Max Height to %d", __func__, devc->max_height); } else if (id == SR_CONF_PROBE_EN) { ch->enabled = g_variant_get_boolean(data); if (sdi->mode == DSO) { ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, ch, SR_CONF_PROBE_EN)); uint16_t channel_cnt = 0; GSList *l; for (l = sdi->channels; l; l = l->next) { struct sr_channel *probe = (struct sr_channel *)l->data; channel_cnt += probe->enabled; } if (channel_cnt != 0) ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, 0, SR_CONF_SAMPLERATE)); } if (ret == SR_OK) sr_dbg("%s: setting ENABLE of channel %d to %d", __func__, ch->index, ch->enabled); else sr_dbg("%s: setting ENABLE of channel %d to %d", __func__, ch->index, ch->enabled); } else if (id == SR_CONF_PROBE_OFFSET) { ch->offset = g_variant_get_uint16(data); sr_dbg("%s: setting OFFSET of channel %d to %d", __func__, ch->index, ch->offset); } else if (id == SR_CONF_TRIGGER_SOURCE) { devc->trigger_source = g_variant_get_byte(data); if (sdi->mode == DSO) { ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_SOURCE)); } if (ret == SR_OK) sr_dbg("%s: setting DSO Trigger Source to %d", __func__, devc->trigger_source); else sr_dbg("%s: setting DSO Trigger Source to %d failed", __func__, devc->trigger_source); } else if (id == SR_CONF_TRIGGER_CHANNEL) { devc->trigger_source = (g_variant_get_byte(data) << 4) + (devc->trigger_source & 0x0f); if (sdi->mode == DSO) { ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_SOURCE)); } if (ret == SR_OK) sr_dbg("%s: setting DSO Trigger Source to %d", __func__, devc->trigger_source); else sr_dbg("%s: setting DSO Trigger Source to %d failed", __func__, devc->trigger_source); } else if (id == SR_CONF_STREAM) { devc->stream = g_variant_get_boolean(data); } else if (id == SR_CONF_LOOP_MODE){ devc->is_loop = g_variant_get_boolean(data); sr_info("Set device loop mode:%d", devc->is_loop); } else { ret = SR_ERR_NA; } return ret; } static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi, const struct sr_channel_group *cg) { struct DSL_context *devc; GVariantBuilder gvb; unsigned int i; int num; assert(sdi); assert(sdi->priv); (void)cg; devc = sdi->priv; if (dsl_config_list(key, data, sdi, cg) == SR_OK) { return SR_OK; } switch (key) { case SR_CONF_DEVICE_OPTIONS: if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_VTH) *data = g_variant_new_from_data(G_VARIANT_TYPE("ai"), hwoptions_pro, ARRAY_SIZE(hwoptions_pro)*sizeof(int32_t), TRUE, NULL, NULL); else *data = g_variant_new_from_data(G_VARIANT_TYPE("ai"), hwoptions, ARRAY_SIZE(hwoptions)*sizeof(int32_t), TRUE, NULL, NULL); break; case SR_CONF_DEVICE_SESSIONS: if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_VTH) *data = g_variant_new_from_data(G_VARIANT_TYPE("ai"), sessions_pro, ARRAY_SIZE(sessions_pro)*sizeof(int32_t), TRUE, NULL, NULL); else *data = g_variant_new_from_data(G_VARIANT_TYPE("ai"), sessions, ARRAY_SIZE(sessions)*sizeof(int32_t), TRUE, NULL, NULL); break; case SR_CONF_OPERATION_MODE: *data = g_variant_new_uint64((uint64_t)&opmode_list); break; case SR_CONF_BUFFER_OPTIONS: *data = g_variant_new_uint64((uint64_t)&bufoption_list); break; case SR_CONF_CHANNEL_MODE: num = 0; for (i = 0; i < ARRAY_SIZE(channel_modes); i++) { if (channel_modes[i].stream == devc->stream && devc->profile->dev_caps.channels & (1 << i)) { if (devc->test_mode != SR_TEST_NONE && devc->profile->dev_caps.intest_channel != channel_modes[i].id) continue; if (num == CHANNEL_MODE_LIST_LEN - 1){ assert(0); } channel_mode_list[num].id = channel_modes[i].id; channel_mode_list[num].name = channel_modes[i].descr; num++; } } channel_mode_list[num].id = -1; channel_mode_list[num].name = NULL; *data = g_variant_new_uint64((uint64_t)&channel_mode_list); break; case SR_CONF_THRESHOLD: *data = g_variant_new_uint64((uint64_t)&threshold_list); break; case SR_CONF_FILTER: *data = g_variant_new_uint64((uint64_t)&filter_list); break; case SR_CONF_MAX_HEIGHT: *data = g_variant_new_strv(maxHeights, ARRAY_SIZE(maxHeights)); break; default: return SR_ERR_NA; } return SR_OK; } static int dev_open(struct sr_dev_inst *sdi) { gboolean fpga_done; int ret; struct DSL_context *devc; devc = sdi->priv; if ((ret = dsl_dev_open(di, sdi, &fpga_done)) == SR_OK) { if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_MAX25_VTH) ret = dsl_wr_reg(sdi, VTH_ADDR, (uint8_t)(devc->vth/5.0*(2.5/3.3)*255)); else ret = dsl_wr_reg(sdi, VTH_ADDR, (uint8_t)(devc->vth/5.0*255)); // set threshold if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_ADF4360) { dsl_config_adc(sdi, adc_clk_init_500m); } } return ret; } static int dev_close(struct sr_dev_inst *sdi) { int ret; ret = dsl_dev_close(sdi); return ret; } static int dev_destroy(struct sr_dev_inst *sdi) { return dsl_destroy_device(sdi); } static int cleanup(void) { int ret; struct drv_context *drvc; if (!(drvc = di->priv)) return SR_OK; g_free(drvc); di->priv = NULL; return SR_OK; } static void remove_sources(struct DSL_context *devc) { int i; sr_info("%s: remove fds from polling", __func__); /* Remove fds from polling. */ for (i = 0; devc->usbfd[i] != -1; i++) sr_source_remove(devc->usbfd[i]); g_free(devc->usbfd); } static void report_overflow(struct DSL_context *devc) { struct sr_datafeed_packet packet; struct sr_dev_inst *sdi = devc->cb_data; packet.status = SR_PKT_OK; packet.type = SR_DF_OVERFLOW; packet.payload = NULL; ds_data_forward(sdi, &packet); } static int receive_data(int fd, int revents, const struct sr_dev_inst *sdi) { int completed = 0; struct timeval tv; struct drv_context *drvc; struct DSL_context *devc; struct sr_usb_dev_inst *usb; struct ctl_rd_cmd rd_cmd; uint8_t hw_info; int ret; (void)fd; (void)revents; drvc = di->priv; devc = sdi->priv; usb = sdi->conn; tv.tv_sec = tv.tv_usec = 0; libusb_handle_events_timeout_completed(drvc->sr_ctx->libusb_ctx, &tv, &completed); if (devc->trf_completed) devc->empty_poll_count = 0; else devc->empty_poll_count++; // -- // progress check // must before overflow check (1ch@10K) // -- if ((devc->empty_poll_count > MAX_EMPTY_POLL) && (devc->status == DSL_START)) { devc->mstatus.captured_cnt0 = 0; rd_cmd.header.dest = DSL_CTL_I2C_STATUS; rd_cmd.header.offset = 0; rd_cmd.header.size = 4; rd_cmd.data = (unsigned char*)&devc->mstatus; if ((ret = command_ctl_rd(usb->devhdl, rd_cmd)) != SR_OK) sr_err("Failed to get progress infos."); devc->empty_poll_count = 0; } // overflow check if (devc->stream) { if (devc->empty_poll_count > MAX_EMPTY_POLL) { rd_cmd.header.dest = DSL_CTL_HW_STATUS; rd_cmd.header.size = 1; hw_info = 0; rd_cmd.data = &hw_info; if ((ret = command_ctl_rd(usb->devhdl, rd_cmd)) != SR_OK) sr_err("Failed to get hardware infos."); else devc->overflow = (hw_info & bmSYS_OVERFLOW) != 0; if (devc->overflow) report_overflow(devc); devc->empty_poll_count = 0; } } if (devc->status == DSL_FINISH) { /* Remove polling */ remove_sources(devc); } devc->trf_completed = 0; return TRUE; } static int dev_acquisition_start(struct sr_dev_inst *sdi, void *cb_data) { (void)cb_data; struct DSL_context *devc; struct sr_usb_dev_inst *usb; struct drv_context *drvc; const struct libusb_pollfd **lupfd; unsigned int i; int ret; struct ctl_wr_cmd wr_cmd; if (sdi->status != SR_ST_ACTIVE) return SR_ERR_DEV_CLOSED; drvc = di->priv; devc = sdi->priv; usb = sdi->conn; //devc->cb_data = cb_data; devc->cb_data = sdi; devc->num_samples = 0; devc->num_bytes = 0; devc->empty_transfer_count = 0; devc->empty_poll_count = 0; devc->status = DSL_INIT; devc->num_transfers = 0; devc->submitted_transfers = 0; devc->actual_samples = (devc->limit_samples + SAMPLES_ALIGN) & ~SAMPLES_ALIGN; devc->actual_bytes = devc->actual_samples / DSLOGIC_ATOMIC_SAMPLES * dsl_en_ch_num(sdi) * DSLOGIC_ATOMIC_SIZE; devc->abort = FALSE; devc->mstatus_valid = FALSE; devc->mstatus.captured_cnt0 = 0; devc->mstatus.captured_cnt1 = 0; devc->mstatus.captured_cnt2 = 0; devc->mstatus.captured_cnt3 = 0; devc->mstatus.trig_hit = 0; devc->overflow = FALSE; /* Configures devc->trigger_* and devc->sample_wide */ if (dsl_configure_probes(sdi) != SR_OK) { sr_err("%s: Failed to configure probes.", __func__); return SR_ERR; } /* Stop Previous GPIF acquisition */ wr_cmd.header.dest = DSL_CTL_STOP; wr_cmd.header.size = 0; if ((ret = command_ctl_wr(usb->devhdl, wr_cmd)) != SR_OK) { sr_err("%s: Stop DSLogic acquisition failed!", __func__); return ret; } else { sr_info("%s: Stop Previous DSLogic acquisition!", __func__); } /* Setting FPGA before acquisition start*/ if ((ret = dsl_fpga_arm(sdi)) != SR_OK) { sr_err("%s: Arm FPGA failed!", __func__); return ret; } /* * settings must be updated before acquisition */ if (sdi->mode == DSO) { devc->trigger_hpos = devc->trigger_hrate * dsl_en_ch_num(sdi) * devc->limit_samples / 200.0; ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_HORIZ_TRIGGERPOS)); if (ret != SR_OK) sr_dbg("%s: setting DSO Horiz Trigger Position to %d failed", __func__, devc->trigger_hpos); } /* setup and submit usb transfer */ if ((ret = dsl_start_transfers(devc->cb_data)) != SR_OK) { sr_err("%s: Could not submit usb transfer" "(%d)%d", __func__, ret, errno); return ret; } /* setup callback function for data transfer */ lupfd = libusb_get_pollfds(drvc->sr_ctx->libusb_ctx); for (i = 0; lupfd[i]; i++); if (!(devc->usbfd = g_try_malloc(sizeof(struct libusb_pollfd) * (i + 1)))) return SR_ERR; for (i = 0; lupfd[i]; i++) { sr_source_add(lupfd[i]->fd, lupfd[i]->events, dsl_get_timeout(sdi), receive_data, sdi); devc->usbfd[i] = lupfd[i]->fd; } devc->usbfd[i] = -1; free(lupfd); wr_cmd.header.dest = DSL_CTL_START; wr_cmd.header.size = 0; if ((ret = command_ctl_wr(usb->devhdl, wr_cmd)) != SR_OK) { devc->status = DSL_ERROR; devc->abort = TRUE; return ret; } devc->status = DSL_START; /* Send header packet to the session bus. */ //std_session_send_df_header(cb_data, LOG_PREFIX); std_session_send_df_header(sdi, LOG_PREFIX); return SR_OK; } static int dev_acquisition_stop(const struct sr_dev_inst *sdi, void *cb_data) { int ret = dsl_dev_acquisition_stop(sdi, cb_data); return ret; } static int dev_status_get(const struct sr_dev_inst *sdi, struct sr_status *status, gboolean prg) { int ret = dsl_dev_status_get(sdi, status, prg); return ret; } SR_PRIV int sr_dslogic_option_value_to_code(const struct sr_dev_inst *sdi, int config_id, const char *value) { int num; int i; int n; struct DSL_context *devc; char *list_text; char *cn_name; assert(sdi); assert(sdi->priv); devc = sdi->priv; list_text = NULL; cn_name = NULL; if (config_id == SR_CONF_CHANNEL_MODE) { for (i = 0; i < ARRAY_SIZE(channel_modes); i++) { list_text = channel_modes[i].descr; if (devc->profile->dev_caps.channels & (1 << i)) { if (strcmp(list_text, value) == 0) return channel_modes[i].id; if (i < ARRAY_SIZE(channel_mode_cn_map)){ if (channel_modes[i].id != channel_mode_cn_map[i].id) assert(0); cn_name = channel_mode_cn_map[i].name; if (strcmp(cn_name, value) == 0) return channel_modes[i].id; } } } sr_err("Unkown text value:%s, config id:%d", value, config_id); return -1; } num = sizeof(lang_text_map) / sizeof(lang_text_map[0]); return sr_option_value_to_code(config_id, value, &lang_text_map, num); } SR_PRIV struct sr_dev_driver DSLogic_driver_info = { .name = "DSLogic", .longname = "DSLogic (generic driver for DSLogic LA)", .api_version = 1, .driver_type = DRIVER_TYPE_HARDWARE, .init = init, .cleanup = cleanup, .scan = scan, .dev_mode_list = dev_mode_list, .config_get = config_get, .config_set = config_set, .config_list = config_list, .dev_open = dev_open, .dev_close = dev_close, .dev_destroy = dev_destroy, .dev_status_get = dev_status_get, .dev_acquisition_start = dev_acquisition_start, .dev_acquisition_stop = dev_acquisition_stop, .priv = NULL, };