## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2014 Gump Yang ## Copyright (C) 2019 DreamSourceLab ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see . ## import sigrokdecode as srd from .lists import * class SamplerateError(Exception): pass class Decoder(srd.Decoder): api_version = 3 id = 'ir_nec' name = 'IR NEC' longname = 'IR NEC' desc = 'NEC infrared remote control protocol.' license = 'gplv2+' inputs = ['logic'] outputs = [] tags = ['IR'] channels = ( {'id': 'ir', 'name': 'IR', 'desc': 'Data line'}, ) options = ( {'id': 'polarity', 'desc': 'Polarity', 'default': 'active-low', 'values': ('active-low', 'active-high')}, {'id': 'cd_freq', 'desc': 'Carrier Frequency', 'default': 0}, ) annotations = ( ('bit', 'Bit'), ('agc-pulse', 'AGC pulse'), ('longpause', 'Long pause'), ('shortpause', 'Short pause'), ('stop-bit', 'Stop bit'), ('leader-code', 'Leader code'), ('addr', 'Address'), ('addr-inv', 'Address#'), ('cmd', 'Command'), ('cmd-inv', 'Command#'), ('repeat-code', 'Repeat code'), ('remote', 'Remote'), ('warnings', 'Warnings'), ) annotation_rows = ( ('bits', 'Bits', (0, 1, 2, 3, 4)), ('fields', 'Fields', (5, 6, 7, 8, 9, 10)), ('remote', 'Remote', (11,)), ('warnings', 'Warnings', (12,)), ) def putx(self, data): self.put(self.ss_start, self.samplenum, self.out_ann, data) def putb(self, data): self.put(self.ss_bit, self.samplenum, self.out_ann, data) def putd(self, data): name = self.state.title() d = {'ADDRESS': 6, 'ADDRESS#': 7, 'COMMAND': 8, 'COMMAND#': 9} s = {'ADDRESS': ['ADDR', 'A'], 'ADDRESS#': ['ADDR#', 'A#'], 'COMMAND': ['CMD', 'C'], 'COMMAND#': ['CMD#', 'C#']} self.putx([d[self.state], ['%s: 0x%02X' % (name, data), '%s: 0x%02X' % (s[self.state][0], data), '%s: 0x%02X' % (s[self.state][1], data), s[self.state][1]]]) def putstop(self, ss): self.put(ss, ss + self.stop, self.out_ann, [4, ['Stop bit', 'Stop', 'St', 'S']]) def putpause(self, p): self.put(self.ss_start, self.ss_other_edge, self.out_ann, [1, ['AGC pulse', 'AGC', 'A']]) idx = 2 if p == 'Long' else 3 self.put(self.ss_other_edge, self.samplenum, self.out_ann, [idx, [p + ' pause', '%s-pause' % p[0], '%sP' % p[0], 'P']]) def putremote(self): dev = address.get(self.addr, 'Unknown device') buttons = command.get(self.addr, None) if buttons is None: btn = ['Unknown', 'Unk'] else: btn = buttons.get(self.cmd, ['Unknown', 'Unk']) self.put(self.ss_remote, self.ss_bit + self.stop, self.out_ann, [11, ['%s: %s' % (dev, btn[0]), '%s: %s' % (dev, btn[1]), '%s' % btn[1]]]) def __init__(self): self.reset() def reset(self): self.state = 'IDLE' self.ss_bit = self.ss_start = self.ss_other_edge = self.ss_remote = 0 self.data = self.count = self.active = None self.addr = self.cmd = None def start(self): self.out_ann = self.register(srd.OUTPUT_ANN) self.active = 0 if self.options['polarity'] == 'active-low' else 1 def metadata(self, key, value): if key == srd.SRD_CONF_SAMPLERATE: self.samplerate = value self.tolerance = 0.05 # +/-5% self.lc = int(self.samplerate * 0.0135) - 1 # 13.5ms self.rc = int(self.samplerate * 0.01125) - 1 # 11.25ms self.dazero = int(self.samplerate * 0.001125) - 1 # 1.125ms self.daone = int(self.samplerate * 0.00225) - 1 # 2.25ms self.stop = int(self.samplerate * 0.000652) - 1 # 0.652ms def compare_with_tolerance(self, measured, base): return (measured >= base * (1 - self.tolerance) and measured <= base * (1 + self.tolerance)) def handle_bit(self, tick): ret = None if self.compare_with_tolerance(tick, self.dazero): ret = 0 elif self.compare_with_tolerance(tick, self.daone): ret = 1 if ret in (0, 1): self.putb([0, ['%d' % ret]]) self.data |= (ret << self.count) # LSB-first self.count = self.count + 1 self.ss_bit = self.samplenum def data_ok(self): ret, name = (self.data >> 8) & (self.data & 0xff), self.state.title() if self.count == 8: if self.state == 'ADDRESS': self.addr = self.data if self.state == 'COMMAND': self.cmd = self.data self.putd(self.data) self.ss_start = self.samplenum return True if ret == 0: self.putd(self.data >> 8) else: self.putx([12, ['%s error: 0x%04X' % (name, self.data)]]) self.data = self.count = 0 self.ss_bit = self.ss_start = self.samplenum return ret == 0 def decode(self): if not self.samplerate: raise SamplerateError('Cannot decode without samplerate.') cd_count = None if self.options['cd_freq']: cd_count = int(self.samplerate / self.options['cd_freq']) + 1 prev_ir = None while True: # Detect changes in the presence of an active input signal. # The decoder can either be fed an already filtered RX signal # or optionally can detect the presence of a carrier. Periods # of inactivity (signal changes slower than the carrier freq, # if specified) pass on the most recently sampled level. This # approach works for filtered and unfiltered input alike, and # only slightly extends the active phase of input signals with # carriers included by one period of the carrier frequency. # IR based communication protocols can cope with this slight # inaccuracy just fine by design. Enabling carrier detection # on already filtered signals will keep the length of their # active period, but will shift their signal changes by one # carrier period before they get passed to decoding logic. if cd_count: (cur_ir,) = self.wait([{0: 'e'}, {'skip': cd_count}]) if (self.matched & (0b1 << 0)): cur_ir = self.active if cur_ir == prev_ir: continue prev_ir = cur_ir self.ir = cur_ir else: (self.ir,) = self.wait({0: 'e'}) if self.ir != self.active: # Save the non-active edge, then wait for the next edge. self.ss_other_edge = self.samplenum continue b = self.samplenum - self.ss_bit # State machine. if self.state == 'IDLE': if self.compare_with_tolerance(b, self.lc): self.putpause('Long') self.putx([5, ['Leader code', 'Leader', 'LC', 'L']]) self.ss_remote = self.ss_start self.data = self.count = 0 self.state = 'ADDRESS' elif self.compare_with_tolerance(b, self.rc): self.putpause('Short') self.putstop(self.samplenum) self.samplenum += self.stop self.putx([10, ['Repeat code', 'Repeat', 'RC', 'R']]) self.data = self.count = 0 self.ss_bit = self.ss_start = self.samplenum elif self.state == 'ADDRESS': self.handle_bit(b) if self.count == 8: self.state = 'ADDRESS#' if self.data_ok() else 'IDLE' elif self.state == 'ADDRESS#': self.handle_bit(b) if self.count == 16: self.state = 'COMMAND' if self.data_ok() else 'IDLE' elif self.state == 'COMMAND': self.handle_bit(b) if self.count == 8: self.state = 'COMMAND#' if self.data_ok() else 'IDLE' elif self.state == 'COMMAND#': self.handle_bit(b) if self.count == 16: self.state = 'STOP' if self.data_ok() else 'IDLE' elif self.state == 'STOP': self.putstop(self.ss_bit) self.putremote() self.ss_bit = self.ss_start = self.samplenum self.state = 'IDLE'