## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2016 Fabian J. Stumpf ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see . ## import sigrokdecode as srd class Decoder(srd.Decoder): api_version = 2 id = 'dmx512' name = 'DMX512' longname = 'Digital MultipleX 512' desc = 'Professional lighting control protocol.' license = 'gplv2+' inputs = ['logic'] outputs = ['dmx512'] channels = ( {'id': 'dmx', 'name': 'DMX data', 'desc': 'Any DMX data line'}, ) annotations = ( ('bit', 'Bit'), ('break', 'Break'), ('mab', 'Mark after break'), ('startbit', 'Start bit'), ('stopbits', 'Stop bit'), ('startcode', 'Start code'), ('channel', 'Channel'), ('interframe', 'Interframe'), ('interpacket', 'Interpacket'), ('data', 'Data'), ('error', 'Error'), ) annotation_rows = ( ('name', 'Logical', (1, 2, 5, 6, 7, 8)), ('data', 'Data', (9,)), ('bits', 'Bits', (0, 3, 4)), ('errors', 'Errors', (10,)), ) def __init__(self): self.samplerate = None self.sample_usec = None self.samplenum = -1 self.run_start = -1 self.run_bit = 0 self.state = 'FIND BREAK' def start(self): self.out_ann = self.register(srd.OUTPUT_ANN) def metadata(self, key, value): if key == srd.SRD_CONF_SAMPLERATE: self.samplerate = value self.sample_usec = 1 / value * 1000000 self.skip_per_bit = int(4 / self.sample_usec) def putr(self, data): self.put(self.run_start, self.samplenum, self.out_ann, data) def decode(self, ss, es, data): if not self.samplerate: raise SamplerateError('Cannot decode without samplerate.') for (self.samplenum, pins) in data: data.itercnt += 1 # Seek for an interval with no state change with a length between # 88 and 1000000 us (BREAK). if self.state == 'FIND BREAK': if self.run_bit == pins[0]: continue runlen = (self.samplenum - self.run_start) * self.sample_usec if runlen > 88 and runlen < 1000000: self.putr([1, ['Break']]) self.bit_break = self.run_bit self.state = 'MARK MAB' self.channel = 0 elif runlen >= 1000000: # Error condition. self.putr([10, ['Invalid break length']]) self.run_bit = pins[0] self.run_start = self.samplenum # Directly following the BREAK is the MARK AFTER BREAK. elif self.state == 'MARK MAB': if self.run_bit == pins[0]: continue self.putr([2, ['MAB']]) self.state = 'READ BYTE' self.channel = 0 self.bit = 0 self.aggreg = pins[0] self.run_start = self.samplenum # Mark and read a single transmitted byte # (start bit, 8 data bits, 2 stop bits). elif self.state == 'READ BYTE': self.next_sample = self.run_start + (self.bit + 1) * self.skip_per_bit self.aggreg += pins[0] if self.samplenum != self.next_sample: continue bit_value = 0 if round(self.aggreg/self.skip_per_bit) == self.bit_break else 1 if self.bit == 0: self.byte = 0 self.putr([3, ['Start bit']]) if bit_value != 0: # (Possibly) invalid start bit, mark but don't fail. self.put(self.samplenum, self.samplenum, self.out_ann, [10, ['Invalid start bit']]) elif self.bit >= 9: self.put(self.samplenum - self.skip_per_bit, self.samplenum, self.out_ann, [4, ['Stop bit']]) if bit_value != 1: # Invalid stop bit, mark. self.put(self.samplenum, self.samplenum, self.out_ann, [10, ['Invalid stop bit']]) if self.bit == 10: # On invalid 2nd stop bit, search for new break. self.run_bit = pins[0] self.state = 'FIND BREAK' else: # Label and process one bit. self.put(self.samplenum - self.skip_per_bit, self.samplenum, self.out_ann, [0, [str(bit_value)]]) self.byte |= bit_value << (self.bit - 1) # Label a complete byte. if self.bit == 10: if self.channel == 0: d = [5, ['Start code']] else: d = [6, ['Channel ' + str(self.channel)]] self.put(self.run_start, self.next_sample, self.out_ann, d) self.put(self.run_start + self.skip_per_bit, self.next_sample - 2 * self.skip_per_bit, self.out_ann, [9, [str(self.byte) + ' / ' + \ str(hex(self.byte))]]) # Continue by scanning the IFT. self.channel += 1 self.run_start = self.samplenum self.run_bit = pins[0] self.state = 'MARK IFT' self.aggreg = pins[0] self.bit += 1 # Mark the INTERFRAME-TIME between bytes / INTERPACKET-TIME between packets. elif self.state == 'MARK IFT': if self.run_bit == pins[0]: continue if self.channel > 512: self.putr([8, ['Interpacket']]) self.state = 'FIND BREAK' self.run_bit = pins[0] self.run_start = self.samplenum else: self.putr([7, ['Interframe']]) self.state = 'READ BYTE' self.bit = 0 self.run_start = self.samplenum