2022-06-30 16:28:48 +08:00

2082 lines
84 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
* Copyright (C) 2013 DreamSourceLab <dreamsourcelab@dreamsourcelab.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "../../libsigrok.h"
#include "../../libsigrok-internal.h"
#include "dsl.h"
#include "command.h"
enum {
/** Normal */
OP_NORMAL = 0,
/** Internal pattern test mode */
OP_INTEST = 1,
};
static const char *opmodes_cn[] = {
"正常",
"内部测试",
};
static const char *opmodes[] = {
"Normal",
"Internal Test",
};
enum {
BW_FULL = 0,
BW_20M = 1,
};
static const char *bandwidths_cn[] = {
"全带宽",
"20MHz",
};
static const char *bandwidths[] = {
"Full Bandwidth",
"20MHz",
};
static const int32_t hwoptions[] = {
SR_CONF_OPERATION_MODE,
SR_CONF_BANDWIDTH_LIMIT,
};
static const int32_t sessions_dso[] = {
SR_CONF_OPERATION_MODE,
SR_CONF_TIMEBASE,
SR_CONF_TRIGGER_SLOPE,
SR_CONF_TRIGGER_SOURCE,
SR_CONF_TRIGGER_CHANNEL,
SR_CONF_HORIZ_TRIGGERPOS,
SR_CONF_TRIGGER_HOLDOFF,
SR_CONF_TRIGGER_MARGIN,
};
static const int32_t sessions_daq[] = {
SR_CONF_SAMPLERATE,
SR_CONF_LIMIT_SAMPLES,
SR_CONF_OPERATION_MODE,
SR_CONF_TIMEBASE,
SR_CONF_TRIGGER_SLOPE,
SR_CONF_TRIGGER_SOURCE,
SR_CONF_TRIGGER_CHANNEL,
SR_CONF_HORIZ_TRIGGERPOS,
SR_CONF_TRIGGER_HOLDOFF,
SR_CONF_TRIGGER_MARGIN,
};
static const uint8_t zero_base_addr = 0x40;
static const uint8_t zero_big_addr = 0x20;
SR_PRIV struct sr_dev_driver DSCope_driver_info;
static struct sr_dev_driver *di = &DSCope_driver_info;
static const char ** get_opmodes(struct DSL_context *devc)
{
if (devc->language == LANGUAGE_CN)
return opmodes_cn;
else
return opmodes;
}
static const char ** get_bandwidths(struct DSL_context *devc)
{
if (devc->language == LANGUAGE_CN)
return bandwidths_cn;
else
return bandwidths;
}
static uint16_t get_default_preoff(const struct sr_dev_inst *sdi, const struct sr_channel* ch)
{
int i;
struct DSL_context *devc = sdi->priv;
for (i = 0; vga_defaults[i].id; i++) {
if (vga_defaults[i].id == devc->profile->dev_caps.vga_id &&
vga_defaults[i].key == ch->vdiv) {
if (ch->index == 1)
return vga_defaults[i].preoff_comp;
else
return vga_defaults[i].preoff;
}
}
return 0;
}
static struct DSL_context *DSCope_dev_new(const struct DSL_profile *prof)
{
struct DSL_context *devc;
unsigned int i;
if (!(devc = g_try_malloc(sizeof(struct DSL_context)))) {
sr_err("Device context malloc failed.");
return NULL;
}
for (i = 0; i < ARRAY_SIZE(channel_modes); i++)
assert(channel_modes[i].id == i);
devc->channel = NULL;
devc->profile = prof;
devc->fw_updated = 0;
devc->cur_samplerate = devc->profile->dev_caps.default_samplerate;
devc->limit_samples = devc->profile->dev_caps.default_samplelimit;
devc->clock_type = FALSE;
devc->clock_edge = FALSE;
devc->instant = FALSE;
devc->op_mode = OP_NORMAL;
devc->test_mode = SR_TEST_NONE;
devc->stream = FALSE;
devc->ch_mode = devc->profile->dev_caps.default_channelmode;
devc->th_level = SR_TH_3V3;
devc->filter = SR_FILTER_NONE;
devc->timebase = 10000;
devc->trigger_slope = DSO_TRIGGER_RISING;
devc->trigger_source = DSO_TRIGGER_AUTO;
devc->trigger_holdoff = 0;
devc->trigger_hpos = 0x0;
devc->trigger_hrate = 0;
devc->zero = FALSE;
devc->zero_branch = FALSE;
devc->zero_comb_fgain = FALSE;
devc->zero_comb = FALSE;
devc->tune = FALSE;
devc->data_lock = FALSE;
devc->cali = FALSE;
devc->trigger_margin = 8;
devc->trigger_channel = 0;
devc->rle_mode = FALSE;
devc->status = DSL_FINISH;
devc->bw_limit = BW_FULL;
dsl_adjust_samplerate(devc);
return devc;
}
static int dev_clear(void)
{
return std_dev_clear(di, NULL);
}
static int init(struct sr_context *sr_ctx)
{
return std_hw_init(sr_ctx, di, LOG_PREFIX);
}
static GSList *scan(GSList *options)
{
struct drv_context *drvc;
struct DSL_context *devc;
struct sr_dev_inst *sdi;
struct sr_usb_dev_inst *usb;
struct sr_config *src;
const struct DSL_profile *prof;
GSList *l, *devices, *conn_devices;
struct libusb_device_descriptor des;
libusb_device **devlist;
int devcnt, ret, i, j;
const char *conn;
enum libusb_speed usb_speed;
drvc = di->priv;
conn = NULL;
for (l = options; l; l = l->next) {
src = l->data;
switch (src->key) {
case SR_CONF_CONN:
conn = g_variant_get_string(src->data, NULL);
break;
}
}
if (conn)
conn_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn);
else
conn_devices = NULL;
/* Find all DSCope compatible devices and upload firmware to them. */
devices = NULL;
libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist);
for (i = 0; devlist[i]; i++) {
if (conn) {
usb = NULL;
for (l = conn_devices; l; l = l->next) {
usb = l->data;
if (usb->bus == libusb_get_bus_number(devlist[i])
&& usb->address == libusb_get_device_address(devlist[i]))
break;
}
if (!l)
/* This device matched none of the ones that
* matched the conn specification. */
continue;
}
if ((ret = libusb_get_device_descriptor( devlist[i], &des)) != 0) {
sr_warn("Failed to get device descriptor: %s.",
libusb_error_name(ret));
continue;
}
usb_speed = libusb_get_device_speed( devlist[i]);
if ((usb_speed != LIBUSB_SPEED_HIGH) &&
(usb_speed != LIBUSB_SPEED_SUPER))
continue;
prof = NULL;
for (j = 0; supported_DSCope[j].vid; j++) {
if (des.idVendor == supported_DSCope[j].vid &&
des.idProduct == supported_DSCope[j].pid &&
usb_speed == supported_DSCope[j].usb_speed) {
prof = &supported_DSCope[j];
}
}
/* Skip if the device was not found. */
if (!prof)
continue;
devcnt = g_slist_length(drvc->instances);
devc = DSCope_dev_new(prof);
if (!devc)
return NULL;
sdi = sr_dev_inst_new(channel_modes[devc->ch_mode].mode, devcnt, SR_ST_INITIALIZING,
prof->vendor, prof->model, prof->model_version);
if (!sdi) {
g_free(devc);
return NULL;
}
sdi->priv = devc;
sdi->driver = di;
drvc->instances = g_slist_append(drvc->instances, sdi);
//devices = g_slist_append(devices, sdi);
/* Fill in probelist according to this device's profile. */
if (dsl_setup_probes(sdi, channel_modes[devc->ch_mode].num) != SR_OK)
return NULL;
if (dsl_check_conf_profile(devlist[i])) {
/* Already has the firmware, so fix the new address. */
sr_dbg("Found an DSCope device.");
sdi->status = SR_ST_INACTIVE;
sdi->inst_type = SR_INST_USB;
sdi->conn = sr_usb_dev_inst_new(libusb_get_bus_number(devlist[i]),
libusb_get_device_address(devlist[i]), NULL);
/* only report device after firmware is ready */
devices = g_slist_append(devices, sdi);
} else {
char *firmware;
if (!(firmware = g_try_malloc(strlen(DS_RES_PATH)+strlen(prof->firmware)+1))) {
sr_err("Firmware path malloc error!");
return NULL;
}
strcpy(firmware, DS_RES_PATH);
strcat(firmware, prof->firmware);
if (ezusb_upload_firmware(devlist[i], USB_CONFIGURATION,
firmware) == SR_OK)
/* Store when this device's FW was updated. */
devc->fw_updated = g_get_monotonic_time();
else
sr_err("Firmware upload failed for "
"device %d.", devcnt);
g_free(firmware);
sdi->inst_type = SR_INST_USB;
sdi->conn = sr_usb_dev_inst_new (libusb_get_bus_number(devlist[i]),
0xff, NULL);
}
}
libusb_free_device_list(devlist, 1);
g_slist_free_full(conn_devices, (GDestroyNotify)sr_usb_dev_inst_free);
return devices;
}
static GSList *dev_list(void)
{
return ((struct drv_context *)(di->priv))->instances;
}
static const GSList *dev_mode_list(const struct sr_dev_inst *sdi)
{
return dsl_mode_list(sdi);
}
static uint64_t dso_vga(const struct sr_channel* ch)
{
int i;
for (i = 0; ch->vga_ptr && (ch->vga_ptr+i)->id; i++) {
if ((ch->vga_ptr+i)->key == ch->vdiv)
return (ch->vga_ptr+i)->vgain;
}
return 0;
}
static uint64_t dso_preoff(const struct sr_channel* ch)
{
int i;
for (i = 0; ch->vga_ptr && (ch->vga_ptr+i)->id; i++) {
if ((ch->vga_ptr+i)->key == ch->vdiv)
return (ch->vga_ptr+i)->preoff;
}
return 0;
}
static uint64_t dso_offset(const struct sr_dev_inst *sdi, const struct sr_channel* ch)
{
uint64_t pwm_off = 0;
int offset_coarse, offset_fine;
int trans_coarse, trans_fine;
struct DSL_context *devc = sdi->priv;
const double offset_mid = (1 << (ch->bits - 1));
const double offset_max = ((1 << ch->bits) - 1.0);
const uint64_t offset = devc->zero ? ch->zero_offset : ch->offset;
double comb_off = (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_HMCAD1511) ? 0.57 / (pow(10, 24.0*ch->comb_comp/20/4096) - 1) :
2.0 / (pow(10, 24.0*ch->comb_comp/20/4096) - 1);
// const double comb_compensate = ((devc->profile->dev_caps.feature_caps & CAPS_FEATURE_HMCAD1511) &&
// (dsl_en_ch_num(sdi) == 1))? (offset - offset_mid) / comb_off : 0;
const double comb_compensate = ((ch->comb_comp != 0) && (dsl_en_ch_num(sdi) == 1)) ? (offset - offset_mid) / comb_off : 0;
if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_PREOFF) {
trans_coarse = (ch->vpos_trans & 0xFF00) >> 8;
trans_fine = (ch->vpos_trans & 0x00FF);
const double voltage = (offset_mid - offset) / offset_max * ch->vdiv * DS_CONF_DSO_VDIVS;
if (ch->vdiv < 500) {
offset_coarse = floor(-voltage*DSCOPE_TRANS_CMULTI/trans_coarse + 0.5);
offset_fine = floor((voltage + offset_coarse*trans_coarse/DSCOPE_TRANS_CMULTI)*1000.0/trans_fine + 0.5);
} else {
offset_coarse = floor(-voltage/trans_coarse + 0.5);
offset_fine = floor((voltage + offset_coarse*trans_coarse)*DSCOPE_TRANS_FMULTI/trans_fine + 0.5);
}
} else {
pwm_off = (offset + comb_compensate) / offset_max * ch->vpos_trans;
}
const uint64_t preoff = dso_preoff(ch);
if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_PREOFF)
return (offset << 32) +
((offset_coarse + DSCOPE_CONSTANT_BIAS + (preoff>>10)) << 16) + offset_fine +
(preoff & 0x03ff);
else
return (offset << 32) +
pwm_off + preoff;
}
static uint64_t dso_cmd_gen(const struct sr_dev_inst *sdi, struct sr_channel* ch, int id)
{
struct DSL_context *devc;
uint64_t cmd = 0;
uint64_t offset;
GSList *l;
const int ch_bit = 7;
devc = sdi->priv;
switch (id) {
case SR_CONF_PROBE_EN:
case SR_CONF_PROBE_COUPLING:
if (sdi->mode == ANALOG || dsl_en_ch_num(sdi) == 2) {
cmd += 0x0E00;
} else if (dsl_en_ch_num(sdi) == 1) {
if (((ch->index == 0) && ch->enabled) || ((ch->index == 1) && !ch->enabled))
cmd += 0x1600;
else if (((ch->index == 1) && ch->enabled) || ((ch->index == 0) && !ch->enabled))
cmd += 0x1A00;
} else {
return 0x0;
}
cmd += ch->index << ch_bit;
if (devc->zero || ch->coupling == SR_DC_COUPLING)
cmd += 0x100;
else if (ch->coupling == SR_GND_COUPLING)
cmd &= 0xFFFFFDFF;
break;
case SR_CONF_PROBE_VDIV:
case SR_CONF_TIMEBASE:
cmd += 0x8;
cmd += ch->index << ch_bit;
// --VGAIN
uint64_t vgain = dso_vga(ch);
if ((ch->comb_comp != 0) && (dsl_en_ch_num(sdi) == 1))
vgain += (uint64_t)(ch->comb_comp) << 8;
cmd += vgain;
break;
case SR_CONF_PROBE_OFFSET:
cmd += 0x10;
cmd += ch->index << ch_bit;
offset = dso_offset(sdi, ch);
cmd += (offset << 8);
break;
case SR_CONF_SAMPLERATE:
cmd += 0x18;
uint32_t divider = devc->zero ? 0x1 : (uint32_t)ceil(channel_modes[devc->ch_mode].max_samplerate * 1.0 / devc->cur_samplerate / dsl_en_ch_num(sdi));
cmd += divider << 8;
break;
case SR_CONF_HORIZ_TRIGGERPOS:
cmd += 0x20;
cmd += ((uint64_t)devc->trigger_hpos << 8);
break;
case SR_CONF_TRIGGER_SLOPE:
cmd += 0x28;
cmd += devc->trigger_slope << 8;
break;
case SR_CONF_TRIGGER_SOURCE:
cmd += 0x30;
cmd += devc->zero ? 0x0 : devc->trigger_source << 8;
break;
case SR_CONF_TRIGGER_VALUE:
cmd += 0x38;
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
cmd += probe->trig_value << (8 * (probe->index + 1));
}
break;
case SR_CONF_TRIGGER_MARGIN:
cmd += 0x40;
cmd += ((uint64_t)devc->trigger_margin << 8);
break;
case SR_CONF_TRIGGER_HOLDOFF:
cmd += 0x58;
cmd += ((uint64_t)devc->trigger_holdoff << 8);
break;
case SR_CONF_DSO_SYNC:
cmd = 0xa5a5a500;
break;
default:
cmd = 0xFFFFFFFF;
}
return cmd;
}
static int dso_init(const struct sr_dev_inst *sdi)
{
int ret;
GSList *l;
for(l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, probe, SR_CONF_PROBE_COUPLING));
if (ret != SR_OK) {
sr_err("DSO set coupling of channel %d command failed!", probe->index);
return ret;
}
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, probe, SR_CONF_PROBE_VDIV));
if (ret != SR_OK) {
sr_err("Set VDIV of channel %d command failed!", probe->index);
return ret;
}
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, probe, SR_CONF_PROBE_OFFSET));
if (ret != SR_OK) {
sr_err("Set OFFSET of channel %d command failed!", probe->index);
return ret;
}
}
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, 0, SR_CONF_SAMPLERATE));
if (ret != SR_OK) {
sr_err("Set Sample Rate command failed!");
return ret;
}
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_HORIZ_TRIGGERPOS));
if (ret != SR_OK) {
sr_err("Set Horiz Trigger Position command failed!");
return ret;
}
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_HOLDOFF));
if (ret != SR_OK) {
sr_err("Set Trigger Holdoff Time command failed!");
return ret;
}
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_SLOPE));
if (ret != SR_OK) {
sr_err("Set Trigger Slope command failed!");
return ret;
}
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_SOURCE));
if (ret != SR_OK) {
sr_err("Set Trigger Source command failed!");
return ret;
}
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_VALUE));
if (ret != SR_OK) {
sr_err("Set Trigger Value command failed!");
return ret;
}
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_MARGIN));
if (ret != SR_OK) {
sr_err("Set Trigger Margin command failed!");
return ret;
}
return ret;
}
static gboolean dso_load_eep(struct sr_dev_inst *sdi, struct sr_channel *probe, gboolean fpga_done)
{
struct DSL_context *devc;
int ret, i;
uint16_t real_zero_addr;
devc = sdi->priv;
struct cmd_zero_info zero_info;
uint8_t dst_addr = (zero_base_addr +
probe->index * (sizeof(struct cmd_zero_info) + sizeof(struct cmd_vga_info)));
zero_info.zero_addr = dst_addr;
if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_SEEP)
real_zero_addr = zero_info.zero_addr;
else if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_FLASH)
real_zero_addr = probe->index * DSO_ZERO_PAGE;
else
real_zero_addr = (zero_big_addr << 8) + zero_info.zero_addr;
if ((ret = dsl_rd_nvm(sdi, (unsigned char *)&zero_info, real_zero_addr, sizeof(struct cmd_zero_info))) != SR_OK) {
return FALSE;
sr_err("%s: Send Get Zero command failed!", __func__);
} else {
if (zero_info.zero_addr == dst_addr) {
uint8_t* preoff_ptr = &zero_info.zero_addr + 1;
for (i = 0; probe->vga_ptr && (probe->vga_ptr+i)->id; i++) {
(probe->vga_ptr+i)->preoff = (*(preoff_ptr + 2*i+1) << 8) + *(preoff_ptr + 2*i);
}
if (i != 0) {
probe->comb_diff_top = *(preoff_ptr + 2*i);
probe->comb_diff_bom = *(preoff_ptr + 2*i + 1);
probe->vpos_trans = *(preoff_ptr + 2*i + 2) + (*(preoff_ptr + 2*i + 3) << 8);
probe->comb_comp = *(preoff_ptr + 2*i + 4);
probe->digi_fgain = *(preoff_ptr + 2*i + 5) + (*(preoff_ptr + 2*i + 6) << 8);
probe->cali_fgain0 = dsl_adc_code2fgain(*(preoff_ptr + 2*i + 7));
probe->cali_fgain1 = dsl_adc_code2fgain(*(preoff_ptr + 2*i + 8));
probe->cali_fgain2 = dsl_adc_code2fgain(*(preoff_ptr + 2*i + 9));
probe->cali_fgain3 = dsl_adc_code2fgain(*(preoff_ptr + 2*i + 10));
probe->cali_comb_fgain0 = dsl_adc_code2fgain(*(preoff_ptr + 2*i + 11));
probe->cali_comb_fgain1 = dsl_adc_code2fgain(*(preoff_ptr + 2*i + 12));
probe->cali_comb_fgain2 = dsl_adc_code2fgain(*(preoff_ptr + 2*i + 13));
probe->cali_comb_fgain3 = dsl_adc_code2fgain(*(preoff_ptr + 2*i + 14));
if (!fpga_done) {
const double slope = (probe->comb_diff_bom - probe->comb_diff_top)/(2.0*255.0);
for (i = 0; i < 256; i++) {
ret = dsl_wr_reg(sdi, COMB_ADDR + probe->index*2, i);
int value = i+i*slope+probe->comb_diff_top*0.5+0.5;
value = (value < 0) ? 0 :
(value > 255) ? 255 : value;
ret = dsl_wr_reg(sdi, COMB_ADDR + probe->index*2 + 1, value);
}
}
}
} else {
return FALSE;
}
}
struct cmd_vga_info vga_info;
vga_info.vga_addr = dst_addr + sizeof(struct cmd_zero_info);
if (devc ->profile->dev_caps.feature_caps & CAPS_FEATURE_SEEP)
real_zero_addr = vga_info.vga_addr;
else if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_FLASH)
real_zero_addr = probe->index * DSO_ZERO_PAGE + 1;
else
real_zero_addr = (zero_big_addr << 8) + vga_info.vga_addr;
if ((ret = dsl_rd_nvm(sdi, (unsigned char *)&vga_info, real_zero_addr, sizeof(struct cmd_vga_info))) != SR_OK) {
return FALSE;
sr_err("%s: Send Get Zero command failed!", __func__);
} else {
if (vga_info.vga_addr == dst_addr + sizeof(struct cmd_zero_info)) {
uint16_t* vgain_ptr = &vga_info.vga0;
for (i = 0; probe->vga_ptr && (probe->vga_ptr+i)->id; i++) {
(probe->vga_ptr+i)->vgain = *(vgain_ptr + i) << 8;
}
} else {
return FALSE;
}
}
return TRUE;
}
static int dso_zero(const struct sr_dev_inst *sdi, gboolean reset)
{
struct DSL_context *devc = sdi->priv;
GSList *l;
int ret = SR_OK;
struct sr_usb_dev_inst *usb;
struct libusb_device_handle *hdl;
struct ctl_wr_cmd wr_cmd;
static uint64_t vdiv_back[2] = {0, 0};
struct sr_channel *probe0 = NULL, *probe1 = NULL;
uint16_t offset_top;
if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_HMCAD1511)
offset_top = 15;
else
offset_top = 30;
const uint16_t offset_bom = ((1 << channel_modes[devc->ch_mode].unit_bits) - 1) - offset_top;
const uint16_t offset_mid = (1 << (channel_modes[devc->ch_mode].unit_bits - 1));
const uint16_t max_trans = ((1 << 10) - 1);
#ifdef _WIN32
const int zero_interval = (devc->profile->usb_speed == LIBUSB_SPEED_SUPER) ? 10 : 4;
#else
const int zero_interval = 50;
#endif
const double margin_pass = 0.3;
int end_cnt = 0;
const int branch_done_cnt = (devc->profile->usb_speed == LIBUSB_SPEED_SUPER) ? 10 : 2;
static gboolean warm_done = FALSE;
static gboolean trans_fix_done = FALSE;
static gboolean mid_zero_done = FALSE;
static double margin[2];
//static double offset[2];
double acc_mean = 0;
double acc_mean0 = 0;
double acc_mean1 = 0;
double acc_skew[8];
double acc_max_skew;
if (reset) {
warm_done = FALSE;
trans_fix_done = FALSE;
mid_zero_done = FALSE;
vdiv_back[0] = 0;
vdiv_back[1] = 0;
return SR_OK;
}
if (!devc->mstatus_valid)
return SR_ERR_ARG;
usb = sdi->conn;
hdl = usb->devhdl;
for(l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
if (probe->index == 0)
probe0 = probe;
if (probe->index == 1)
probe1 = probe;
if (vdiv_back[probe->index] == 0)
vdiv_back[probe->index] = probe->vdiv;
}
if (!trans_fix_done && devc->zero_stage == 0) {
ret = SR_OK;
if (!warm_done) {
if (devc->zero_pcnt == 0*zero_interval) {
for(l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
for (int i = 0; (probe->vga_ptr+i)->key; i++)
probe->vdiv = (probe->vga_ptr+i)->key;
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, probe, SR_CONF_PROBE_VDIV));
probe->zero_offset = offset_mid;
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, probe, SR_CONF_PROBE_OFFSET));
}
}
if (!(devc->profile->dev_caps.feature_caps & CAPS_FEATURE_HMCAD1511) ||
(devc->zero_pcnt == 1*zero_interval)) {
warm_done = TRUE;
devc->zero_pcnt = 0*zero_interval-1;
}
} else if (!(devc->profile->dev_caps.feature_caps & CAPS_FEATURE_PREOFF)) {
if (devc->zero_pcnt == 0*zero_interval) {
for(l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
probe->zero_offset = offset_bom;
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, probe, SR_CONF_PROBE_OFFSET));
}
}
if (devc->zero_pcnt == 1*zero_interval) {
margin[0] = (devc->mstatus.ch0_acc_mean * 1.0 / devc->limit_samples);
margin[1] = (devc->mstatus.ch1_acc_mean * 1.0 / devc->limit_samples);
// if (margin[0] >= value_max || margin[1] >= value_max)
// ret = SR_ERR;
}
if (devc->zero_pcnt == 1*zero_interval+1) {
for(l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
probe->zero_offset = offset_top;
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, probe, SR_CONF_PROBE_OFFSET));
}
}
if (devc->zero_pcnt == 2*zero_interval) {
double top0 = (devc->mstatus.ch0_acc_mean * 1.0 / devc->limit_samples);
double top1 = (devc->mstatus.ch1_acc_mean * 1.0 / devc->limit_samples);
// if (top0 <= value_min || top1 <= value_min) {
// ret = SR_ERR;
//} else {
margin[0] -= top0;
margin[1] -= top1;
for(l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
margin[probe->index] -= (offset_bom - offset_top);
if (fabs(margin[probe->index]) > margin_pass) {
margin[probe->index] = margin[probe->index] > 0 ? ceil(margin[probe->index]) : floor(margin[probe->index]);
probe->vpos_trans = min(probe->vpos_trans - margin[probe->index], max_trans);
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, probe0, SR_CONF_PROBE_OFFSET));
} else {
margin[probe->index] = 0;
}
}
trans_fix_done = (margin[0] == 0) && (margin[1] == 0);
devc->zero_pcnt = trans_fix_done ? 0*zero_interval : 0*zero_interval-1;
//}
}
} else {
trans_fix_done = TRUE;
}
if (!trans_fix_done && ret == SR_OK)
devc->zero_pcnt++;
} else if (!mid_zero_done) {
if (devc->zero_pcnt == 0) {
for(l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
probe->vdiv = (probe->vga_ptr+devc->zero_stage)->key;
if (probe->vdiv == 0) {
probe->vdiv = (probe->vga_ptr+devc->zero_stage-1)->key;
mid_zero_done = TRUE;
break;
}
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, probe, SR_CONF_PROBE_VDIV));
probe->zero_offset = offset_mid;
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, probe, SR_CONF_PROBE_OFFSET));
// must after offset setting
probe->vdiv = vdiv_back[probe->index];
}
}
if (devc->zero_pcnt == zero_interval) {
margin[0] = offset_mid - (devc->mstatus.ch0_acc_mean * 1.0 / devc->limit_samples);
margin[1] = offset_mid - (devc->mstatus.ch1_acc_mean * 1.0 / devc->limit_samples);
if (fabs(margin[0]) < margin_pass && fabs(margin[1]) < margin_pass) {
devc->zero_stage++;
} else {
if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_PREOFF) {
for(l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
double trans_coarse = ((probe->vga_ptr+devc->zero_stage)->key < 500) ? (probe->vpos_trans >> 8)/DSCOPE_TRANS_CMULTI : (probe->vpos_trans >> 8);
double trans_fine = ((probe->vga_ptr+devc->zero_stage)->key < 500) ? (probe->vpos_trans & 0x00ff) / 1000.0 : (probe->vpos_trans & 0x00ff) / DSCOPE_TRANS_FMULTI;
double voltage_margin = margin[probe->index] * (probe->vga_ptr+devc->zero_stage)->key * 10 / 255.0;
uint16_t last_preoff = (probe->vga_ptr+devc->zero_stage)->preoff;
int preoff_coarse = floor(voltage_margin / trans_coarse + 0.5);
int preoff_fine = floor(-(voltage_margin - preoff_coarse*trans_coarse)/trans_fine + 0.5);
preoff_coarse = (last_preoff >> 10) + preoff_coarse;
preoff_fine = (last_preoff&0x03ff) + preoff_fine;
(probe->vga_ptr+devc->zero_stage)->preoff = (preoff_coarse << 10) + preoff_fine;
}
} else {
for(l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
(probe->vga_ptr+devc->zero_stage)->preoff += margin[probe->index] > 0 ? ceil(margin[probe->index]) : floor(margin[probe->index]);
}
}
}
devc->zero_pcnt = 0;
} else if (!mid_zero_done) {
devc->zero_pcnt++;
}
} else {
ret = SR_OK;
end_cnt = 0*zero_interval + 1;
if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_HMCAD1511) {
if (!devc->zero_comb_fgain) {
if (devc->zero_pcnt == 0*zero_interval+1) {
devc->zero_branch = TRUE;
probe0->zero_offset = offset_bom;
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, probe0, SR_CONF_PROBE_OFFSET));
probe1->zero_offset = offset_bom;
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, probe1, SR_CONF_PROBE_OFFSET));
dsl_probe_cali_fgain(devc, probe0, 1, FALSE, TRUE);
dsl_probe_cali_fgain(devc, probe1, 1, FALSE, TRUE);
dsl_config_adc_fgain(sdi, 0, probe0->cali_fgain0, probe0->cali_fgain1);
dsl_config_adc_fgain(sdi, 1, probe0->cali_fgain2, probe0->cali_fgain3);
dsl_config_adc_fgain(sdi, 2, probe1->cali_fgain0, probe1->cali_fgain1);
dsl_config_adc_fgain(sdi, 3, probe1->cali_fgain2, probe1->cali_fgain3);
acc_mean0 = 0;
acc_mean1 = 0;
} else if (devc->zero_pcnt == branch_done_cnt*zero_interval) {
acc_mean0 = (devc->mstatus.ch0_acc_mean + devc->mstatus.ch0_acc_mean_p1 +
devc->mstatus.ch0_acc_mean_p2 + devc->mstatus.ch0_acc_mean_p3) / 4.0;
acc_mean1 = (devc->mstatus.ch1_acc_mean + devc->mstatus.ch1_acc_mean_p1 +
devc->mstatus.ch1_acc_mean_p2 + devc->mstatus.ch1_acc_mean_p3) / 4.0;
acc_skew[0] = devc->mstatus.ch0_acc_mean / acc_mean0 - 1;
acc_skew[1] = devc->mstatus.ch0_acc_mean_p1 / acc_mean0 - 1;
acc_skew[2] = devc->mstatus.ch0_acc_mean_p2 / acc_mean0 - 1;
acc_skew[3] = devc->mstatus.ch0_acc_mean_p3 / acc_mean0 - 1;
acc_skew[4] = devc->mstatus.ch1_acc_mean / acc_mean1 - 1;
acc_skew[5] = devc->mstatus.ch1_acc_mean_p1 / acc_mean1 - 1;
acc_skew[6] = devc->mstatus.ch1_acc_mean_p2 / acc_mean1 - 1;
acc_skew[7] = devc->mstatus.ch1_acc_mean_p3 / acc_mean1 - 1;
acc_max_skew = fabs(acc_skew[0]);
for (int i=1; i <8; i++)
acc_max_skew = max(acc_max_skew, fabs(acc_skew[i]));
if ((acc_max_skew > MAX_ACC_VARIANCE) && (dsl_probe_fgain_inrange(probe0, FALSE, acc_skew) ||
dsl_probe_fgain_inrange(probe1, FALSE, acc_skew))) {
devc->zero_pcnt = 0*zero_interval+1;
dsl_probe_cali_fgain(devc, probe0, acc_mean0, FALSE, FALSE);
dsl_probe_cali_fgain(devc, probe1, acc_mean1, FALSE, FALSE);
dsl_config_adc_fgain(sdi, 0, probe0->cali_fgain0, probe0->cali_fgain1);
dsl_config_adc_fgain(sdi, 1, probe0->cali_fgain2, probe0->cali_fgain3);
dsl_config_adc_fgain(sdi, 2, probe1->cali_fgain0, probe1->cali_fgain1);
dsl_config_adc_fgain(sdi, 3, probe1->cali_fgain2, probe1->cali_fgain3);
} else {
if (acc_max_skew <= MAX_ACC_VARIANCE) {
devc->zero_comb_fgain = TRUE;
devc->zero_pcnt = 0*zero_interval;
} else {
devc->zero_pcnt = 0*zero_interval;
dsl_skew_fpga_fgain(sdi, FALSE, acc_skew);
}
}
}
}
if (devc->zero_comb_fgain) {
if (devc->zero_pcnt == 0*zero_interval+1) {
probe0->zero_offset = offset_bom;
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, probe0, SR_CONF_PROBE_OFFSET));
probe1->zero_offset = offset_bom;
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, probe1, SR_CONF_PROBE_OFFSET));
acc_mean = 0;
devc->zero_comb = FALSE;
dsl_probe_cali_fgain(devc, probe0, 1, TRUE, TRUE);
dsl_probe_cali_fgain(devc, probe1, 1, TRUE, TRUE);
dsl_config_adc_fgain(sdi, 0, probe0->cali_comb_fgain0, probe0->cali_comb_fgain1);
dsl_config_adc_fgain(sdi, 1, probe0->cali_comb_fgain2, probe0->cali_comb_fgain3);
dsl_config_adc_fgain(sdi, 2, probe1->cali_comb_fgain0, probe1->cali_comb_fgain1);
dsl_config_adc_fgain(sdi, 3, probe1->cali_comb_fgain2, probe1->cali_comb_fgain3);
} else if (devc->zero_pcnt == 1*zero_interval) {
if (!devc->zero_comb)
devc->zero_pcnt = 0*zero_interval+1;
} else if (devc->zero_pcnt == branch_done_cnt*zero_interval) {
acc_mean = (devc->mstatus.ch0_acc_mean + devc->mstatus.ch0_acc_mean_p1 +
devc->mstatus.ch0_acc_mean_p2 + devc->mstatus.ch0_acc_mean_p3 +
devc->mstatus.ch1_acc_mean + devc->mstatus.ch1_acc_mean_p1 +
devc->mstatus.ch1_acc_mean_p2 + devc->mstatus.ch1_acc_mean_p3) / 8.0;
acc_skew[0] = devc->mstatus.ch0_acc_mean / acc_mean - 1;
acc_skew[1] = devc->mstatus.ch0_acc_mean_p1 / acc_mean - 1;
acc_skew[2] = devc->mstatus.ch0_acc_mean_p2 / acc_mean - 1;
acc_skew[3] = devc->mstatus.ch0_acc_mean_p3 / acc_mean - 1;
acc_skew[4] = devc->mstatus.ch1_acc_mean / acc_mean - 1;
acc_skew[5] = devc->mstatus.ch1_acc_mean_p1 / acc_mean - 1;
acc_skew[6] = devc->mstatus.ch1_acc_mean_p2 / acc_mean - 1;
acc_skew[7] = devc->mstatus.ch1_acc_mean_p3 / acc_mean - 1;
acc_max_skew = fabs(acc_skew[0]);
for (int i=1; i <8; i++)
acc_max_skew = max(acc_max_skew, fabs(acc_skew[i]));
if ((acc_max_skew > MAX_ACC_VARIANCE) && (dsl_probe_fgain_inrange(probe0, TRUE, acc_skew) ||
dsl_probe_fgain_inrange(probe1, TRUE, acc_skew))) {
devc->zero_pcnt = 0*zero_interval+1;
dsl_probe_cali_fgain(devc, probe0, acc_mean, TRUE, FALSE);
dsl_probe_cali_fgain(devc, probe1, acc_mean, TRUE, FALSE);
dsl_config_adc_fgain(sdi, 0, probe0->cali_comb_fgain0, probe0->cali_comb_fgain1);
dsl_config_adc_fgain(sdi, 1, probe0->cali_comb_fgain2, probe0->cali_comb_fgain3);
dsl_config_adc_fgain(sdi, 2, probe1->cali_comb_fgain0, probe1->cali_comb_fgain1);
dsl_config_adc_fgain(sdi, 3, probe1->cali_comb_fgain2, probe1->cali_comb_fgain3);
} else {
if (acc_max_skew <= MAX_ACC_VARIANCE) {
devc->zero_comb_fgain = FALSE;
devc->zero_branch = FALSE;
} else {
devc->zero_pcnt = 0*zero_interval;
dsl_skew_fpga_fgain(sdi, TRUE, acc_skew);
}
}
}
}
end_cnt = branch_done_cnt*zero_interval + 1;
} else {
if (devc->zero_pcnt == 0*zero_interval+1) {
ret = dsl_wr_reg(sdi, COMB_ADDR+6, 0b1101);
wr_cmd.header.dest = DSL_CTL_DSO_EN1;
wr_cmd.data[0] = (uint8_t)~bmCH_CH1;
wr_cmd.header.size = 1;
ret = command_ctl_wr(hdl, wr_cmd);
probe0->zero_offset = offset_top;
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, probe0, SR_CONF_PROBE_OFFSET));
} else if (devc->zero_pcnt == 1*zero_interval) {
probe0->comb_diff_top = ((devc->mstatus.ch0_acc_mean * 2.0 - devc->mstatus.ch1_acc_mean * 2.0) / devc->limit_samples);
probe0->zero_offset = offset_bom;
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, probe0, SR_CONF_PROBE_OFFSET));
} else if (devc->zero_pcnt == 2*zero_interval) {
probe0->comb_diff_bom = ((devc->mstatus.ch0_acc_mean * 2.0 - devc->mstatus.ch1_acc_mean * 2.0) / devc->limit_samples);
}
if (devc->zero_pcnt == 2*zero_interval+1) {
ret = dsl_wr_reg(sdi, COMB_ADDR+6, 0b1110);
wr_cmd.header.dest = DSL_CTL_DSO_EN1;
wr_cmd.data[0] = bmCH_CH1;
wr_cmd.header.size = 1;
ret = command_ctl_wr(hdl, wr_cmd);
wr_cmd.header.dest = DSL_CTL_DSO_EN0;
wr_cmd.data[0] = (uint8_t)~bmCH_CH0;
wr_cmd.header.size = 1;
ret = command_ctl_wr(hdl, wr_cmd);
probe1->zero_offset = offset_top;
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, probe1, SR_CONF_PROBE_OFFSET));
} else if (devc->zero_pcnt == 3*zero_interval) {
probe1->comb_diff_top = ((devc->mstatus.ch1_acc_mean * 2.0 - devc->mstatus.ch0_acc_mean * 2.0) / devc->limit_samples);
probe1->zero_offset = offset_bom;
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, probe1, SR_CONF_PROBE_OFFSET));
} else if (devc->zero_pcnt == 4*zero_interval) {
probe1->comb_diff_bom = ((devc->mstatus.ch1_acc_mean * 2.0 - devc->mstatus.ch0_acc_mean * 2.0) / devc->limit_samples);
}
end_cnt = 4*zero_interval+1;
}
if (ret == SR_OK)
devc->zero_pcnt++;
if (devc->zero_pcnt == end_cnt) {
for(l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
probe->vdiv = vdiv_back[probe->index];
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, probe, SR_CONF_PROBE_VDIV));
// vgain tunning
if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_AUTO_VGAIN) {
if (probe->vga_ptr != NULL) {
for (uint16_t i = 0; devc->profile->dev_caps.vdivs[i]; i++) {
for (uint16_t j = 0; j < ARRAY_SIZE(vga_defaults); j++) {
if (vga_defaults[j].id == devc->profile->dev_caps.vga_id &&
vga_defaults[j].key == devc->profile->dev_caps.vdivs[i]) {
const int64_t cur_trans = probe->vpos_trans;
const int64_t def_trans = devc->profile->dev_caps.default_pwmtrans;
const int64_t vgain_delta = (cur_trans > def_trans) ? ((cur_trans - def_trans) << 8) :
(((cur_trans - def_trans) << 7) & ~0xFFLL);
(probe->vga_ptr+i)->vgain = vga_defaults[j].vgain + vgain_delta;
break;
}
}
}
}
}
}
ret = dsl_wr_reg(sdi, COMB_ADDR+6, 0b0011);
wr_cmd.header.dest = DSL_CTL_DSO_EN0;
wr_cmd.data[0] = bmCH_CH0;
wr_cmd.header.size = 1;
ret = command_ctl_wr(hdl, wr_cmd);
wr_cmd.header.dest = DSL_CTL_DSO_EN1;
wr_cmd.data[0] = bmCH_CH1;
wr_cmd.header.size = 1;
ret = command_ctl_wr(hdl, wr_cmd);
devc->zero = FALSE;
warm_done = FALSE;
trans_fix_done = FALSE;
mid_zero_done = FALSE;
vdiv_back[0] = 0;
vdiv_back[1] = 0;
dso_init(sdi);
}
}
return ret;
}
static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel *ch,
const struct sr_channel_group *cg)
{
unsigned int i;
int ret;
struct DSL_context *devc = sdi->priv;
ret = dsl_config_get(id, data, sdi, ch, cg);
if (ret != SR_OK) {
switch (id) {
case SR_CONF_OPERATION_MODE:
if (!sdi)
return SR_ERR;
*data = g_variant_new_string(get_opmodes(devc)[devc->op_mode]);
break;
case SR_CONF_BANDWIDTH_LIMIT:
if (!sdi)
return SR_ERR;
*data = g_variant_new_string(get_bandwidths(devc)[devc->bw_limit]);
break;
case SR_CONF_CALI:
if (!sdi)
return SR_ERR;
*data = g_variant_new_boolean(devc->cali);
break;
case SR_CONF_TEST:
if (!sdi)
return SR_ERR;
*data = g_variant_new_boolean(FALSE);
break;
case SR_CONF_STREAM:
if (!sdi)
return SR_ERR;
*data = g_variant_new_boolean(devc->stream);
break;
case SR_CONF_MAX_DSO_SAMPLERATE:
if (!sdi)
return SR_ERR;
*data = g_variant_new_uint64(channel_modes[devc->ch_mode].max_samplerate);
break;
case SR_CONF_MAX_DSO_SAMPLELIMITS:
if (!sdi)
return SR_ERR;
*data = g_variant_new_uint64(devc->profile->dev_caps.dso_depth);
break;
case SR_CONF_HW_DEPTH:
if (!sdi)
return SR_ERR;
*data = g_variant_new_uint64(devc->profile->dev_caps.hw_depth / channel_modes[devc->ch_mode].unit_bits);
break;
case SR_CONF_PROBE_VGAIN:
if (!sdi || !ch)
return SR_ERR;
*data = g_variant_new_uint64(dso_vga(ch)>>8);
break;
case SR_CONF_PROBE_COMB_COMP_EN:
if (!sdi)
return SR_ERR;
*data = g_variant_new_boolean((devc->profile->dev_caps.feature_caps & CAPS_FEATURE_HMCAD1511) != 0);
break;
case SR_CONF_PROBE_COMB_COMP:
if (!sdi || !ch)
return SR_ERR;
*data = g_variant_new_int16(ch->comb_comp);
break;
case SR_CONF_PROBE_VGAIN_DEFAULT:
if (!sdi || !ch)
return SR_ERR;
for (i = 0; vga_defaults[i].id; i++) {
if (vga_defaults[i].id == devc->profile->dev_caps.vga_id &&
vga_defaults[i].key == ch->vdiv) {
*data = g_variant_new_uint64(vga_defaults[i].vgain >> 8);
break;
}
}
break;
case SR_CONF_PROBE_VGAIN_RANGE:
if (!sdi)
return SR_ERR;
uint64_t vgain_default = 0;
for (i = 0; vga_defaults[i].id; i++) {
if (vga_defaults[i].id == devc->profile->dev_caps.vga_id &&
vga_defaults[i].key == ch->vdiv) {
vgain_default = vga_defaults[i].vgain;
break;
}
}
vgain_default = (vgain_default>>8) & 0x0FFF;
*data = g_variant_new_uint16(min(CALI_VGAIN_RANGE, vgain_default*2));
break;
case SR_CONF_PROBE_PREOFF:
if (!sdi || !ch)
return SR_ERR;
uint16_t preoff = dso_preoff(ch);
uint16_t preoff_default = get_default_preoff(sdi, ch);
if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_PREOFF) {
int preoff_skew_coarse = (preoff >> 10) - (preoff_default >> 10);
int preoff_skew_fine = (preoff & 0x03ff) - (preoff_default & 0x03ff);
double trans_coarse = (ch->vdiv < 500) ? (ch->vpos_trans >> 8)/DSCOPE_TRANS_CMULTI : (ch->vpos_trans >> 8);
double trans_fine = (ch->vdiv < 500) ? (ch->vpos_trans & 0x00ff) / 1000.0 : (ch->vpos_trans & 0x00ff) / DSCOPE_TRANS_FMULTI;
double preoff_rate = (preoff_skew_coarse*trans_coarse - preoff_skew_fine*trans_fine) / ch->vdiv;
preoff = (preoff_rate * 0.5 + 0.5) * devc->profile->dev_caps.default_pwmmargin;
}
*data = g_variant_new_uint16(preoff);
break;
case SR_CONF_PROBE_PREOFF_DEFAULT:
if (!sdi || !ch)
return SR_ERR;
*data = g_variant_new_uint16(get_default_preoff(sdi, ch));
break;
case SR_CONF_PROBE_PREOFF_MARGIN:
if (!sdi)
return SR_ERR;
*data = g_variant_new_uint16(devc->profile->dev_caps.default_pwmmargin);
break;
case SR_CONF_PROBE_MAP_DEFAULT:
if (!sdi || !ch)
return SR_ERR;
*data = g_variant_new_boolean(ch->map_default);
break;
case SR_CONF_PROBE_MAP_UNIT:
if (!sdi || !ch)
return SR_ERR;
*data = g_variant_new_string(ch->map_unit);
break;
case SR_CONF_PROBE_MAP_MIN:
if (!sdi || !ch)
return SR_ERR;
*data = g_variant_new_double(ch->map_min);
break;
case SR_CONF_PROBE_MAP_MAX:
if (!sdi || !ch)
return SR_ERR;
*data = g_variant_new_double(ch->map_max);
break;
case SR_CONF_VLD_CH_NUM:
if (!sdi)
return SR_ERR;
*data = g_variant_new_int16(channel_modes[devc->ch_mode].vld_num);
break;
default:
return SR_ERR_NA;
}
}
return SR_OK;
}
static int config_set(int id, GVariant *data, struct sr_dev_inst *sdi,
struct sr_channel *ch,
struct sr_channel_group *cg )
{
struct DSL_context *devc;
const char *stropt;
int ret, num_probes;
struct sr_usb_dev_inst *usb;
struct libusb_device_handle *hdl;
struct ctl_wr_cmd wr_cmd;
unsigned int i;
GSList *l;
(void)cg;
if (sdi->status != SR_ST_ACTIVE) {
return SR_ERR;
}
devc = sdi->priv;
usb = sdi->conn;
hdl = usb->devhdl;
ret = dsl_config_set(id, data, sdi, ch, cg);
if (ret == SR_OK)
return ret;
ret = SR_OK;
if (id == SR_CONF_CLOCK_TYPE) {
devc->clock_type = g_variant_get_boolean(data);
} else if (id == SR_CONF_CLOCK_EDGE) {
devc->clock_edge = g_variant_get_boolean(data);
} else if (id == SR_CONF_LIMIT_SAMPLES) {
devc->limit_samples = g_variant_get_uint64(data);
} else if (id == SR_CONF_PROBE_VDIV) {
ch->vdiv = g_variant_get_uint64(data);
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, ch, SR_CONF_PROBE_VDIV));
if (ret == SR_OK)
sr_dbg("%s: setting VDIV of channel %d to %d mv",
__func__, ch->index, ch->vdiv);
else
sr_dbg("%s: setting VDIV of channel %d to %d mv failed",
__func__, ch->index, ch->vdiv);
} else if (id == SR_CONF_PROBE_FACTOR) {
ch->vfactor = g_variant_get_uint64(data);
sr_dbg("%s: setting Factor of channel %d to %d", __func__,
ch->index, ch->vfactor);
} else if (id == SR_CONF_TIMEBASE) {
devc->timebase = g_variant_get_uint64(data);
} else if (id == SR_CONF_PROBE_COUPLING) {
ch->coupling = g_variant_get_byte(data);
if (ch->coupling == SR_GND_COUPLING)
ch->coupling = SR_DC_COUPLING;
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, ch, SR_CONF_PROBE_COUPLING));
if (ret == SR_OK)
sr_dbg("%s: setting AC COUPLING of channel %d to %d",
__func__, ch->index, ch->coupling);
else
sr_dbg("%s: setting AC COUPLING of channel %d to %d failed",
__func__, ch->index, ch->coupling);
} else if (id == SR_CONF_TRIGGER_SLOPE) {
devc->trigger_slope = g_variant_get_byte(data);
if (sdi->mode == DSO) {
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_SLOPE));
}
if (ret == SR_OK)
sr_dbg("%s: setting DSO Trigger Slope to %d",
__func__, devc->trigger_slope);
else
sr_dbg("%s: setting DSO Trigger Slope to %d failed",
__func__, devc->trigger_slope);
} else if (id == SR_CONF_TRIGGER_VALUE) {
ch->trig_value = g_variant_get_byte(data);
if (sdi->mode == DSO) {
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, ch, SR_CONF_TRIGGER_VALUE));
}
if (ret == SR_OK)
sr_dbg("%s: setting channel %d Trigger Value to %d",
__func__, ch->index, ch->trig_value);
else
sr_dbg("%s: setting DSO Trigger Value to %d failed",
__func__, ch->index, ch->trig_value);
} else if (id == SR_CONF_HORIZ_TRIGGERPOS) {
if (sdi->mode == DSO) {
devc->trigger_hrate = g_variant_get_byte(data);
//devc->trigger_hpos = devc->trigger_hrate * dsl_en_ch_num(sdi) * devc->limit_samples / 200.0;
/*
* devc->trigger_hpos should be updated before each acquisition
* because the samplelimits may changed
*/
devc->trigger_hpos = devc->trigger_hrate * dsl_en_ch_num(sdi) * devc->limit_samples / 200.0;
if ((ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_HORIZ_TRIGGERPOS))) == SR_OK)
sr_dbg("%s: setting DSO Horiz Trigger Position to %d",
__func__, devc->trigger_hpos);
else
sr_dbg("%s: setting DSO Horiz Trigger Position to %d failed",
__func__, devc->trigger_hpos);
} else {
devc->trigger_hpos = g_variant_get_byte(data) * devc->limit_samples / 100.0;
}
} else if (id == SR_CONF_TRIGGER_HOLDOFF) {
devc->trigger_holdoff = g_variant_get_uint64(data);
if (sdi->mode == DSO) {
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_HOLDOFF));
}
if (ret == SR_OK)
sr_dbg("%s: setting Trigger Holdoff Time to %d",
__func__, devc->trigger_holdoff);
else
sr_dbg("%s: setting Trigger Holdoff Time to %d failed",
__func__, devc->trigger_holdoff);
} else if (id == SR_CONF_TRIGGER_MARGIN) {
devc->trigger_margin = g_variant_get_byte(data);
if (sdi->mode == DSO) {
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_MARGIN));
}
if (ret == SR_OK)
sr_dbg("%s: setting Trigger Margin to %d",
__func__, devc->trigger_margin);
else
sr_dbg("%s: setting Trigger Margin to %d failed",
__func__, devc->trigger_margin);
} else if (id == SR_CONF_SAMPLERATE) {
devc->cur_samplerate = g_variant_get_uint64(data);
if(sdi->mode == DSO) {
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, 0, SR_CONF_SAMPLERATE));
}
} else if (id == SR_CONF_INSTANT) {
devc->instant = g_variant_get_boolean(data);
if (sdi->mode == DSO && dsl_en_ch_num(sdi) != 0) {
if (devc->instant)
devc->limit_samples = devc->profile->dev_caps.hw_depth / channel_modes[devc->ch_mode].unit_bits / dsl_en_ch_num(sdi);
else
devc->limit_samples = devc->profile->dev_caps.dso_depth / dsl_en_ch_num(sdi);
}
} else if (id == SR_CONF_DEVICE_MODE) {
sdi->mode = g_variant_get_int16(data);
num_probes = 0;
if (sdi->mode == DSO) {
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_DSO_SYNC));
if (ret != SR_OK)
sr_dbg("%s: DSO configuration sync failed", __func__);
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, sdi->channels->data, SR_CONF_PROBE_VDIV));
if (ret == SR_OK)
sr_dbg("%s: Initial setting for DSO mode", __func__);
else
sr_dbg("%s: Initial setting for DSO mode failed", __func__);
devc->op_mode = OP_NORMAL;
devc->test_mode = SR_TEST_NONE;
devc->instant = FALSE;
for (i = 0; i < ARRAY_SIZE(channel_modes); i++) {
if (channel_modes[i].mode == DSO &&
devc->profile->dev_caps.channels & (1 << i)) {
devc->ch_mode = channel_modes[i].id;
num_probes = channel_modes[i].num;
devc->stream = channel_modes[i].stream;
devc->cur_samplerate = channel_modes[i].max_samplerate / num_probes;
break;
}
}
devc->limit_samples = devc->profile->dev_caps.dso_depth / num_probes;
} else if (sdi->mode == ANALOG) {
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, sdi->channels->data, SR_CONF_PROBE_VDIV));
if (ret == SR_OK)
sr_dbg("%s: Initial setting for DSO mode", __func__);
else
sr_dbg("%s: Initial setting for DSO mode failed", __func__);
devc->op_mode = OP_NORMAL;
devc->test_mode = SR_TEST_NONE;
devc->instant = TRUE;
for (i = 0; i < ARRAY_SIZE(channel_modes); i++) {
if (channel_modes[i].mode == ANALOG &&
devc->profile->dev_caps.channels & (1 << i)) {
devc->ch_mode = channel_modes[i].id;
num_probes = channel_modes[i].num;
devc->stream = channel_modes[i].stream;
devc->cur_samplerate = channel_modes[i].max_samplerate;
break;
}
}
devc->limit_samples = devc->cur_samplerate;
}
assert(num_probes != 0);
dsl_adjust_probes(sdi, num_probes);
dsl_adjust_samplerate(devc);
sr_dbg("%s: setting mode to %d", __func__, sdi->mode);
} else if (id == SR_CONF_OPERATION_MODE) {
stropt = g_variant_get_string(data, NULL);
if (!strcmp(stropt, get_opmodes(devc)[OP_NORMAL])) {
devc->op_mode = OP_NORMAL;
devc->test_mode = SR_TEST_NONE;
} else if (!strcmp(stropt, get_opmodes(devc)[OP_INTEST])) {
devc->op_mode = OP_INTEST;
devc->test_mode = SR_TEST_INTERNAL;
} else {
ret = SR_ERR;
}
sr_dbg("%s: setting pattern to %d",
__func__, devc->op_mode);
} else if (id == SR_CONF_BANDWIDTH_LIMIT) {
stropt = g_variant_get_string(data, NULL);
if (!strcmp(stropt, get_bandwidths(devc)[BW_FULL])) {
devc->bw_limit = BW_FULL;
dsl_wr_reg(sdi, CTR0_ADDR, bmBW20M_CLR);
} else if (!strcmp(stropt, get_bandwidths(devc)[BW_20M])) {
devc->bw_limit = BW_20M;
dsl_wr_reg(sdi, CTR0_ADDR, bmBW20M_SET);
} else {
ret = SR_ERR;
}
sr_dbg("%s: setting bandwidth limit to %d",
__func__, devc->bw_limit);
} else if (id == SR_CONF_PROBE_EN) {
ch->enabled = g_variant_get_boolean(data);
if (sdi->mode == DSO) {
if (devc->status == DSL_DATA &&
devc->profile->dev_caps.feature_caps & CAPS_FEATURE_HMCAD1511) {
if (dsl_en_ch_num(sdi) == 2) {
dsl_config_adc(sdi, adc_dual_ch03);
} else if (dsl_en_ch_num(sdi) == 1) {
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
if (probe->enabled && probe->index == 0) {
dsl_config_adc(sdi, adc_single_ch0);
break;
} else if (probe->enabled && probe->index == 1) {
dsl_config_adc(sdi, adc_single_ch3);
break;
}
}
}
}
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, ch, SR_CONF_PROBE_EN));
if (ch->index == 0) {
wr_cmd.header.dest = DSL_CTL_DSO_EN0;
wr_cmd.data[0] = ch->enabled ? bmCH_CH0 : (uint8_t)~bmCH_CH0;
} else {
wr_cmd.header.dest = DSL_CTL_DSO_EN1;
wr_cmd.data[0] = ch->enabled ? bmCH_CH1 : (uint8_t)~bmCH_CH1;
}
wr_cmd.header.size = 1;
ret = command_ctl_wr(hdl, wr_cmd);
if (dsl_en_ch_num(sdi) != 0) {
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, 0, SR_CONF_SAMPLERATE));
devc->limit_samples = devc->profile->dev_caps.dso_depth / dsl_en_ch_num(sdi);
}
} else if (sdi->mode == ANALOG) {
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, ch, SR_CONF_PROBE_EN));
if (ch->index == 0) {
wr_cmd.header.dest = DSL_CTL_DSO_EN0;
wr_cmd.data[0] = bmCH_CH0;
} else {
wr_cmd.header.dest = DSL_CTL_DSO_EN1;
wr_cmd.data[0] = bmCH_CH1;
}
wr_cmd.header.size = 1;
ret = command_ctl_wr(hdl, wr_cmd);
}
if (ret == SR_OK)
sr_dbg("%s: setting ENABLE of channel %d to %d",
__func__, ch->index, ch->enabled);
else
sr_dbg("%s: setting ENABLE of channel %d to %d failed",
__func__, ch->index, ch->enabled);
} else if (id == SR_CONF_PROBE_OFFSET) {
ch->offset = g_variant_get_uint16(data);
if (devc->status != DSL_FINISH)
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, ch, SR_CONF_PROBE_OFFSET));
else
ret = SR_OK;
if (ret == SR_OK)
sr_dbg("%s: setting OFFSET of channel %d to %d",
__func__, ch->index, ch->offset);
else
sr_dbg("%s: setting OFFSET of channel %d to %d failed",
__func__, ch->index, ch->offset);
} else if (id == SR_CONF_TRIGGER_SOURCE) {
devc->trigger_source = (devc->trigger_source & 0xf0) + (g_variant_get_byte(data) & 0x0f);
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_SOURCE));
if (ret == SR_OK)
sr_dbg("%s: setting DSO Trigger Source to %d",
__func__, devc->trigger_source);
else
sr_dbg("%s: setting DSO Trigger Source to %d failed",
__func__, devc->trigger_source);
} else if (id == SR_CONF_TRIGGER_CHANNEL) {
devc->trigger_source = (g_variant_get_byte(data) << 4) + (devc->trigger_source & 0x0f);
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_SOURCE));
if (ret == SR_OK)
sr_dbg("%s: setting DSO Trigger Source to %d",
__func__, devc->trigger_source);
else
sr_dbg("%s: setting DSO Trigger Source to %d failed",
__func__, devc->trigger_source);
} else if (id == SR_CONF_ZERO) {
devc->zero = g_variant_get_boolean(data);
if (devc->zero) {
devc->zero_stage = -1;
devc->zero_pcnt = 0;
GSList *l;
unsigned int i, j;
for(l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
probe->vpos_trans = devc->profile->dev_caps.default_pwmtrans;
//probe->comb_comp = devc->profile->dev_caps.default_comb_comp;
//probe->digi_fgain = 0;
if (probe->vga_ptr != NULL) {
for (i = 0; devc->profile->dev_caps.vdivs[i]; i++) {
for (j = 0; j < ARRAY_SIZE(vga_defaults); j++) {
if (vga_defaults[j].id == devc->profile->dev_caps.vga_id &&
vga_defaults[j].key == devc->profile->dev_caps.vdivs[i]) {
(probe->vga_ptr+i)->id = vga_defaults[j].id;
(probe->vga_ptr+i)->key = vga_defaults[j].key;
//(probe->vga_ptr+i)->vgain = vga_defaults[j].vgain;
(probe->vga_ptr+i)->preoff = vga_defaults[j].preoff;
break;
}
}
}
}
}
} else {
dso_zero(sdi, TRUE);
}
} else if (id == SR_CONF_ZERO_DEFAULT) {
unsigned int i, j;
for(l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
probe->vpos_trans = devc->profile->dev_caps.default_pwmtrans;
probe->comb_comp = devc->profile->dev_caps.default_comb_comp;
probe->digi_fgain = 0;
probe->cali_fgain0 = 1;
probe->cali_fgain1 = 1;
probe->cali_fgain2 = 1;
probe->cali_fgain3 = 1;
probe->cali_comb_fgain0 = 1;
probe->cali_comb_fgain1 = 1;
probe->cali_comb_fgain2 = 1;
probe->cali_comb_fgain3 = 1;
if (probe->vga_ptr != NULL) {
for (i = 0; devc->profile->dev_caps.vdivs[i]; i++) {
for (j = 0; j < ARRAY_SIZE(vga_defaults); j++) {
if (vga_defaults[j].id == devc->profile->dev_caps.vga_id &&
vga_defaults[j].key == devc->profile->dev_caps.vdivs[i]) {
(probe->vga_ptr+i)->id = vga_defaults[j].id;
(probe->vga_ptr+i)->key = vga_defaults[j].key;
(probe->vga_ptr+i)->vgain = vga_defaults[j].vgain;
(probe->vga_ptr+i)->preoff = vga_defaults[j].preoff;
break;
}
}
}
}
}
} else if (id == SR_CONF_CALI) {
devc->cali = g_variant_get_boolean(data);
} else if (id == SR_CONF_ZERO_LOAD) {
GSList *l;
for(l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
if (!dso_load_eep(sdi, probe, FALSE)) {
config_set(SR_CONF_ZERO, g_variant_new_boolean(TRUE), sdi, NULL, NULL);
sr_info("Zero have not been setted!");
break;
}
}
} else if (id == SR_CONF_ZERO_SET) {
GSList *l;
struct cmd_zero_info zero_info;
struct cmd_vga_info vga_info;
for(l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
zero_info.zero_addr = zero_base_addr +
probe->index * (sizeof(struct cmd_zero_info) + sizeof(struct cmd_vga_info));
int i;
uint16_t real_zero_addr;
uint8_t *preoff_ptr = &zero_info.zero_addr + 1;
for (i = 0; probe->vga_ptr && (probe->vga_ptr+i)->id; i++) {
*(preoff_ptr+2*i) = (probe->vga_ptr+i)->preoff & 0x00ff;
*(preoff_ptr+2*i+1) = (probe->vga_ptr+i)->preoff >> 8;
}
if (i != 0) {
*(preoff_ptr+2*i) = probe->comb_diff_top;
*(preoff_ptr+2*i+1) = probe->comb_diff_bom;
*(preoff_ptr+2*i+2) = (probe->vpos_trans&0x00FF);
*(preoff_ptr+2*i+3) = (probe->vpos_trans>>8);
*(preoff_ptr+2*i+4) = probe->comb_comp;
*(preoff_ptr+2*i+5) = (probe->digi_fgain&0x00FF);
*(preoff_ptr+2*i+6) = (probe->digi_fgain>>8);
*(preoff_ptr+2*i+7) = dsl_adc_fgain2code(probe->cali_fgain0);
*(preoff_ptr+2*i+8) = dsl_adc_fgain2code(probe->cali_fgain1);
*(preoff_ptr+2*i+9) = dsl_adc_fgain2code(probe->cali_fgain2);
*(preoff_ptr+2*i+10) = dsl_adc_fgain2code(probe->cali_fgain3);
*(preoff_ptr+2*i+11) = dsl_adc_fgain2code(probe->cali_comb_fgain0);
*(preoff_ptr+2*i+12) = dsl_adc_fgain2code(probe->cali_comb_fgain1);
*(preoff_ptr+2*i+13) = dsl_adc_fgain2code(probe->cali_comb_fgain2);
*(preoff_ptr+2*i+14) = dsl_adc_fgain2code(probe->cali_comb_fgain3);
vga_info.vga_addr = zero_info.zero_addr + sizeof(struct cmd_zero_info);
uint16_t *vgain_ptr = &vga_info.vga0;
for (i=0; probe->vga_ptr && (probe->vga_ptr+i)->id; i++){
*(vgain_ptr+i) = (probe->vga_ptr+i)->vgain >> 8;
}
ret = dsl_wr_reg(sdi, CTR0_ADDR, bmEEWP);
if (ret == SR_OK) {
if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_SEEP)
real_zero_addr = zero_info.zero_addr;
else if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_FLASH)
real_zero_addr = probe->index * DSO_ZERO_PAGE;
else
real_zero_addr = (zero_big_addr << 8) + zero_info.zero_addr;
ret = dsl_wr_nvm(sdi, (unsigned char *)&zero_info, real_zero_addr, sizeof(struct cmd_zero_info));
}
if (ret == SR_OK) {
if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_SEEP)
real_zero_addr = vga_info.vga_addr;
else if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_FLASH)
real_zero_addr = probe->index * DSO_ZERO_PAGE + 1;
else
real_zero_addr = (zero_big_addr << 8) + vga_info.vga_addr;
ret = dsl_wr_nvm(sdi, (unsigned char *)&vga_info, real_zero_addr, sizeof(struct cmd_vga_info));
}
ret = dsl_wr_reg(sdi, CTR0_ADDR, bmNONE);
if (!(devc->profile->dev_caps.feature_caps & CAPS_FEATURE_HMCAD1511)) {
const double slope = (probe->comb_diff_bom - probe->comb_diff_top)/(2.0*255.0);
for (i = 0; i < 256; i++) {
ret = dsl_wr_reg(sdi, COMB_ADDR + probe->index*2, i);
int value = i+i*slope+probe->comb_diff_top*0.5+0.5;
value = (value < 0) ? 0 :
(value > 255) ? 255 : value;
ret = dsl_wr_reg(sdi, COMB_ADDR + probe->index*2 + 1, value);
}
}
}
}
} else if (id == SR_CONF_VOCM) {
const uint8_t vocm = g_variant_get_byte(data);
ret = dsl_wr_reg(sdi, COMB_ADDR+4, vocm);
} else if (id == SR_CONF_PROBE_VGAIN) {
const uint64_t vgain = g_variant_get_uint64(data) << 8;
int i;
for (i = 0; ch->vga_ptr && (ch->vga_ptr+i)->id; i++) {
if ((ch->vga_ptr+i)->key == ch->vdiv) {
(ch->vga_ptr+i)->vgain = vgain;
}
}
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, ch, SR_CONF_PROBE_VDIV));
if (ret == SR_OK)
sr_dbg("%s: setting VDIV of channel %d to %d mv",
__func__, ch->index, ch->vdiv);
else
sr_dbg("%s: setting VDIV of channel %d to %d mv failed",
__func__, ch->index, ch->vdiv);
} else if (id == SR_CONF_PROBE_PREOFF) {
uint16_t preoff = g_variant_get_uint16(data);
if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_PREOFF) {
double voltage_off = (2.0 * preoff / devc->profile->dev_caps.default_pwmmargin - 1) * ch->vdiv;
double trans_coarse = (ch->vdiv < 500) ? (ch->vpos_trans >> 8)/DSCOPE_TRANS_CMULTI : (ch->vpos_trans >> 8);
double trans_fine = (ch->vdiv < 500) ? (ch->vpos_trans & 0x00ff) / 1000.0 : (ch->vpos_trans & 0x00ff) / DSCOPE_TRANS_FMULTI;
uint16_t default_preoff = get_default_preoff(sdi, ch);
int preoff_coarse = floor(voltage_off / trans_coarse + 0.5);
int preoff_fine = floor(-(voltage_off - preoff_coarse*trans_coarse)/trans_fine + 0.5);
preoff_coarse = (default_preoff >> 10) + preoff_coarse;
preoff_fine = (default_preoff&0x03ff) + preoff_fine;
preoff = (preoff_coarse << 10) + preoff_fine;
}
int i;
for (i = 0; ch->vga_ptr && (ch->vga_ptr+i)->id; i++) {
if ((ch->vga_ptr+i)->key == ch->vdiv) {
(ch->vga_ptr+i)->preoff = preoff;
}
}
if (devc->status != DSL_FINISH)
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, ch, SR_CONF_PROBE_OFFSET));
else
ret = SR_OK;
if (ret == SR_OK)
sr_dbg("%s: setting OFFSET of channel %d to %d",
__func__, ch->index, ch->offset);
else
sr_dbg("%s: setting OFFSET of channel %d to %d failed",
__func__, ch->index, ch->offset);
} else if (id == SR_CONF_PROBE_COMB_COMP) {
ch->comb_comp = g_variant_get_int16(data);
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, ch, SR_CONF_PROBE_VDIV));
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, ch, SR_CONF_PROBE_OFFSET));
if (ret == SR_OK)
sr_dbg("%s: setting COMB_COMP of channel %d to %d mv",
__func__, ch->index, ch->comb_comp);
else
sr_dbg("%s: setting COMB_COMP of channel %d to %d mv failed",
__func__, ch->index, ch->comb_comp);
} else {
ret = SR_ERR_NA;
}
return ret;
}
static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct DSL_context *devc;
(void)cg;
devc = sdi->priv;
if (dsl_config_list(key, data, sdi, cg) == SR_OK)
return SR_OK;
switch (key) {
case SR_CONF_DEVICE_OPTIONS:
// *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
// hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t));
*data = g_variant_new_from_data(G_VARIANT_TYPE("ai"),
hwoptions, ARRAY_SIZE(hwoptions)*sizeof(int32_t), TRUE, NULL, NULL);
break;
case SR_CONF_DEVICE_SESSIONS:
if (sdi->mode == DSO)
*data = g_variant_new_from_data(G_VARIANT_TYPE("ai"),
sessions_dso, ARRAY_SIZE(sessions_dso)*sizeof(int32_t), TRUE, NULL, NULL);
else if (sdi->mode == ANALOG)
*data = g_variant_new_from_data(G_VARIANT_TYPE("ai"),
sessions_daq, ARRAY_SIZE(sessions_daq)*sizeof(int32_t), TRUE, NULL, NULL);
break;
case SR_CONF_OPERATION_MODE:
*data = g_variant_new_strv(get_opmodes(devc), ARRAY_SIZE(opmodes));
break;
case SR_CONF_BANDWIDTH_LIMIT:
*data = g_variant_new_strv(get_bandwidths(devc), ARRAY_SIZE(bandwidths));
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int dso_tune(const struct sr_dev_inst *sdi)
{
struct DSL_context *devc = sdi->priv;
int ret = SR_OK;
double margin;
static uint64_t vdiv_back = 0;
static uint16_t offset_back = 0;
static int coupling_back = SR_DC_COUPLING;
const uint8_t mux0[8] = {0x09, 0x0f, 0x0b, 0x0d, 0x07, 0x05, 0x01, 0x03};
const uint8_t mux1[8] = {0x09, 0x0f, 0x0b, 0x0d, 0x0e, 0x0c, 0x08, 0x0a};
const uint8_t *mux = (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_POGOPIN) ? mux1 : mux0;
if (devc->tune_probe && devc->tune_stage == -1) {
vdiv_back = devc->tune_probe->vdiv;
offset_back = devc->tune_probe->offset;
coupling_back = devc->tune_probe->coupling;
devc->tune_stage = 0;
ret = dsl_wr_ext(sdi, 0x03, 0x00);
ret = dsl_wr_ext(sdi, 0x01, mux[devc->tune_stage]);
devc->tune_probe->vdiv = (devc->tune_probe->vga_ptr + devc->tune_stage)->key;
devc->tune_probe->offset = (1 << (channel_modes[devc->ch_mode].unit_bits - 1));
devc->tune_probe->coupling = SR_AC_COUPLING;
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, devc->tune_probe, SR_CONF_PROBE_VDIV));
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, devc->tune_probe, SR_CONF_PROBE_OFFSET));
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, devc->tune_probe, SR_CONF_PROBE_COUPLING));
} else if (devc->tune_probe && devc->profile->dev_caps.vdivs[devc->tune_stage] != 0) {
if (devc->tune_pcnt == 10) {
devc->tune_pcnt = 0;
margin = (devc->tune_probe->coupling == SR_AC_COUPLING) ? 127.5 : 25.5;
if (devc->tune_probe->index == 0)
margin -= (devc->mstatus.ch0_acc_mean * 1.0 / devc->limit_samples);
else
margin -= (devc->mstatus.ch1_acc_mean * 1.0 / devc->limit_samples);
if ((devc->tune_probe->coupling == SR_AC_COUPLING) && (fabs(margin) < 0.5)) {
devc->tune_probe->coupling = SR_DC_COUPLING;
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, devc->tune_probe, SR_CONF_PROBE_COUPLING));
} else if (devc->tune_probe->coupling == SR_AC_COUPLING){
(devc->tune_probe->vga_ptr+devc->tune_stage)->preoff += margin;
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, devc->tune_probe, SR_CONF_PROBE_OFFSET));
} else if ((devc->tune_probe->coupling == SR_DC_COUPLING) && (fabs(margin) < 0.5)) {
devc->tune_stage++;
if (devc->profile->dev_caps.vdivs[devc->tune_stage] != 0) {
ret = dsl_wr_ext(sdi, 0x01, mux[devc->tune_stage]);
devc->tune_probe->vdiv = (devc->tune_probe->vga_ptr + devc->tune_stage)->key;
devc->tune_probe->coupling = SR_AC_COUPLING;
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, devc->tune_probe, SR_CONF_PROBE_VDIV));
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, devc->tune_probe, SR_CONF_PROBE_OFFSET));
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, devc->tune_probe, SR_CONF_PROBE_COUPLING));
}else {
ret = dsl_wr_ext(sdi, 0x01, mux[0]);
devc->tune_probe->vdiv = vdiv_back;
devc->tune_probe->offset = offset_back;
devc->tune_probe->coupling = coupling_back;
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, devc->tune_probe, SR_CONF_PROBE_VDIV));
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, devc->tune_probe, SR_CONF_PROBE_OFFSET));
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, devc->tune_probe, SR_CONF_PROBE_COUPLING));
devc->tune = FALSE;
}
} else if (devc->tune_probe->coupling == SR_DC_COUPLING){
(devc->tune_probe->vga_ptr + devc->tune_stage)->vgain -= ceil(margin*1024);
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, devc->tune_probe, SR_CONF_PROBE_VDIV));
}
}
if (ret == SR_OK)
devc->tune_pcnt++;
}
return ret;
}
static int dev_open(struct sr_dev_inst *sdi)
{
gboolean fpga_done;
int ret;
GSList *l;
gboolean zeroed;
struct DSL_context *devc = sdi->priv;
if ((ret = dsl_dev_open(di, sdi, &fpga_done)) == SR_OK) {
// load zero informations
for(l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
zeroed = dso_load_eep(sdi, probe, fpga_done);
if (!zeroed)
break;
}
if (!zeroed) {
config_set(SR_CONF_ZERO, g_variant_new_boolean(TRUE), sdi, NULL, NULL);
sr_info("Zero have not been setted!");
}
if (!fpga_done) {
if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_HMCAD1511) {
dsl_config_adc(sdi, adc_init_fix);
dsl_config_adc(sdi, adc_clk_init_1g);
dsl_config_adc(sdi, adc_power_down);
}
dso_init(sdi);
}
}
return ret;
}
static int dev_close(struct sr_dev_inst *sdi)
{
int ret;
dso_zero(sdi, TRUE);
ret = dsl_dev_close(sdi);
return ret;
}
static int cleanup(void)
{
int ret;
struct drv_context *drvc;
if (!(drvc = di->priv))
return SR_OK;
ret = dev_clear();
g_free(drvc);
di->priv = NULL;
return ret;
}
static void remove_sources(struct DSL_context *devc)
{
int i;
sr_info("%s: remove fds from polling", __func__);
/* Remove fds from polling. */
for (i = 0; devc->usbfd[i] != -1; i++)
sr_source_remove(devc->usbfd[i]);
g_free(devc->usbfd);
}
static int receive_data(int fd, int revents, const struct sr_dev_inst *sdi)
{
int completed = 0;
struct timeval tv;
struct drv_context *drvc;
struct DSL_context *devc;
struct ctl_rd_cmd rd_cmd;
struct sr_usb_dev_inst *usb;
int ret;
(void)fd;
(void)revents;
drvc = di->priv;
devc = sdi->priv;
usb = sdi->conn;
tv.tv_sec = tv.tv_usec = 0;
libusb_handle_events_timeout_completed(drvc->sr_ctx->libusb_ctx, &tv, &completed);
if (devc->trf_completed)
devc->empty_poll_count = 0;
else
devc->empty_poll_count++;
if (devc->zero && devc->trf_completed) {
dso_zero(sdi, FALSE);
}
if (devc->tune && devc->trf_completed) {
dso_tune(sdi);
}
// progress check
if ((devc->empty_poll_count > MAX_EMPTY_POLL) && (devc->status == DSL_START)) {
devc->mstatus.captured_cnt0 = 0;
rd_cmd.header.dest = DSL_CTL_I2C_STATUS;
rd_cmd.header.offset = 0;
rd_cmd.header.size = 4;
rd_cmd.data = (unsigned char*)&devc->mstatus;
if ((ret = command_ctl_rd(usb->devhdl, rd_cmd)) != SR_OK)
sr_err("Failed to get progress infos.");
devc->empty_poll_count = 0;
}
if (devc->status == DSL_FINISH) {
remove_sources(devc);
}
devc->trf_completed = 0;
return TRUE;
}
static int dev_acquisition_start(struct sr_dev_inst *sdi, void *cb_data)
{
(void)cb_data;
struct DSL_context *devc;
struct sr_usb_dev_inst *usb;
struct drv_context *drvc;
const struct libusb_pollfd **lupfd;
unsigned int i;
int ret;
struct ctl_wr_cmd wr_cmd;
GSList *l;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
drvc = di->priv;
devc = sdi->priv;
usb = sdi->conn;
//devc->cb_data = cb_data;
devc->cb_data = sdi;
devc->num_samples = 0;
devc->empty_transfer_count = 0;
devc->empty_poll_count = 0;
devc->status = DSL_INIT;
devc->num_transfers = 0;
devc->submitted_transfers = 0;
devc->actual_samples = (devc->limit_samples + SAMPLES_ALIGN) & ~SAMPLES_ALIGN;
devc->abort = FALSE;
devc->mstatus_valid = FALSE;
devc->mstatus.captured_cnt0 = 0;
devc->mstatus.captured_cnt1 = 0;
devc->mstatus.captured_cnt2 = 0;
devc->mstatus.captured_cnt3 = 0;
devc->mstatus.trig_hit = 0;
devc->overflow = FALSE;
devc->instant_tail_bytes = dsl_header_size(devc);
/* Configures devc->trigger_* and devc->sample_wide */
if (dsl_configure_probes(sdi) != SR_OK) {
sr_err("%s: Failed to configure probes.", __func__);
return SR_ERR;
}
/* Stop Previous GPIF acquisition */
wr_cmd.header.dest = DSL_CTL_STOP;
wr_cmd.header.size = 0;
if ((ret = command_ctl_wr(usb->devhdl, wr_cmd)) != SR_OK) {
sr_err("%s: Stop DSCope acquisition failed!", __func__);
return ret;
} else {
sr_info("%s: Stop Previous DSCope acquisition!", __func__);
}
/* Arm FPGA before acquisition start*/
if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_HMCAD1511) {
if (dsl_en_ch_num(sdi) == 2) {
dsl_config_adc(sdi, adc_dual_ch03);
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
dsl_config_adc_fgain(sdi, probe->index*2 + 0, probe->cali_fgain0, probe->cali_fgain1);
dsl_config_adc_fgain(sdi, probe->index*2 + 1, probe->cali_fgain2, probe->cali_fgain3);
}
} else if (dsl_en_ch_num(sdi) == 1) {
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
if (probe->enabled && probe->index == 0) {
dsl_config_adc(sdi, adc_single_ch0);
} else if (probe->enabled && probe->index == 1) {
dsl_config_adc(sdi, adc_single_ch3);
}
}
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
dsl_config_adc_fgain(sdi, probe->index*2 + 0, probe->cali_comb_fgain0, probe->cali_comb_fgain1);
dsl_config_adc_fgain(sdi, probe->index*2 + 1, probe->cali_comb_fgain2, probe->cali_comb_fgain3);
}
}
dsl_config_fpga_fgain(sdi);
}
if ((ret = dsl_fpga_arm(sdi)) != SR_OK) {
sr_err("%s: Arm FPGA failed!", __func__);
return ret;
}
if (devc->zero && devc->zero_stage == -1) {
// initialize before Auto Calibration
if ((ret = dso_init(sdi)) != SR_OK) {
sr_err("%s: DSO zero initialization failed!", __func__);
return ret;
}
devc->zero_stage = 0;
devc->zero_comb_fgain = FALSE;
devc->zero_branch = FALSE;
}
/*
* settings must be updated before acquisition
*/
if (sdi->mode != LOGIC) {
devc->trigger_hpos = devc->trigger_hrate * dsl_en_ch_num(sdi) * devc->limit_samples / 200.0;
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_HORIZ_TRIGGERPOS));
if (ret != SR_OK)
sr_dbg("%s: setting DSO Horiz Trigger Position to %d failed", __func__, devc->trigger_hpos);
for(l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, probe, SR_CONF_PROBE_VDIV));
if (ret != SR_OK)
sr_err("%s: Set VDIV of channel %d command failed!", __func__, probe->index);
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, probe, SR_CONF_PROBE_OFFSET));
if (ret != SR_OK)
sr_err("%s: Set OFFSET of channel %d command failed!", __func__, probe->index);
probe->hw_offset = probe->offset;
}
}
/* setup and submit usb transfer */
if ((ret = dsl_start_transfers(devc->cb_data)) != SR_OK) {
sr_err("%s: Could not submit usb transfer"
"(%d)%d", __func__, ret, errno);
return ret;
}
/* setup callback function for data transfer */
lupfd = libusb_get_pollfds(drvc->sr_ctx->libusb_ctx);
for (i = 0; lupfd[i]; i++);
if (!(devc->usbfd = g_try_malloc(sizeof(struct libusb_pollfd) * (i + 1))))
return SR_ERR;
for (i = 0; lupfd[i]; i++) {
sr_source_add(lupfd[i]->fd, lupfd[i]->events,
dsl_get_timeout(sdi), receive_data, sdi);
devc->usbfd[i] = lupfd[i]->fd;
}
devc->usbfd[i] = -1;
free(lupfd);
wr_cmd.header.dest = DSL_CTL_START;
wr_cmd.header.size = 0;
if ((ret = command_ctl_wr(usb->devhdl, wr_cmd)) != SR_OK) {
devc->status = DSL_ERROR;
devc->abort = TRUE;
return ret;
}
devc->status = DSL_START;
/* Send header packet to the session bus. */
//std_session_send_df_header(cb_data, LOG_PREFIX);
std_session_send_df_header(sdi, LOG_PREFIX);
return SR_OK;
}
static int dev_acquisition_stop(const struct sr_dev_inst *sdi, void *cb_data)
{
struct DSL_context *devc = sdi->priv;
int ret = dsl_dev_acquisition_stop(sdi, cb_data);
if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_HMCAD1511) {
dsl_config_adc(sdi, adc_power_down);
}
return ret;
}
static int dev_status_get(const struct sr_dev_inst *sdi, struct sr_status *status, gboolean prg)
{
int ret = dsl_dev_status_get(sdi, status, prg);
return ret;
}
SR_PRIV struct sr_dev_driver DSCope_driver_info = {
.name = "DSCope",
.longname = "DSCope (generic driver for DScope oscilloscope)",
.api_version = 1,
.init = init,
.cleanup = cleanup,
.scan = scan,
.dev_list = dev_list,
.dev_mode_list = dev_mode_list,
.dev_clear = dev_clear,
.config_get = config_get,
.config_set = config_set,
.config_list = config_list,
.dev_open = dev_open,
.dev_close = dev_close,
.dev_status_get = dev_status_get,
.dev_acquisition_start = dev_acquisition_start,
.dev_acquisition_stop = dev_acquisition_stop,
.priv = NULL,
};