2015-10-08 18:16:44 +08:00

2720 lines
90 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
* Copyright (C) 2013 DreamSourceLab <dreamsourcelab@dreamsourcelab.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <errno.h>
#include <assert.h>
#include <sys/stat.h>
#include <inttypes.h>
//#include <libusb.h>
#include "dsl.h"
#include "command.h"
#undef min
#define min(a,b) ((a)<(b)?(a):(b))
static const int single_buffer_time = 20;
static const int total_buffer_time = 200;
static const int buffer_size = 1024 * 1024;
static const int instant_buffer_size = 1024 * 1024;
static const int cons_buffer_size = 128;
static const int buffer_cnt = 4;
static struct sr_dev_mode mode_list[] = {
{"LA", LOGIC},
{"DAQ", ANALOG},
{"OSC", DSO},
};
static struct sr_dev_mode pro_mode_list[] = {
{"LA", LOGIC},
};
static const char *opmodes[] = {
"Buffer Mode",
"Stream Mode",
"Internal Test",
"External Test",
"DRAM Loopback Test",
};
static uint16_t opmodes_show_count = 3;
static const char *stream_ch_modes[] = {
"Use Channels 0~15 (Max 10MHz)",
"Use Channels 0~7 (Max 25MHz)",
};
static const uint16_t stream_ch_num[] = {
16,
8,
};
static const char *buffer_ch_modes[] = {
"Use Channels 0~15 (Max 100MHz)",
"Use Channels 0~7 (Max 200MHz)",
"Use Channels 0~3 (Max 400MHz)",
};
static const uint16_t buffer_ch_num[] = {
16,
8,
4,
};
static const char *thresholds[] = {
"1.8/2.5/3.3V Level",
"5.0V Level",
};
static const char *filters[] = {
"None",
"1 Sample Clock",
};
static const char *maxHeights[] = {
"1X",
"2X",
"3X",
"4X",
"5X",
};
static const int32_t hwopts[] = {
SR_CONF_CONN,
};
static const int32_t hwcaps[] = {
SR_CONF_LOGIC_ANALYZER,
SR_CONF_TRIGGER_TYPE,
SR_CONF_SAMPLERATE,
/* These are really implemented in the driver, not the hardware. */
SR_CONF_LIMIT_SAMPLES,
SR_CONF_CONTINUOUS,
};
static const int32_t hwoptions[] = {
SR_CONF_OPERATION_MODE,
SR_CONF_THRESHOLD,
SR_CONF_FILTER,
SR_CONF_MAX_HEIGHT,
SR_CONF_CLOCK_TYPE,
SR_CONF_CLOCK_EDGE,
};
static const int32_t hwoptions_pro[] = {
SR_CONF_OPERATION_MODE,
SR_CONF_VTH,
SR_CONF_FILTER,
SR_CONF_MAX_HEIGHT,
SR_CONF_CLOCK_TYPE,
SR_CONF_CLOCK_EDGE,
};
static const int32_t sessions[] = {
SR_CONF_SAMPLERATE,
SR_CONF_LIMIT_SAMPLES,
SR_CONF_CLOCK_TYPE,
SR_CONF_CLOCK_EDGE,
SR_CONF_OPERATION_MODE,
SR_CONF_CHANNEL_MODE,
SR_CONF_THRESHOLD,
SR_CONF_FILTER,
SR_CONF_TRIGGER_SLOPE,
SR_CONF_TRIGGER_SOURCE,
SR_CONF_HORIZ_TRIGGERPOS,
SR_CONF_TRIGGER_HOLDOFF,
};
static const int32_t sessions_pro[] = {
SR_CONF_SAMPLERATE,
SR_CONF_LIMIT_SAMPLES,
SR_CONF_CLOCK_TYPE,
SR_CONF_CLOCK_EDGE,
SR_CONF_OPERATION_MODE,
SR_CONF_CHANNEL_MODE,
SR_CONF_VTH,
SR_CONF_FILTER,
SR_CONF_TRIGGER_SLOPE,
SR_CONF_TRIGGER_SOURCE,
SR_CONF_HORIZ_TRIGGERPOS,
SR_CONF_TRIGGER_HOLDOFF,
};
static const int32_t ch_sessions[] = {
SR_CONF_VDIV
};
static const char *probe_names[] = {
"0", "1", "2", "3", "4", "5", "6", "7",
"8", "9", "10", "11", "12", "13", "14", "15",
NULL,
};
static uint16_t test_sample_value;
static uint16_t test_init = 1;
static const uint64_t samplerates[] = {
SR_KHZ(10),
SR_KHZ(20),
SR_KHZ(50),
SR_KHZ(100),
SR_KHZ(200),
SR_KHZ(500),
SR_MHZ(1),
SR_MHZ(2),
SR_MHZ(5),
SR_MHZ(10),
SR_MHZ(20),
SR_MHZ(25),
SR_MHZ(50),
SR_MHZ(100),
SR_MHZ(200),
SR_MHZ(400),
};
//static const uint64_t samplecounts[] = {
// SR_KB(1),
// SR_KB(2),
// SR_KB(5),
// SR_KB(10),
// SR_KB(20),
// SR_KB(50),
// SR_KB(100),
// SR_KB(200),
// SR_KB(500),
// SR_MB(1),
// SR_MB(2),
// SR_MB(5),
// SR_MB(10),
// SR_MB(16),
//};
static const uint64_t samplecounts[] = {
SR_KB(1),
SR_KB(2),
SR_KB(4),
SR_KB(8),
SR_KB(16),
SR_KB(32),
SR_KB(64),
SR_KB(128),
SR_KB(256),
SR_KB(512),
SR_MB(1),
SR_MB(2),
SR_MB(4),
SR_MB(8),
SR_MB(16),
SR_MB(32),
SR_MB(64),
SR_MB(128),
SR_MB(256),
SR_MB(512),
};
static const uint8_t zero_base_addr = 0x80;
static const uint8_t comb_base_addr = 0xB0;
SR_PRIV struct sr_dev_driver DSLogic_driver_info;
static struct sr_dev_driver *di = &DSLogic_driver_info;
extern struct ds_trigger *trigger;
struct sr_status mstatus;
struct cmd_zero_info zero_info;
struct cmd_comb_info comb_info;
/**
* Check the USB configuration to determine if this is an DSLogic device.
*
* @return TRUE if the device's configuration profile match DSLogic
* configuration, FALSE otherwise.
*/
static gboolean check_conf_profile(libusb_device *dev)
{
struct libusb_device_descriptor des;
struct libusb_device_handle *hdl;
gboolean ret;
unsigned char strdesc[64];
hdl = NULL;
ret = FALSE;
while (!ret) {
/* Assume the FW has not been loaded, unless proven wrong. */
if (libusb_get_device_descriptor(dev, &des) != 0)
break;
if (libusb_open(dev, &hdl) != 0)
break;
if (libusb_get_string_descriptor_ascii(hdl,
des.iManufacturer, strdesc, sizeof(strdesc)) < 0)
break;
if (strncmp((const char *)strdesc, "DreamSourceLab", 14))
break;
if (libusb_get_string_descriptor_ascii(hdl,
des.iProduct, strdesc, sizeof(strdesc)) < 0)
break;
if (strncmp((const char *)strdesc, "DSLogic", 7))
break;
/* If we made it here, it must be an DSLogic. */
ret = TRUE;
}
if (hdl)
libusb_close(hdl);
return ret;
}
static int fpga_setting(const struct sr_dev_inst *sdi)
{
struct DSL_context *devc;
struct sr_usb_dev_inst *usb;
struct libusb_device_handle *hdl;
struct DSL_setting setting;
int ret;
int transferred;
int result;
int i;
int channel_en_cnt = 0;
int channel_cnt = 0;
GSList *l;
devc = sdi->priv;
usb = sdi->conn;
hdl = usb->devhdl;
setting.sync = 0xf5a5f5a5;
setting.mode_header = 0x0001;
setting.divider_header = 0x0102ffff;
setting.count_header = 0x0302ffff;
setting.trig_pos_header = 0x0502ffff;
setting.trig_glb_header = 0x0701;
setting.trig_adp_header = 0x0a02ffff;
setting.trig_sda_header = 0x0c02ffff;
setting.trig_mask0_header = 0x1010ffff;
setting.trig_mask1_header = 0x1110ffff;
//setting.trig_mask2_header = 0x1210ffff;
//setting.trig_mask3_header = 0x1310ffff;
setting.trig_value0_header = 0x1410ffff;
setting.trig_value1_header = 0x1510ffff;
//setting.trig_value2_header = 0x1610ffff;
//setting.trig_value3_header = 0x1710ffff;
setting.trig_edge0_header = 0x1810ffff;
setting.trig_edge1_header = 0x1910ffff;
//setting.trig_edge2_header = 0x1a10ffff;
//setting.trig_edge3_header = 0x1b10ffff;
setting.trig_count0_header = 0x1c20ffff;
setting.trig_count1_header = 0x1d20ffff;
//setting.trig_count2_header = 0x1e10ffff;
//setting.trig_count3_header = 0x1f10ffff;
setting.trig_logic0_header = 0x2010ffff;
setting.trig_logic1_header = 0x2110ffff;
//setting.trig_logic2_header = 0x2210ffff;
//setting.trig_logic3_header = 0x2310ffff;
setting.end_sync = 0xfa5afa5a;
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
channel_en_cnt += probe->enabled;
channel_cnt++;
}
if (channel_en_cnt == 0)
channel_en_cnt = 1;
//setting.mode = (test_mode ? 0x8000 : 0x0000) + trigger->trigger_en + (sdi->mode << 4);
setting.mode = ((devc->op_mode == SR_OP_INTERNAL_TEST) << 15) +
((devc->op_mode == SR_OP_EXTERNAL_TEST) << 14) +
((devc->op_mode == SR_OP_LOOPBACK_TEST) << 13) +
((devc->stream) << 12) +
((trigger->trigger_mode == SERIAL_TRIGGER) << 11) +
trigger->trigger_en +
((sdi->mode > 0) << 4) + (devc->clock_type << 1) + (devc->clock_edge << 2) +
(devc->rle_mode << 3) +
((((devc->cur_samplerate == (2 * DSLOGIC_MAX_LOGIC_SAMPLERATE)) && sdi->mode != DSO) || (sdi->mode == ANALOG)) << 5) +
((devc->cur_samplerate == (4 * DSLOGIC_MAX_LOGIC_SAMPLERATE)) << 6) +
((sdi->mode == ANALOG) << 7) +
((devc->filter == SR_FILTER_1T) << 8) +
(devc->instant << 9) + (devc->zero << 10);
if (sdi->mode == DSO)
setting.divider = devc->zero ? 0x1 : (uint32_t)ceil(DSLOGIC_MAX_DSO_SAMPLERATE * 1.0 / devc->cur_samplerate / channel_en_cnt);
else
setting.divider = devc->zero ? 0x1 : (uint32_t)ceil(DSLOGIC_MAX_LOGIC_SAMPLERATE * 1.0 / devc->cur_samplerate);
setting.count = (sdi->mode == DSO) ? (uint32_t)(devc->limit_samples / (channel_cnt / channel_en_cnt)) : (uint32_t)(devc->limit_samples);
setting.trig_pos = (uint32_t)(trigger->trigger_pos / 100.0 * devc->limit_samples);
setting.trig_glb = trigger->trigger_stages;
setting.trig_adp = setting.count - setting.trig_pos - 1;
setting.trig_sda = 0x0;
if (trigger->trigger_mode == SIMPLE_TRIGGER) {
setting.trig_mask0[0] = ds_trigger_get_mask0(TriggerStages);
setting.trig_mask1[0] = ds_trigger_get_mask1(TriggerStages);
setting.trig_value0[0] = ds_trigger_get_value0(TriggerStages);
setting.trig_value1[0] = ds_trigger_get_value1(TriggerStages);
setting.trig_edge0[0] = ds_trigger_get_edge0(TriggerStages);
setting.trig_edge1[0] = ds_trigger_get_edge1(TriggerStages);
setting.trig_count0[0] = trigger->trigger0_count[TriggerStages];
setting.trig_count1[0] = trigger->trigger1_count[TriggerStages];
setting.trig_logic0[0] = (trigger->trigger_logic[TriggerStages] << 1) + trigger->trigger0_inv[TriggerStages];
setting.trig_logic1[0] = (trigger->trigger_logic[TriggerStages] << 1) + trigger->trigger1_inv[TriggerStages];
for (i = 1; i < NUM_TRIGGER_STAGES; i++) {
setting.trig_mask0[i] = 0xff;
setting.trig_mask1[i] = 0xff;
setting.trig_value0[i] = 0;
setting.trig_value1[i] = 0;
setting.trig_edge0[i] = 0;
setting.trig_edge1[i] = 0;
setting.trig_count0[i] = 0;
setting.trig_count1[i] = 0;
setting.trig_logic0[i] = 2;
setting.trig_logic1[i] = 2;
}
} else {
for (i = 0; i < NUM_TRIGGER_STAGES; i++) {
setting.trig_mask0[i] = ds_trigger_get_mask0(i);
setting.trig_mask1[i] = ds_trigger_get_mask1(i);
setting.trig_value0[i] = ds_trigger_get_value0(i);
setting.trig_value1[i] = ds_trigger_get_value1(i);
setting.trig_edge0[i] = ds_trigger_get_edge0(i);
setting.trig_edge1[i] = ds_trigger_get_edge1(i);
setting.trig_count0[i] = trigger->trigger0_count[i];
setting.trig_count1[i] = trigger->trigger1_count[i];
setting.trig_logic0[i] = (trigger->trigger_logic[i] << 1) + trigger->trigger0_inv[i];
setting.trig_logic1[i] = (trigger->trigger_logic[i] << 1) + trigger->trigger1_inv[i];
}
}
result = SR_OK;
ret = libusb_bulk_transfer(hdl, 2 | LIBUSB_ENDPOINT_OUT,
&setting, sizeof(struct DSL_setting),
&transferred, 3000);
if (ret < 0) {
sr_err("Unable to setting FPGA of DSLogic: %s.",
libusb_error_name(ret));
result = SR_ERR;
} else if (transferred != sizeof(struct DSL_setting)) {
sr_err("Setting FPGA error: expacted transfer size %d; actually %d",
sizeof(struct DSL_setting), transferred);
result = SR_ERR;
}
if (result == SR_OK)
sr_info("FPGA setting done");
return result;
}
static int fpga_config(struct libusb_device_handle *hdl, const char *filename)
{
FILE *fw;
int offset, chunksize, ret, result;
unsigned char *buf;
int transferred;
uint64_t filesize;
struct stat f_stat;
sr_info("Configure FPGA using %s", filename);
if ((fw = g_fopen(filename, "rb")) == NULL) {
sr_err("Unable to open FPGA bit file %s for reading: %s",
filename, strerror(errno));
return SR_ERR;
}
if (stat(filename, &f_stat) == -1)
return SR_ERR;
filesize = (uint64_t)f_stat.st_size;
if (!(buf = g_try_malloc(filesize))) {
sr_err("FPGA configure bit malloc failed.");
return SR_ERR;
}
result = SR_OK;
offset = 0;
while (1) {
chunksize = fread(buf, 1, filesize, fw);
if (chunksize == 0)
break;
//do {
ret = libusb_bulk_transfer(hdl, 2 | LIBUSB_ENDPOINT_OUT,
buf, chunksize,
&transferred, 1000);
//} while(ret == LIBUSB_ERROR_TIMEOUT);
if (ret < 0) {
sr_err("Unable to configure FPGA of DSLogic: %s.",
libusb_error_name(ret));
result = SR_ERR;
break;
} else if (transferred != chunksize) {
sr_err("Configure FPGA error: expacted transfer size %d; actually %d",
chunksize, transferred);
result = SR_ERR;
break;
}
sr_info("Configure %d bytes", chunksize);
offset += chunksize;
}
fclose(fw);
g_free(buf);
if (result == SR_OK)
sr_info("FPGA configure done");
return result;
}
static int DSLogic_dev_open(struct sr_dev_inst *sdi)
{
libusb_device **devlist;
struct sr_usb_dev_inst *usb;
struct libusb_device_descriptor des;
struct DSL_context *devc;
struct drv_context *drvc;
struct version_info vi;
int ret, skip, i, device_count;
uint8_t revid;
drvc = di->priv;
devc = sdi->priv;
usb = sdi->conn;
if (sdi->status == SR_ST_ACTIVE)
/* Device is already in use. */
return SR_ERR;
skip = 0;
device_count = libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist);
if (device_count < 0) {
sr_err("Failed to get device list: %s.",
libusb_error_name(device_count));
return SR_ERR;
}
for (i = 0; i < device_count; i++) {
if ((ret = libusb_get_device_descriptor(devlist[i], &des))) {
sr_err("Failed to get device descriptor: %s.",
libusb_error_name(ret));
continue;
}
if (des.idVendor != devc->profile->vid
|| des.idProduct != devc->profile->pid)
continue;
if (sdi->status == SR_ST_INITIALIZING) {
if (skip != sdi->index) {
/* Skip devices of this type that aren't the one we want. */
skip += 1;
continue;
}
} else if (sdi->status == SR_ST_INACTIVE) {
/*
* This device is fully enumerated, so we need to find
* this device by vendor, product, bus and address.
*/
if (libusb_get_bus_number(devlist[i]) != usb->bus
|| libusb_get_device_address(devlist[i]) != usb->address)
/* This is not the one. */
continue;
}
if (!(ret = libusb_open(devlist[i], &usb->devhdl))) {
if (usb->address == 0xff)
/*
* First time we touch this device after FW
* upload, so we don't know the address yet.
*/
usb->address = libusb_get_device_address(devlist[i]);
} else {
sr_err("Failed to open device: %s.",
libusb_error_name(ret));
break;
}
ret = command_get_fw_version(usb->devhdl, &vi);
if (ret != SR_OK) {
sr_err("Failed to get firmware version.");
break;
}
ret = command_get_revid_version(usb->devhdl, &revid);
if (ret != SR_OK) {
sr_err("Failed to get REVID.");
break;
}
/*
* Changes in major version mean incompatible/API changes, so
* bail out if we encounter an incompatible version.
* Different minor versions are OK, they should be compatible.
*/
if (vi.major != DSL_REQUIRED_VERSION_MAJOR) {
sr_err("Expected firmware version %d.x, "
"got %d.%d.", DSL_REQUIRED_VERSION_MAJOR,
vi.major, vi.minor);
break;
}
sdi->status = SR_ST_ACTIVE;
sr_info("Opened device %d on %d.%d, "
"interface %d, firmware %d.%d.",
sdi->index, usb->bus, usb->address,
USB_INTERFACE, vi.major, vi.minor);
sr_info("Detected REVID=%d, it's a Cypress CY7C68013%s.",
revid, (revid != 1) ? " (FX2)" : "A (FX2LP)");
break;
}
libusb_free_device_list(devlist, 1);
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR;
return SR_OK;
}
static int configure_probes(const struct sr_dev_inst *sdi)
{
struct DSL_context *devc;
struct sr_channel *probe;
GSList *l;
int probe_bit, stage, i;
char *tc;
devc = sdi->priv;
for (i = 0; i < NUM_TRIGGER_STAGES; i++) {
devc->trigger_mask[i] = 0;
devc->trigger_value[i] = 0;
}
stage = -1;
for (l = sdi->channels; l; l = l->next) {
probe = (struct sr_channel *)l->data;
if (probe->enabled == FALSE)
continue;
probe_bit = 1 << (probe->index);
if (!(probe->trigger))
continue;
stage = 0;
for (tc = probe->trigger; *tc; tc++) {
devc->trigger_mask[stage] |= probe_bit;
if (*tc == '1')
devc->trigger_value[stage] |= probe_bit;
stage++;
if (stage > NUM_TRIGGER_STAGES)
return SR_ERR;
}
}
if (stage == -1)
/*
* We didn't configure any triggers, make sure acquisition
* doesn't wait for any.
*/
devc->trigger_stage = TRIGGER_FIRED;
else
devc->trigger_stage = 0;
return SR_OK;
}
static struct DSL_context *DSLogic_dev_new(void)
{
struct DSL_context *devc;
if (!(devc = g_try_malloc(sizeof(struct DSL_context)))) {
sr_err("Device context malloc failed.");
return NULL;
}
devc->profile = NULL;
devc->fw_updated = 0;
devc->cur_samplerate = DEFAULT_SAMPLERATE;
devc->limit_samples = DEFAULT_SAMPLELIMIT;
devc->sample_wide = TRUE;
devc->clock_type = FALSE;
devc->clock_edge = FALSE;
devc->rle_mode = FALSE;
devc->instant = FALSE;
devc->op_mode = SR_OP_BUFFER;
devc->ch_mode = 0;
devc->samplerates_size = 14;
devc->th_level = SR_TH_3V3;
devc->vth = 1.0;
devc->filter = SR_FILTER_NONE;
devc->timebase = 10000;
devc->trigger_slope = DSO_TRIGGER_RISING;
devc->trigger_source = DSO_TRIGGER_AUTO;
devc->trigger_hpos = 0x0;
devc->trigger_hrate = 0;
devc->trigger_holdoff = 0;
devc->zero = FALSE;
devc->stream = FALSE;
devc->mstatus_valid = FALSE;
devc->data_lock = FALSE;
devc->max_height = 1;
return devc;
}
static int dev_clear(void)
{
return std_dev_clear(di, NULL);
}
static int init(struct sr_context *sr_ctx)
{
return std_hw_init(sr_ctx, di, LOG_PREFIX);
}
static int set_probes(struct sr_dev_inst *sdi, int num_probes)
{
uint16_t j;
struct sr_channel *probe;
for (j = 0; j < num_probes; j++) {
if (!(probe = sr_channel_new(j, (sdi->mode == LOGIC) ? SR_CHANNEL_LOGIC : ((sdi->mode == DSO) ? SR_CHANNEL_DSO : SR_CHANNEL_ANALOG),
TRUE, probe_names[j])))
return SR_ERR;
if (sdi->mode == DSO) {
probe->vdiv = 1000;
probe->vfactor = 1;
probe->coupling = SR_DC_COUPLING;
probe->trig_value = 0x80;
}
sdi->channels = g_slist_append(sdi->channels, probe);
}
return SR_OK;
}
static int adjust_probes(struct sr_dev_inst *sdi, int num_probes)
{
uint16_t j;
GSList *l;
struct sr_channel *probe;
GSList *p;
assert(num_probes > 0);
j = g_slist_length(sdi->channels);
while(j < num_probes) {
if (!(probe = sr_channel_new(j, (sdi->mode == LOGIC) ? SR_CHANNEL_LOGIC : ((sdi->mode == DSO) ? SR_CHANNEL_DSO : SR_CHANNEL_ANALOG),
TRUE, probe_names[j])))
return SR_ERR;
sdi->channels = g_slist_append(sdi->channels, probe);
j++;
}
while(j > num_probes) {
g_slist_delete_link(sdi->channels, g_slist_last(sdi->channels));
j--;
}
return SR_OK;
}
static GSList *scan(GSList *options)
{
struct drv_context *drvc;
struct DSL_context *devc;
struct sr_dev_inst *sdi;
struct sr_usb_dev_inst *usb;
struct sr_config *src;
const struct DSL_profile *prof;
GSList *l, *devices, *conn_devices;
struct libusb_device_descriptor des;
libusb_device **devlist;
int devcnt, num_logic_probes, ret, i, j;
const char *conn;
drvc = di->priv;
conn = NULL;
for (l = options; l; l = l->next) {
src = l->data;
switch (src->key) {
case SR_CONF_CONN:
conn = g_variant_get_string(src->data, NULL);
break;
}
}
if (conn)
conn_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn);
else
conn_devices = NULL;
/* Find all DSLogic compatible devices and upload firmware to them. */
devices = NULL;
libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist);
for (i = 0; devlist[i]; i++) {
if (conn) {
usb = NULL;
for (l = conn_devices; l; l = l->next) {
usb = l->data;
if (usb->bus == libusb_get_bus_number(devlist[i])
&& usb->address == libusb_get_device_address(devlist[i]))
break;
}
if (!l)
/* This device matched none of the ones that
* matched the conn specification. */
continue;
}
if ((ret = libusb_get_device_descriptor( devlist[i], &des)) != 0) {
sr_warn("Failed to get device descriptor: %s.",
libusb_error_name(ret));
continue;
}
prof = NULL;
for (j = 0; supported_DSLogic[j].vid; j++) {
if (des.idVendor == supported_DSLogic[j].vid &&
des.idProduct == supported_DSLogic[j].pid) {
prof = &supported_DSLogic[j];
}
}
/* Skip if the device was not found. */
if (!prof)
continue;
devcnt = g_slist_length(drvc->instances);
sdi = sr_dev_inst_new(LOGIC, devcnt, SR_ST_INITIALIZING,
prof->vendor, prof->model, prof->model_version);
if (!sdi)
return NULL;
sdi->driver = di;
/* Fill in probelist according to this device's profile. */
num_logic_probes = prof->dev_caps & DEV_CAPS_16BIT ? 16 : 8;
if (set_probes(sdi, num_logic_probes) != SR_OK)
return NULL;
devc = DSLogic_dev_new();
devc->profile = prof;
sdi->priv = devc;
drvc->instances = g_slist_append(drvc->instances, sdi);
devices = g_slist_append(devices, sdi);
if (check_conf_profile(devlist[i])) {
/* Already has the firmware, so fix the new address. */
sr_dbg("Found an DSLogic device.");
sdi->status = SR_ST_INACTIVE;
sdi->inst_type = SR_INST_USB;
sdi->conn = sr_usb_dev_inst_new(libusb_get_bus_number(devlist[i]),
libusb_get_device_address(devlist[i]), NULL);
} else {
char *firmware;
if (!(firmware = g_try_malloc(strlen(config_path)+strlen(prof->firmware)+1))) {
sr_err("Firmware path malloc error!");
return NULL;
}
strcpy(firmware, config_path);
strcat(firmware, prof->firmware);
if (ezusb_upload_firmware(devlist[i], USB_CONFIGURATION,
firmware) == SR_OK)
/* Store when this device's FW was updated. */
devc->fw_updated = g_get_monotonic_time();
else
sr_err("Firmware upload failed for "
"device %d.", devcnt);
g_free(firmware);
sdi->inst_type = SR_INST_USB;
sdi->conn = sr_usb_dev_inst_new (libusb_get_bus_number(devlist[i]),
0xff, NULL);
}
}
libusb_free_device_list(devlist, 1);
g_slist_free_full(conn_devices, (GDestroyNotify)sr_usb_dev_inst_free);
return devices;
}
static GSList *dev_list(void)
{
return ((struct drv_context *)(di->priv))->instances;
}
static GSList *dev_mode_list(const struct sr_dev_inst *sdi)
{
GSList *l = NULL;
int i;
if (strcmp(sdi->model, "DSLogic Pro") == 0) {
for(i = 0; i < ARRAY_SIZE(pro_mode_list); i++) {
l = g_slist_append(l, &pro_mode_list[i]);
}
} else {
for(i = 0; i < ARRAY_SIZE(mode_list); i++) {
l = g_slist_append(l, &mode_list[i]);
}
}
return l;
}
static uint64_t dso_cmd_gen(struct sr_dev_inst *sdi, struct sr_channel* ch, int id)
{
struct DSL_context *devc;
uint64_t cmd = 0;
int channel_cnt = 0;
GSList *l;
const int ch_bit = 7;
devc = sdi->priv;
switch (id) {
case SR_CONF_VDIV:
case SR_CONF_EN_CH:
case SR_CONF_TIMEBASE:
case SR_CONF_COUPLING:
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
if (probe->enabled)
channel_cnt += probe->index + 0x1;
}
if (channel_cnt == 0)
return 0x0;
// --VDBS
switch(ch->vdiv){
case 5: cmd += 0x247000; break;
case 10: cmd += 0x23D000; break;
case 20: cmd += 0x22F000; break;
case 50: cmd += 0x21C800; break;
case 100: cmd += 0x20E800; break;
case 200: cmd += 0x200800; break;
case 500: cmd += 0x2F000; break;
case 1000: cmd += 0x21100; break;
case 2000: cmd += 0x13000; break;
case 5000: cmd += 0x00800; break;
default: cmd += 0x21100; break;
}
// --DC/AC
if (channel_cnt == 1) {
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
if (probe->coupling == SR_AC_COUPLING)
cmd += 0x100000;
break;
}
} else {
if(ch->coupling == SR_AC_COUPLING)
cmd += 0x100000;
}
// --Channel
if(channel_cnt == 1)
cmd += 0xC00000;
else if(ch->index == 0)
cmd += 0x400000;
else if(ch->index == 1)
cmd += 0x800000;
else
cmd += 0x000000;
// if(ch->index == 0)
// cmd += 0x400000;
// else if(ch->index == 1)
// cmd += 0x800000;
// else
// cmd += 0x000000;
// --Header
cmd += 0x55000000;
break;
case SR_CONF_SAMPLERATE:
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
channel_cnt += probe->enabled;
}
cmd += 0x18;
uint32_t divider = devc->zero ? 0x1 : (uint32_t)ceil(DSLOGIC_MAX_DSO_SAMPLERATE * 1.0 / devc->cur_samplerate / channel_cnt);
cmd += divider << 8;
break;
case SR_CONF_HORIZ_TRIGGERPOS:
cmd += 0x20;
cmd += devc->trigger_hpos << 8;
break;
case SR_CONF_TRIGGER_SLOPE:
cmd += 0x28;
cmd += devc->trigger_slope << 8;
break;
case SR_CONF_TRIGGER_SOURCE:
cmd += 0x30;
cmd += devc->trigger_source << 8;
break;
case SR_CONF_TRIGGER_VALUE:
cmd += 0x38;
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
cmd += probe->trig_value << (8 * (probe->index + 1));
}
break;
case SR_CONF_ZERO_SET:
cmd += 0x40;
cmd += ch->index << ch_bit;
cmd += ((uint64_t)zero_info.vpos_l << 8);
cmd += ((uint64_t)(zero_info.vpos_h & 0x3) << 16);
cmd += ((uint64_t)zero_info.voff_l << 24);
cmd += ((uint64_t)(zero_info.voff_h & 0x3) << 32);
cmd += ((uint64_t)zero_info.vcntr_l << 40);
cmd += ((uint64_t)(zero_info.vcntr_h & 0x3) << 48);
cmd += ((uint64_t)zero_info.adc_off << 56);
break;
case SR_CONF_COMB_SET:
cmd += 0x48;
cmd += ((uint64_t)comb_info.comb0_low_off << 8);
cmd += ((uint64_t)comb_info.comb0_hig_off << 16);
cmd += ((uint64_t)comb_info.comb1_low_off << 24);
cmd += ((uint64_t)comb_info.comb1_hig_off << 32);
cmd += ((uint64_t)comb_info.comb_sign << 40);
break;
case SR_CONF_ZERO_OVER:
cmd += 0x50;
break;
case SR_CONF_TRIGGER_HOLDOFF:
cmd += 0x58;
cmd += devc->trigger_holdoff << 8;
break;
case SR_CONF_DSO_SYNC:
cmd = 0xa5a5a500;
break;
default:
cmd = 0x00000000;
}
return cmd;
}
static int dev_open(struct sr_dev_inst *sdi)
{
struct sr_usb_dev_inst *usb;
struct DSL_context *devc;
GSList *l;
int ret;
int64_t timediff_us, timediff_ms;
devc = sdi->priv;
usb = sdi->conn;
/*
* If the firmware was recently uploaded, wait up to MAX_RENUM_DELAY_MS
* milliseconds for the FX2 to renumerate.
*/
ret = SR_ERR;
if (devc->fw_updated > 0) {
sr_info("Waiting for device to reset.");
/* Takes >= 300ms for the FX2 to be gone from the USB bus. */
g_usleep(300 * 1000);
timediff_ms = 0;
while (timediff_ms < MAX_RENUM_DELAY_MS) {
if ((ret = DSLogic_dev_open(sdi)) == SR_OK)
break;
g_usleep(100 * 1000);
timediff_us = g_get_monotonic_time() - devc->fw_updated;
timediff_ms = timediff_us / 1000;
sr_spew("Waited %" PRIi64 "ms.", timediff_ms);
}
if (ret != SR_OK) {
sr_err("Device failed to renumerate.");
return SR_ERR;
}
sr_info("Device came back after %" PRIi64 "ms.", timediff_ms);
} else {
sr_info("Firmware upload was not needed.");
ret = DSLogic_dev_open(sdi);
}
if (ret != SR_OK) {
sr_err("Unable to open device.");
return SR_ERR;
}
ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
if (ret != 0) {
switch(ret) {
case LIBUSB_ERROR_BUSY:
sr_err("Unable to claim USB interface. Another "
"program or driver has already claimed it.");
break;
case LIBUSB_ERROR_NO_DEVICE:
sr_err("Device has been disconnected.");
break;
default:
sr_err("Unable to claim interface: %s.",
libusb_error_name(ret));
break;
}
return SR_ERR;
}
if (devc->fw_updated > 0) {
if ((ret = command_fpga_config(usb->devhdl)) != SR_OK) {
sr_err("Send FPGA configure command failed!");
} else {
/* Takes >= 10ms for the FX2 to be ready for FPGA configure. */
g_usleep(10 * 1000);
char *fpga_bit;
if (!(fpga_bit = g_try_malloc(strlen(config_path)+strlen(devc->profile->fpga_bit33)+1))) {
sr_err("fpag_bit path malloc error!");
return SR_ERR_MALLOC;
}
strcpy(fpga_bit, config_path);
switch(devc->th_level) {
case SR_TH_3V3:
strcat(fpga_bit, devc->profile->fpga_bit33);;
break;
case SR_TH_5V0:
strcat(fpga_bit, devc->profile->fpga_bit50);;
break;
default:
return SR_ERR;
}
ret = fpga_config(usb->devhdl, fpga_bit);
if (ret != SR_OK) {
sr_err("Configure FPGA failed!");
}
g_free(fpga_bit);
}
}
ret = command_vth(usb->devhdl, devc->vth);
if (ret == SR_OK)
sr_dbg("%s: setting threshold voltage to %d",
__func__, devc->vth);
else
sr_dbg("%s: setting threshold voltage to %d failed",
__func__, devc->vth);
return SR_OK;
}
static int dev_close(struct sr_dev_inst *sdi)
{
struct sr_usb_dev_inst *usb;
usb = sdi->conn;
if (usb->devhdl == NULL)
return SR_ERR;
sr_info("DSLogic: Closing device %d on %d.%d interface %d.",
sdi->index, usb->bus, usb->address, USB_INTERFACE);
libusb_release_interface(usb->devhdl, USB_INTERFACE);
libusb_close(usb->devhdl);
usb->devhdl = NULL;
sdi->status = SR_ST_INACTIVE;
return SR_OK;
}
static int cleanup(void)
{
int ret;
struct drv_context *drvc;
if (!(drvc = di->priv))
return SR_OK;
ret = dev_clear();
g_free(drvc);
di->priv = NULL;
return ret;
}
static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel *ch,
const struct sr_channel_group *cg)
{
struct DSL_context *devc;
struct sr_usb_dev_inst *usb;
char str[128];
(void)cg;
switch (id) {
case SR_CONF_CONN:
if (!sdi || !sdi->conn)
return SR_ERR_ARG;
usb = sdi->conn;
if (usb->address == 255)
/* Device still needs to re-enumerate after firmware
* upload, so we don't know its (future) address. */
return SR_ERR;
snprintf(str, 128, "%d.%d", usb->bus, usb->address);
*data = g_variant_new_string(str);
break;
case SR_CONF_LIMIT_SAMPLES:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_uint64(devc->limit_samples);
break;
case SR_CONF_SAMPLERATE:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_uint64(devc->cur_samplerate);
break;
case SR_CONF_CLOCK_TYPE:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_boolean(devc->clock_type);
break;
case SR_CONF_CLOCK_EDGE:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_boolean(devc->clock_edge);
break;
case SR_CONF_RLE:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_boolean(devc->rle_mode);
break;
case SR_CONF_INSTANT:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_boolean(devc->instant);
break;
case SR_CONF_OPERATION_MODE:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_string(opmodes[devc->op_mode]);
break;
case SR_CONF_CHANNEL_MODE:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
if (devc->stream)
*data = g_variant_new_string(stream_ch_modes[devc->ch_mode]);
else
*data = g_variant_new_string(buffer_ch_modes[devc->ch_mode]);
break;
case SR_CONF_TEST:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_boolean((devc->op_mode != SR_OP_BUFFER) &&
(devc->op_mode != SR_OP_STREAM));
break;
case SR_CONF_FILTER:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_string(filters[devc->filter]);
break;
case SR_CONF_MAX_HEIGHT:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_string(maxHeights[devc->max_height]);
break;
case SR_CONF_MAX_HEIGHT_VALUE:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_byte(devc->max_height);
break;
case SR_CONF_THRESHOLD:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_string(thresholds[devc->th_level]);
break;
case SR_CONF_VTH:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_double(devc->vth);
break;
case SR_CONF_VDIV:
if (!ch)
return SR_ERR;
*data = g_variant_new_uint64(ch->vdiv);
break;
case SR_CONF_FACTOR:
if (!ch)
return SR_ERR;
*data = g_variant_new_uint64(ch->vfactor);
break;
case SR_CONF_TIMEBASE:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_uint64(devc->timebase);
break;
case SR_CONF_COUPLING:
if (!ch)
return SR_ERR;
*data = g_variant_new_byte(ch->coupling);
break;
case SR_CONF_EN_CH:
if (!ch)
return SR_ERR;
*data = g_variant_new_boolean(ch->enabled);
break;
case SR_CONF_DATALOCK:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_boolean(devc->data_lock);
break;
case SR_CONF_TRIGGER_SLOPE:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_byte(devc->trigger_slope);
break;
case SR_CONF_TRIGGER_SOURCE:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_byte(devc->trigger_source);
break;
case SR_CONF_TRIGGER_VALUE:
if (!ch)
return SR_ERR;
*data = g_variant_new_byte(ch->trig_value);
break;
case SR_CONF_HORIZ_TRIGGERPOS:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
if (sdi->mode == DSO) {
*data = g_variant_new_byte(devc->trigger_hrate);
} else {
*data = g_variant_new_byte(devc->trigger_hpos);
}
break;
case SR_CONF_TRIGGER_HOLDOFF:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_uint64(devc->trigger_holdoff);
break;
case SR_CONF_ZERO:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
if (sdi->mode == DSO)
*data = g_variant_new_boolean(devc->zero);
else
*data = g_variant_new_boolean(FALSE);
break;
case SR_CONF_STREAM:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_boolean(devc->stream);
break;
case SR_CONF_MAX_DSO_SAMPLERATE:
if (!sdi)
return SR_ERR;
*data = g_variant_new_uint64(DSLOGIC_MAX_DSO_SAMPLERATE);
break;
case SR_CONF_MAX_DSO_SAMPLELIMITS:
if (!sdi)
return SR_ERR;
*data = g_variant_new_uint64(DSLOGIC_MAX_DSO_DEPTH);
break;
case SR_CONF_MAX_LOGIC_SAMPLERATE:
if (!sdi)
return SR_ERR;
*data = g_variant_new_uint64(DSLOGIC_MAX_LOGIC_SAMPLERATE);
break;
case SR_CONF_MAX_LOGIC_SAMPLELIMITS:
if (!sdi)
return SR_ERR;
sr_spew("dslogic:before");
devc = sdi->priv;
sr_spew("DSLOGIC_MAX_LOGIC_DEPTH: %d", DSLOGIC_MAX_LOGIC_DEPTH);
sr_spew("devc->cur_samplerate: %d", devc->cur_samplerate);
sr_spew("DSLOGIC_MAX_LOGIC_SAMPLERATE: %d", DSLOGIC_MAX_LOGIC_SAMPLERATE);
*data = g_variant_new_uint64(DSLOGIC_MAX_LOGIC_DEPTH*ceil(devc->cur_samplerate * 1.0 / DSLOGIC_MAX_LOGIC_SAMPLERATE));
sr_spew("dslogic:after");
break;
case SR_CONF_STATUS:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_boolean(devc->status != DSL_INIT);
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int config_set(int id, GVariant *data, struct sr_dev_inst *sdi,
struct sr_channel *ch,
const struct sr_channel_group *cg )
{
struct DSL_context *devc;
const char *stropt;
int ret, num_probes;
struct sr_usb_dev_inst *usb;
int i;
(void)cg;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR;
devc = sdi->priv;
usb = sdi->conn;
if (id == SR_CONF_SAMPLERATE) {
devc->cur_samplerate = g_variant_get_uint64(data);
if(sdi->mode == DSO) {
devc->sample_wide = (devc->cur_samplerate <= DSLOGIC_MAX_DSO_SAMPLERATE);
ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, 0, SR_CONF_SAMPLERATE));
} else {
devc->sample_wide = (devc->cur_samplerate <= DSLOGIC_MAX_LOGIC_SAMPLERATE);
ret = SR_OK;
}
} else if (id == SR_CONF_CLOCK_TYPE) {
devc->clock_type = g_variant_get_boolean(data);
ret = SR_OK;
} else if (id == SR_CONF_CLOCK_EDGE) {
devc->clock_edge = g_variant_get_boolean(data);
ret = SR_OK;
} else if (id == SR_CONF_RLE) {
devc->rle_mode = g_variant_get_boolean(data);
ret = SR_OK;
} else if (id == SR_CONF_INSTANT) {
if (sdi->mode == DSO) {
devc->instant = g_variant_get_boolean(data);
int num_probes = 0;
GSList *l;
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
num_probes += probe->enabled;
}
if (num_probes != 0) {
if (devc->instant)
devc->limit_samples = DSLOGIC_INSTANT_DEPTH / num_probes;
else
devc->limit_samples = DSLOGIC_MAX_DSO_DEPTH / num_probes;
}
}
ret = SR_OK;
} else if (id == SR_CONF_LIMIT_SAMPLES) {
devc->limit_samples = g_variant_get_uint64(data);
ret = SR_OK;
} else if (id == SR_CONF_DEVICE_MODE) {
sdi->mode = g_variant_get_int16(data);
ret = SR_OK;
if (sdi->mode == LOGIC) {
num_probes = devc->profile->dev_caps & DEV_CAPS_16BIT ? 16 : 8;
} else if (sdi->mode == DSO) {
sdi->mode = DSO;
num_probes = devc->profile->dev_caps & DEV_CAPS_16BIT ? MAX_DSO_PROBES_NUM : 1;
ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, NULL, SR_CONF_DSO_SYNC));
if (ret != SR_OK)
sr_dbg("%s: DSO configuration sync failed", __func__);
devc->cur_samplerate = DSLOGIC_MAX_DSO_SAMPLERATE / num_probes;
devc->limit_samples = DSLOGIC_MAX_DSO_DEPTH / num_probes;
} else if (sdi->mode == ANALOG){
num_probes = devc->profile->dev_caps & DEV_CAPS_16BIT ? MAX_ANALOG_PROBES_NUM : 1;
}
sr_dev_probes_free(sdi);
set_probes(sdi, num_probes);
sr_dbg("%s: setting mode to %d", __func__, sdi->mode);
if (sdi->mode == DSO) {
GList *l;
for(l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
zero_info.zero_addr = (zero_base_addr + probe->index * sizeof(struct cmd_zero_info));
if ((ret = command_rd_nvm(usb->devhdl, (unsigned char *)&zero_info, zero_info.zero_addr, sizeof(struct cmd_zero_info))) != SR_OK) {
sr_err("Send Get Zero command failed!");
} else {
if (zero_info.zero_addr == (zero_base_addr + probe->index * sizeof(struct cmd_zero_info))) {
ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, probe, SR_CONF_ZERO_SET));
if (ret != SR_OK) {
sr_err("Set Zero command failed!");
return ret;
}
} else {
devc->zero = TRUE;
sr_info("Zero have not been setted!");
}
}
}
comb_info.comb_addr = comb_base_addr;
if ((ret = command_rd_nvm(usb->devhdl, (unsigned char *)&comb_info, comb_info.comb_addr, sizeof(struct cmd_comb_info))) != SR_OK) {
sr_err("Send Get Comb Command Failed!");
} else {
if (comb_info.comb_addr == comb_base_addr) {
ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, NULL, SR_CONF_COMB_SET));
if (ret != SR_OK) {
sr_err("Set Comb command failed!");
return ret;
}
} else {
devc->zero = TRUE;
sr_info("Comb have not been setted!");
}
}
for(l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, probe, SR_CONF_COUPLING));
if (ret != SR_OK) {
sr_err("Set Coupling command failed!");
return ret;
}
ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, probe, SR_CONF_VDIV));
if (ret != SR_OK) {
sr_dbg("%s: Initial setting for DSO mode failed", __func__);
return ret;
}
}
ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, 0, SR_CONF_SAMPLERATE));
if (ret != SR_OK) {
sr_err("Set Sample Rate command failed!");
return ret;
}
ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, NULL, SR_CONF_HORIZ_TRIGGERPOS));
if (ret != SR_OK) {
sr_err("Set Horiz Trigger Position command failed!");
return ret;
}
ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_HOLDOFF));
if (ret != SR_OK) {
sr_err("Set Trigger Holdoff Time command failed!");
return ret;
}
ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_SLOPE));
if (ret != SR_OK) {
sr_err("Set Trigger Slope command failed!");
return ret;
}
ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_SOURCE));
if (ret != SR_OK) {
sr_err("Set Trigger Source command failed!");
return ret;
}
ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_VALUE));
if (ret != SR_OK) {
sr_err("Set Trigger Value command failed!");
return ret;
}
}
} else if (id == SR_CONF_OPERATION_MODE) {
stropt = g_variant_get_string(data, NULL);
ret = SR_OK;
if (!strcmp(stropt, opmodes[SR_OP_BUFFER]) && (devc->op_mode != SR_OP_BUFFER)) {
devc->op_mode = SR_OP_BUFFER;
devc->stream = FALSE;
devc->ch_mode = 0;
devc->samplerates_size = 14;
adjust_probes(sdi, buffer_ch_num[0]);
} else if (!strcmp(stropt, opmodes[SR_OP_STREAM]) && (devc->op_mode != SR_OP_STREAM)) {
devc->op_mode = SR_OP_STREAM;
devc->stream = TRUE;
devc->ch_mode = 0;
devc->samplerates_size = 10;
adjust_probes(sdi, stream_ch_num[0]);
} else if (!strcmp(stropt, opmodes[SR_OP_INTERNAL_TEST]) && (devc->op_mode != SR_OP_INTERNAL_TEST)) {
devc->op_mode = SR_OP_INTERNAL_TEST;
devc->stream = FALSE;
devc->ch_mode = 0;
devc->samplerates_size = 14;
adjust_probes(sdi, buffer_ch_num[0]);
devc->limit_samples = DSLOGIC_MAX_LOGIC_DEPTH;
devc->cur_samplerate = DSLOGIC_MAX_LOGIC_SAMPLERATE;
} else if (!strcmp(stropt, opmodes[SR_OP_EXTERNAL_TEST]) && (devc->op_mode != SR_OP_EXTERNAL_TEST)) {
devc->op_mode = SR_OP_EXTERNAL_TEST;
devc->stream = FALSE;
devc->ch_mode = 0;
devc->samplerates_size = 14;
adjust_probes(sdi, buffer_ch_num[0]);
devc->limit_samples = DSLOGIC_MAX_LOGIC_DEPTH;
devc->cur_samplerate = DSLOGIC_MAX_LOGIC_SAMPLERATE;
} else if (!strcmp(stropt, opmodes[SR_OP_LOOPBACK_TEST]) && (devc->op_mode != SR_OP_LOOPBACK_TEST)) {
devc->op_mode = SR_OP_LOOPBACK_TEST;
devc->stream = FALSE;
devc->ch_mode = 0;
devc->samplerates_size = 14;
adjust_probes(sdi, buffer_ch_num[0]);
devc->limit_samples = DSLOGIC_MAX_LOGIC_DEPTH;
devc->cur_samplerate = DSLOGIC_MAX_LOGIC_SAMPLERATE;
} else {
ret = SR_ERR;
}
if (devc->cur_samplerate > samplerates[devc->samplerates_size-1])
devc->cur_samplerate = samplerates[devc->samplerates_size-1];
sr_dbg("%s: setting pattern to %d",
__func__, devc->op_mode);
} else if (id == SR_CONF_CHANNEL_MODE) {
stropt = g_variant_get_string(data, NULL);
ret = SR_OK;
if (devc->stream) {
for (i = 0; i < ARRAY_SIZE(stream_ch_modes); i++)
if (!strcmp(stropt, stream_ch_modes[i])) {
devc->ch_mode = i;
devc->samplerates_size = 10 + i * 2;
adjust_probes(sdi, stream_ch_num[i]);
break;
}
} else {
for (i = 0; i < ARRAY_SIZE(buffer_ch_modes); i++)
if (!strcmp(stropt, buffer_ch_modes[i])) {
devc->ch_mode = i;
devc->samplerates_size = 14 + i;
adjust_probes(sdi, buffer_ch_num[i]);
break;
}
}
if (devc->cur_samplerate > samplerates[devc->samplerates_size-1])
devc->cur_samplerate = samplerates[devc->samplerates_size-1];
sr_dbg("%s: setting channel mode to %d",
__func__, devc->ch_mode);
} else if (id == SR_CONF_THRESHOLD) {
stropt = g_variant_get_string(data, NULL);
ret = SR_OK;
if (!strcmp(stropt, thresholds[SR_TH_3V3])) {
devc->th_level = SR_TH_3V3;
} else if (!strcmp(stropt, thresholds[SR_TH_5V0])) {
devc->th_level = SR_TH_5V0;
} else {
ret = SR_ERR;
}
if ((ret = command_fpga_config(usb->devhdl)) != SR_OK) {
sr_err("Send FPGA configure command failed!");
} else {
/* Takes >= 10ms for the FX2 to be ready for FPGA configure. */
g_usleep(10 * 1000);
char *fpga_bit;
if (!(fpga_bit = g_try_malloc(strlen(config_path)+strlen(devc->profile->fpga_bit33)+1))) {
sr_err("fpag_bit path malloc error!");
return SR_ERR_MALLOC;
}
strcpy(fpga_bit, config_path);
switch(devc->th_level) {
case SR_TH_3V3:
strcat(fpga_bit, devc->profile->fpga_bit33);;
break;
case SR_TH_5V0:
strcat(fpga_bit, devc->profile->fpga_bit50);;
break;
default:
return SR_ERR;
}
ret = fpga_config(usb->devhdl, fpga_bit);
if (ret != SR_OK) {
sr_err("Configure FPGA failed!");
}
g_free(fpga_bit);
}
sr_dbg("%s: setting threshold to %d",
__func__, devc->th_level);
} else if (id == SR_CONF_VTH) {
devc->vth = g_variant_get_double(data);
ret = command_vth(usb->devhdl, devc->vth);
if (ret == SR_OK)
sr_dbg("%s: setting threshold voltage to %d",
__func__, devc->vth);
else
sr_dbg("%s: setting threshold voltage to %d failed",
__func__, devc->vth);
} else if (id == SR_CONF_FILTER) {
stropt = g_variant_get_string(data, NULL);
ret = SR_OK;
if (!strcmp(stropt, filters[SR_FILTER_NONE])) {
devc->filter = SR_FILTER_NONE;
} else if (!strcmp(stropt, filters[SR_FILTER_1T])) {
devc->filter = SR_FILTER_1T;
} else {
ret = SR_ERR;
}
sr_dbg("%s: setting threshold to %d",
__func__, devc->th_level);
} else if (id == SR_CONF_MAX_HEIGHT) {
stropt = g_variant_get_string(data, NULL);
ret = SR_OK;
for (i = 0; i < ARRAY_SIZE(maxHeights); i++) {
if (!strcmp(stropt, maxHeights[i])) {
devc->max_height = i;
break;
}
}
sr_dbg("%s: setting Signal Max Height to %d",
__func__, devc->max_height);
} else if (id == SR_CONF_EN_CH) {
ch->enabled = g_variant_get_boolean(data);
if (sdi->mode == DSO) {
ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, ch, SR_CONF_EN_CH));
uint16_t channel_cnt = 0;
GSList *l;
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
channel_cnt += probe->enabled;
}
if (channel_cnt != 0)
ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, 0, SR_CONF_SAMPLERATE));
}
if (ret == SR_OK)
sr_dbg("%s: setting ENABLE of channel %d to %d",
__func__, ch->index, ch->enabled);
else
sr_dbg("%s: setting ENABLE of channel %d to %d",
__func__, ch->index, ch->enabled);
} else if (id == SR_CONF_DATALOCK) {
devc->data_lock = g_variant_get_boolean(data);
ret = SR_OK;
} else if (id == SR_CONF_VDIV) {
ch->vdiv = g_variant_get_uint64(data);
if (sdi->mode == DSO) {
ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, ch, SR_CONF_VDIV));
}
if (ret == SR_OK)
sr_dbg("%s: setting VDIV of channel %d to %d mv",
__func__, ch->index, ch->vdiv);
else
sr_dbg("%s: setting VDIV of channel %d to %d mv failed",
__func__, ch->index, ch->vdiv);
} else if (id == SR_CONF_FACTOR) {
ch->vfactor = g_variant_get_uint64(data);
ret = SR_OK;
} else if (id == SR_CONF_TIMEBASE) {
devc->timebase = g_variant_get_uint64(data);
ret = SR_OK;
} else if (id == SR_CONF_COUPLING) {
ch->coupling = g_variant_get_byte(data);
if (ch->coupling == SR_GND_COUPLING)
ch->coupling = SR_DC_COUPLING;
if (sdi->mode == DSO) {
ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, ch, SR_CONF_COUPLING));
}
if (ret == SR_OK)
sr_dbg("%s: setting AC COUPLING of channel %d to %d",
__func__, ch->index, ch->coupling);
else
sr_dbg("%s: setting AC COUPLING of channel %d to %d failed",
__func__, ch->index, ch->coupling);
} else if (id == SR_CONF_TRIGGER_SLOPE) {
devc->trigger_slope = g_variant_get_byte(data);
if (sdi->mode == DSO) {
ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_SLOPE));
}
if (ret == SR_OK)
sr_dbg("%s: setting DSO Trigger Slope to %d",
__func__, devc->trigger_slope);
else
sr_dbg("%s: setting DSO Trigger Slope to %d failed",
__func__, devc->trigger_slope);
} else if (id == SR_CONF_TRIGGER_SOURCE) {
devc->trigger_source = g_variant_get_byte(data);
if (sdi->mode == DSO) {
ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_SOURCE));
}
if (ret == SR_OK)
sr_dbg("%s: setting DSO Trigger Source to %d",
__func__, devc->trigger_source);
else
sr_dbg("%s: setting DSO Trigger Source to %d failed",
__func__, devc->trigger_source);
} else if (id == SR_CONF_TRIGGER_VALUE) {
ch->trig_value = g_variant_get_byte(data);
if (sdi->mode == DSO) {
ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, ch, SR_CONF_TRIGGER_VALUE));
}
if (ret == SR_OK)
sr_dbg("%s: setting channel %d Trigger Value to %d",
__func__, ch->index, ch->trig_value);
else
sr_dbg("%s: setting DSO Trigger Value to %d failed",
__func__, ch->index, ch->trig_value);
} else if (id == SR_CONF_HORIZ_TRIGGERPOS) {
if (sdi->mode == DSO) {
uint16_t channel_cnt = 0;
GSList *l;
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
channel_cnt += probe->enabled;
}
devc->trigger_hrate = g_variant_get_byte(data);
devc->trigger_hpos = devc->trigger_hrate * channel_cnt * devc->limit_samples / 200.0;
} else {
devc->trigger_hpos = g_variant_get_byte(data) * devc->limit_samples / 100.0;
}
if (sdi->mode == DSO) {
ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, 1, SR_CONF_HORIZ_TRIGGERPOS));
}
if (ret == SR_OK)
sr_dbg("%s: setting DSO Horiz Trigger Position to %d",
__func__, devc->trigger_hpos);
else
sr_dbg("%s: setting DSO Horiz Trigger Position to %d failed",
__func__, devc->trigger_hpos);
} else if (id == SR_CONF_TRIGGER_HOLDOFF) {
devc->trigger_holdoff = g_variant_get_uint64(data);
if (sdi->mode == DSO) {
ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_HOLDOFF));
}
if (ret == SR_OK)
sr_dbg("%s: setting Trigger Holdoff Time to %d",
__func__, devc->trigger_holdoff);
else
sr_dbg("%s: setting Trigger Holdoff Time to %d failed",
__func__, devc->trigger_holdoff);
} else if (id == SR_CONF_ZERO) {
devc->zero = g_variant_get_boolean(data);
ret = SR_OK;
} else if (id == SR_CONF_ZERO_SET) {
GSList *l;
for(l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
zero_info.zero_addr = zero_base_addr + probe->index * sizeof(struct cmd_zero_info);
zero_info.adc_off = (probe->index == 0) ? mstatus.ch0_adc_off + (mstatus.ch0_adc_sign << 7) : mstatus.ch1_adc_off + (mstatus.ch1_adc_sign << 7);
ret = command_wr_nvm(usb->devhdl, (unsigned char *)&zero_info, sizeof(struct cmd_zero_info));
if (ret != SR_OK)
sr_err("DSO channel %d Set Zero command failed!", probe->index);
}
comb_info.comb_addr = comb_base_addr;
comb_info.comb0_low_off = mstatus.comb0_off;
comb_info.comb0_hig_off = mstatus.comb0_off >> 8;
comb_info.comb1_low_off = mstatus.comb1_off;
comb_info.comb1_hig_off = mstatus.comb1_off >> 8;
comb_info.comb_sign = mstatus.comb_sign;
ret = command_wr_nvm(usb->devhdl, (unsigned char *)&comb_info, sizeof(struct cmd_comb_info));
if (ret != SR_OK)
sr_err("DSO Set Comb command failed!");
else
devc->zero = FALSE;
} else if (id == SR_CONF_STREAM) {
devc->stream = g_variant_get_boolean(data);
} else {
ret = SR_ERR_NA;
}
return ret;
}
static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct DSL_context *devc;
GVariant *gvar;
GVariantBuilder gvb;
//(void)sdi;
(void)cg;
devc = sdi->priv;
switch (key) {
case SR_CONF_SCAN_OPTIONS:
// *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
// hwopts, ARRAY_SIZE(hwopts), sizeof(int32_t));
*data = g_variant_new_from_data(G_VARIANT_TYPE("ai"),
hwopts, ARRAY_SIZE(hwopts)*sizeof(int32_t), TRUE, NULL, NULL);
break;
case SR_CONF_DEVICE_OPTIONS:
// *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
// hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t));
*data = g_variant_new_from_data(G_VARIANT_TYPE("ai"),
hwcaps, ARRAY_SIZE(hwcaps)*sizeof(int32_t), TRUE, NULL, NULL);
break;
case SR_CONF_DEVICE_CONFIGS:
// *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
// hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t));
if (strcmp(sdi->model, "DSLogic Pro") == 0)
*data = g_variant_new_from_data(G_VARIANT_TYPE("ai"),
hwoptions_pro, ARRAY_SIZE(hwoptions_pro)*sizeof(int32_t), TRUE, NULL, NULL);
else
*data = g_variant_new_from_data(G_VARIANT_TYPE("ai"),
hwoptions, ARRAY_SIZE(hwoptions)*sizeof(int32_t), TRUE, NULL, NULL);
break;
case SR_CONF_DEVICE_SESSIONS:
if (strcmp(sdi->model, "DSLogic Pro") == 0)
*data = g_variant_new_from_data(G_VARIANT_TYPE("ai"),
sessions_pro, ARRAY_SIZE(sessions_pro)*sizeof(int32_t), TRUE, NULL, NULL);
else
*data = g_variant_new_from_data(G_VARIANT_TYPE("ai"),
sessions, ARRAY_SIZE(sessions)*sizeof(int32_t), TRUE, NULL, NULL);
break;
case SR_CONF_SAMPLERATE:
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
// gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates,
// ARRAY_SIZE(samplerates), sizeof(uint64_t));
gvar = g_variant_new_from_data(G_VARIANT_TYPE("at"),
samplerates, devc->samplerates_size*sizeof(uint64_t), TRUE, NULL, NULL);
g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_LIMIT_SAMPLES:
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
gvar = g_variant_new_from_data(G_VARIANT_TYPE("at"),
samplecounts, ARRAY_SIZE(samplecounts)*sizeof(uint64_t), TRUE, NULL, NULL);
g_variant_builder_add(&gvb, "{sv}", "samplecounts", gvar);
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_TRIGGER_TYPE:
*data = g_variant_new_string(TRIGGER_TYPE);
break;
case SR_CONF_OPERATION_MODE:
*data = g_variant_new_strv(opmodes, opmodes_show_count);
break;
case SR_CONF_CHANNEL_MODE:
if (devc->stream)
*data = g_variant_new_strv(stream_ch_modes, ARRAY_SIZE(stream_ch_modes));
else if (devc->op_mode != SR_OP_BUFFER)
*data = g_variant_new_strv(buffer_ch_modes, 1);
else
*data = g_variant_new_strv(buffer_ch_modes, ARRAY_SIZE(buffer_ch_modes));
break;
case SR_CONF_THRESHOLD:
*data = g_variant_new_strv(thresholds, ARRAY_SIZE(thresholds));
break;
case SR_CONF_FILTER:
*data = g_variant_new_strv(filters, ARRAY_SIZE(filters));
break;
case SR_CONF_MAX_HEIGHT:
*data = g_variant_new_strv(maxHeights, ARRAY_SIZE(maxHeights));
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static void abort_acquisition(struct DSL_context *devc)
{
int i;
int ret;
struct sr_usb_dev_inst *usb;
devc->num_samples = -1;
sr_info("%s: Stopping", __func__);
/* Stop GPIF acquisition */
usb = ((struct sr_dev_inst *)devc->cb_data)->conn;
if ((ret = command_stop_acquisition (usb->devhdl)) != SR_OK)
sr_err("Stop DSLogic acquisition failed!");
else
sr_info("Stop DSLogic acquisition!");
ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen((struct sr_dev_inst *)devc->cb_data, NULL, SR_CONF_ZERO_OVER));
if (ret != SR_OK)
sr_err("DSO zero over command failed!");
/* Cancel exist transfers */
if (devc->num_transfers)
for (i = devc->num_transfers - 1; i >= 0; i--) {
if (devc->transfers[i])
libusb_cancel_transfer(devc->transfers[i]);
}
}
static void finish_acquisition(struct DSL_context *devc)
{
struct sr_datafeed_packet packet;
int i, ret;
struct sr_usb_dev_inst *usb;
sr_err("finish acquisition: send SR_DF_END packet");
/* Terminate session. */
packet.type = SR_DF_END;
sr_session_send(devc->cb_data, &packet);
sr_err("finish acquisition: remove fds from polling");
/* Remove fds from polling. */
for (i = 0; devc->usbfd[i] != -1; i++)
sr_source_remove(devc->usbfd[i]);
g_free(devc->usbfd);
if (devc->num_transfers != 0) {
devc->num_transfers = 0;
g_free(devc->transfers);
}
}
static void free_transfer(struct libusb_transfer *transfer)
{
struct DSL_context *devc;
unsigned int i;
devc = transfer->user_data;
g_free(transfer->buffer);
transfer->buffer = NULL;
libusb_free_transfer(transfer);
for (i = 0; i < devc->num_transfers; i++) {
if (devc->transfers[i] == transfer) {
devc->transfers[i] = NULL;
break;
}
}
devc->submitted_transfers--;
if (devc->submitted_transfers == 0 && devc->status != DSL_TRIGGERED)
finish_acquisition(devc);
}
static void resubmit_transfer(struct libusb_transfer *transfer)
{
int ret;
if ((ret = libusb_submit_transfer(transfer)) == LIBUSB_SUCCESS)
return;
free_transfer(transfer);
/* TODO: Stop session? */
sr_err("%s: %s", __func__, libusb_error_name(ret));
}
static void receive_transfer(struct libusb_transfer *transfer)
{
gboolean packet_has_error = FALSE;
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
struct sr_datafeed_dso dso;
struct sr_datafeed_analog analog;
struct DSL_context *devc;
int trigger_offset, i, sample_width, cur_sample_count;
int trigger_offset_bytes;
uint8_t *cur_buf;
//GTimeVal cur_time;
//g_get_current_time(&cur_time);
//sr_info("receive_transfer: current time %d sec %d usec", cur_time.tv_sec, cur_time.tv_usec);
devc = transfer->user_data;
/*
* If acquisition has already ended, just free any queued up
* transfer that come in.
*/
if (devc->num_samples == -1) {
free_transfer(transfer);
return;
}
//sr_info("receive_transfer(): status %d; timeout %d; received %d bytes.",
// transfer->status, transfer->timeout, transfer->actual_length);
/* Save incoming transfer before reusing the transfer struct. */
cur_buf = transfer->buffer;
sample_width = (devc->sample_wide) ? 2 : 1;
cur_sample_count = transfer->actual_length / sample_width;
switch (transfer->status) {
case LIBUSB_TRANSFER_NO_DEVICE:
//abort_acquisition(devc);
free_transfer(transfer);
devc->status = DSL_ERROR;
return;
case LIBUSB_TRANSFER_COMPLETED:
case LIBUSB_TRANSFER_TIMED_OUT: /* We may have received some data though. */
break;
default:
packet_has_error = TRUE;
break;
}
if (transfer->actual_length == 0 ||
packet_has_error ||
devc->data_lock) {
devc->empty_transfer_count++;
if (devc->empty_transfer_count > MAX_EMPTY_TRANSFERS) {
/*
* The FX2 gave up. End the acquisition, the frontend
* will work out that the samplecount is short.
*/
//abort_acquisition(devc);
free_transfer(transfer);
devc->status = DSL_ERROR;
} else {
resubmit_transfer(transfer);
}
return;
} else {
devc->empty_transfer_count = 0;
}
trigger_offset = 0;
if (devc->trigger_stage >= 0) {
for (i = 0; i < cur_sample_count; i++) {
const uint16_t cur_sample = devc->sample_wide ?
*((const uint16_t*)cur_buf + i) :
*((const uint8_t*)cur_buf + i);
if ((cur_sample & devc->trigger_mask[devc->trigger_stage]) ==
devc->trigger_value[devc->trigger_stage]) {
/* Match on this trigger stage. */
devc->trigger_buffer[devc->trigger_stage] = cur_sample;
devc->trigger_stage++;
if (devc->trigger_stage == NUM_TRIGGER_STAGES ||
devc->trigger_mask[devc->trigger_stage] == 0) {
/* Match on all trigger stages, we're done. */
trigger_offset = i + 1;
/*
* TODO: Send pre-trigger buffer to session bus.
* Tell the frontend we hit the trigger here.
*/
packet.type = SR_DF_TRIGGER;
packet.payload = NULL;
sr_session_send(devc->cb_data, &packet);
/*
* Send the samples that triggered it,
* since we're skipping past them.
*/
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.unitsize = sizeof(*devc->trigger_buffer);
logic.length = devc->trigger_stage * logic.unitsize;
logic.data = devc->trigger_buffer;
sr_session_send(devc->cb_data, &packet);
devc->trigger_stage = TRIGGER_FIRED;
break;
}
} else if (devc->trigger_stage > 0) {
/*
* We had a match before, but not in the next sample. However, we may
* have a match on this stage in the next bit -- trigger on 0001 will
* fail on seeing 00001, so we need to go back to stage 0 -- but at
* the next sample from the one that matched originally, which the
* counter increment at the end of the loop takes care of.
*/
i -= devc->trigger_stage;
if (i < -1)
i = -1; /* Oops, went back past this buffer. */
/* Reset trigger stage. */
devc->trigger_stage = 0;
}
}
}
if (devc->trigger_stage == TRIGGER_FIRED) {
/* Send the incoming transfer to the session bus. */
trigger_offset_bytes = trigger_offset * sample_width;
if ((*(struct sr_dev_inst *)(devc->cb_data)).mode == LOGIC) {
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = transfer->actual_length - trigger_offset_bytes;
logic.unitsize = sample_width;
logic.data_error = 0;
logic.data = cur_buf + trigger_offset_bytes;
} else if ((*(struct sr_dev_inst *)(devc->cb_data)).mode == DSO) {
uint16_t channel_cnt = 0;
uint16_t channel_en_cnt = 0;
GSList *l;
struct sr_dev_inst *sdi = devc->cb_data;
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
channel_cnt ++;
channel_en_cnt += probe->enabled;
}
if (channel_en_cnt == 0)
channel_en_cnt = 1;
if (!devc->instant) {
const uint32_t mstatus_offset = devc->limit_samples / (channel_cnt/channel_en_cnt);
mstatus.ch0_max = *((const uint8_t*)cur_buf + mstatus_offset*2 + 1*2);
mstatus.ch0_min = *((const uint8_t*)cur_buf + mstatus_offset*2 + 3);
mstatus.ch0_period = *((const uint32_t*)cur_buf + mstatus_offset/2 + 2/2);
mstatus.ch0_period += *((const uint32_t*)cur_buf + mstatus_offset/2 + 4/2) << 32;
mstatus.ch0_pcnt = *((const uint32_t*)cur_buf + mstatus_offset/2 + 6/2);
mstatus.ch1_max = *((const uint8_t*)cur_buf + mstatus_offset*2 + 9*2);
mstatus.ch1_min = *((const uint8_t*)cur_buf + mstatus_offset*2 + 19);
mstatus.ch1_period = *((const uint32_t*)cur_buf + mstatus_offset/2 + 10/2);
mstatus.ch1_period += *((const uint32_t*)cur_buf + mstatus_offset/2 + 12/2) << 32;
mstatus.ch1_pcnt = *((const uint32_t*)cur_buf + mstatus_offset/2 + 14/2);
mstatus.vlen = *((const uint32_t*)cur_buf + mstatus_offset/2 + 16/2) & 0x7fffffff;
mstatus.stream_mode = *((const uint32_t*)cur_buf + mstatus_offset/2 + 16/2) & 0x80000000;
mstatus.sample_divider = *((const uint32_t*)cur_buf + mstatus_offset/2 + 18/2);
mstatus.zeroing = (*((const uint16_t*)cur_buf + mstatus_offset + 128) & 0x8000) != 0;
mstatus.ch0_adc_off = *((const uint8_t*)cur_buf + mstatus_offset*2 + 131*2);
mstatus.ch0_adc_sign = *((const uint8_t*)cur_buf + mstatus_offset*2 + 131*2+1);
mstatus.ch1_adc_off = *((const uint8_t*)cur_buf + mstatus_offset*2 + 135*2);
mstatus.ch1_adc_sign = *((const uint8_t*)cur_buf + mstatus_offset*2 + 135*2+1);
mstatus.comb0_off = *((const uint16_t*)cur_buf + mstatus_offset + 136);
mstatus.comb1_off = *((const uint16_t*)cur_buf + mstatus_offset + 137);
mstatus.comb_sign = *((const uint8_t*)cur_buf + mstatus_offset*2 + 138*2);
} else {
mstatus.vlen = instant_buffer_size;
}
const uint32_t divider = devc->zero ? 0x1 : (uint32_t)ceil(DSLOGIC_MAX_DSO_SAMPLERATE * 1.0 / devc->cur_samplerate / channel_en_cnt);
if ((mstatus.sample_divider == divider &&
mstatus.vlen != 0 &&
mstatus.vlen <= (transfer->actual_length - 512) / sample_width) ||
devc->instant) {
devc->mstatus_valid = devc->instant ? FALSE : TRUE;
packet.type = SR_DF_DSO;
packet.payload = &dso;
dso.probes = (*(struct sr_dev_inst *)(devc->cb_data)).channels;
//dso.num_samples = (transfer->actual_length - 512) / sample_width;
cur_sample_count = 2 * mstatus.vlen / channel_en_cnt ;
dso.num_samples = cur_sample_count;
dso.mq = SR_MQ_VOLTAGE;
dso.unit = SR_UNIT_VOLT;
dso.mqflags = SR_MQFLAG_AC;
dso.data = cur_buf + trigger_offset_bytes;
} else {
devc->mstatus_valid = FALSE;
}
} else {
packet.type = SR_DF_ANALOG;
packet.payload = &analog;
analog.probes = (*(struct sr_dev_inst *)(devc->cb_data)).channels;
analog.num_samples = transfer->actual_length / sample_width;
analog.mq = SR_MQ_VOLTAGE;
analog.unit = SR_UNIT_VOLT;
analog.mqflags = SR_MQFLAG_AC;
analog.data = cur_buf + trigger_offset_bytes;
}
if ((devc->limit_samples && devc->num_samples < devc->actual_samples) ||
(*(struct sr_dev_inst *)(devc->cb_data)).mode != LOGIC ) {
const uint64_t remain_length= (devc->actual_samples - devc->num_samples) * sample_width;
logic.length = min(logic.length, remain_length);
/* in test mode, check data content*/
if (devc->op_mode == SR_OP_INTERNAL_TEST) {
//for (i = 0; i < logic.length / sample_width; i++) {
for (i = 0; i < logic.length / 2; i++) {
// const uint16_t cur_sample = devc->sample_wide ?
// *((const uint16_t*)cur_buf + i) :
// *((const uint8_t*)cur_buf + i);
const uint16_t cur_sample = *((const uint16_t*)cur_buf + i);
if (test_init == 1) {
test_sample_value = cur_sample;
test_init = 0;
}
if (cur_sample != test_sample_value) {
logic.data_error = 1;
sr_err("exp: %d; act: %d", test_sample_value, cur_sample);
break;
}
test_sample_value++;
}
}
if (devc->op_mode == SR_OP_EXTERNAL_TEST) {
for (i = 0; i < logic.length / 2; i++) {
const uint16_t cur_sample = *((const uint16_t*)cur_buf + i);
if (test_init == 1) {
test_sample_value = cur_sample;
test_init = 0;
}
if (cur_sample != test_sample_value) {
logic.data_error = 1;
sr_err("exp: %d; act: %d", test_sample_value, cur_sample);
break;
}
test_sample_value = (test_sample_value + 1) % 65001;
//test_sample_value = test_sample_value + 1;
}
}
/* send data to session bus */
sr_session_send(devc->cb_data, &packet);
}
devc->num_samples += cur_sample_count;
if (((*(struct sr_dev_inst *)(devc->cb_data)).mode == LOGIC || devc->instant) &&
devc->limit_samples &&
(unsigned int)devc->num_samples >= devc->actual_samples) {
//abort_acquisition(devc);
free_transfer(transfer);
devc->status = DSL_STOP;
return;
}
} else {
/*
* TODO: Buffer pre-trigger data in capture
* ratio-sized buffer.
*/
}
resubmit_transfer(transfer);
}
static unsigned int to_bytes_per_ms(struct DSL_context *devc)
{
if (devc->cur_samplerate > SR_MHZ(100))
return SR_MHZ(100) / 1000 * (devc->sample_wide ? 2 : 1);
else
return devc->cur_samplerate / 1000 * (devc->sample_wide ? 2 : 1);
}
static size_t get_buffer_size(struct DSL_context *devc)
{
size_t s;
/*
* The buffer should be large enough to hold 10ms of data and
* a multiple of 512.
*/
s = single_buffer_time * to_bytes_per_ms(devc);
//s = to_bytes_per_ms(devc->cur_samplerate);
return (s + 511) & ~511;
}
static unsigned int get_number_of_transfers(struct DSL_context *devc)
{
unsigned int n;
/* Total buffer size should be able to hold about 100ms of data. */
n = 100 * to_bytes_per_ms(devc) / get_buffer_size(devc);
if (n > NUM_SIMUL_TRANSFERS)
return NUM_SIMUL_TRANSFERS;
return n;
}
static unsigned int get_timeout(struct DSL_context *devc)
{
size_t total_size;
unsigned int timeout;
total_size = get_buffer_size(devc) * get_number_of_transfers(devc);
timeout = total_size / to_bytes_per_ms(devc);
//return timeout + timeout / 4; /* Leave a headroom of 25% percent. */
return 1000;
}
static int dev_transfer_start(const struct sr_dev_inst *sdi)
{
struct DSL_context *devc;
struct sr_usb_dev_inst *usb;
struct libusb_transfer *transfer;
unsigned int i, timeout, num_transfers;
int ret;
unsigned char *buf;
size_t size;
int dso_buffer_size;
devc = sdi->priv;
usb = sdi->conn;
uint16_t channel_en_cnt = 0;
uint16_t channel_cnt = 0;
GSList *l;
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
channel_en_cnt += probe->enabled;
channel_cnt++;
}
if (devc->instant)
dso_buffer_size = instant_buffer_size * channel_cnt;
else
dso_buffer_size = devc->limit_samples * channel_en_cnt + 512;
num_transfers = 1;
size = (sdi->mode == ANALOG) ? cons_buffer_size : ((sdi->mode == DSO) ? dso_buffer_size : get_buffer_size(devc));
devc->submitted_transfers = 0;
devc->transfers = g_try_malloc0(sizeof(*devc->transfers) * num_transfers);
if (!devc->transfers) {
sr_err("USB transfers malloc failed.");
return SR_ERR_MALLOC;
}
devc->num_transfers = num_transfers;
for (i = 0; i < num_transfers; i++) {
if (!(buf = g_try_malloc(size))) {
sr_err("USB transfer buffer malloc failed.");
return SR_ERR_MALLOC;
}
transfer = libusb_alloc_transfer(0);
libusb_fill_bulk_transfer(transfer, usb->devhdl,
6 | LIBUSB_ENDPOINT_IN, buf, size,
receive_transfer, devc, 0);
if ((ret = libusb_submit_transfer(transfer)) != 0) {
sr_err("Failed to submit transfer: %s.",
libusb_error_name(ret));
libusb_free_transfer(transfer);
g_free(buf);
abort_acquisition(devc);
return SR_ERR;
}
devc->transfers[i] = transfer;
devc->submitted_transfers++;
}
devc->status = DSL_DATA;
return SR_OK;
}
static int receive_data(int fd, int revents, const struct sr_dev_inst *sdi)
{
int completed = 0;
struct timeval tv;
struct drv_context *drvc;
struct DSL_context *devc;
(void)fd;
(void)revents;
drvc = di->priv;
devc = sdi->priv;
if (devc->num_samples != -1 &&
(devc->status == DSL_STOP || devc->status == DSL_ERROR)) {
sr_info("%s: Stopping", __func__);
abort_acquisition(devc);
}
tv.tv_sec = tv.tv_usec = 0;
libusb_handle_events_timeout_completed(drvc->sr_ctx->libusb_ctx, &tv, &completed);
return TRUE;
}
static void receive_trigger_pos(struct libusb_transfer *transfer)
{
struct DSL_context *devc;
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
struct sr_datafeed_dso dso;
struct sr_datafeed_analog analog;
struct ds_trigger_pos *trigger_pos;
int ret;
devc = transfer->user_data;
sr_info("receive_trigger_pos(): status %d; timeout %d; received %d bytes.",
transfer->status, transfer->timeout, transfer->actual_length);
if (devc->num_samples == -1) {
free_transfer(transfer);
return;
}
trigger_pos = (struct ds_trigger_pos *)transfer->buffer;
switch (transfer->status) {
case LIBUSB_TRANSFER_COMPLETED:
if (transfer->actual_length == sizeof(struct ds_trigger_pos)) {
if (trigger_pos->remain_cnt < devc->limit_samples) {
devc->actual_samples = (devc->limit_samples - ceil(devc->cur_samplerate * 1.0 / DSLOGIC_MAX_LOGIC_SAMPLERATE) * (trigger_pos->remain_cnt + devc->rle_mode));
packet.type = SR_DF_TRIGGER;
packet.payload = trigger_pos;
sr_session_send(devc->cb_data, &packet);
devc->status = DSL_TRIGGERED;
free_transfer(transfer);
devc->num_transfers = 0;
devc->empty_transfer_count = 0;
} else {
free_transfer(transfer);
devc->status = DSL_ERROR;
}
} else {
free_transfer(transfer);
devc->status = DSL_ERROR;
}
break;
case LIBUSB_TRANSFER_TIMED_OUT:
devc->empty_transfer_count++;
if (devc->empty_transfer_count > MAX_EMPTY_TRANSFERS) {
/*
* The FX2 gave up. End the acquisition, the frontend
* will work out that the samplecount is short.
*/
//abort_acquisition(devc);
free_transfer(transfer);
devc->status = DSL_ERROR;
} else {
resubmit_transfer(transfer);
}
break;
case LIBUSB_TRANSFER_CANCELLED:
resubmit_transfer(transfer);
break;
default:
//abort_acquisition(devc);
free_transfer(transfer);
devc->status = DSL_ERROR;
break;
}
if (devc->status == DSL_TRIGGERED) {
if ((ret = dev_transfer_start(devc->cb_data)) != SR_OK) {
sr_err("%s: could not start data transfer"
"(%d)%d", __func__, ret, errno);
}
}
}
static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
{
struct DSL_context *devc;
struct drv_context *drvc;
struct sr_usb_dev_inst *usb;
struct libusb_transfer *transfer;
struct ds_trigger_pos *trigger_pos;
const struct libusb_pollfd **lupfd;
unsigned int i;
int ret;
int transferred;
struct sr_datafeed_packet packet;
int header_transferred;
test_init = 1;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
drvc = di->priv;
devc = sdi->priv;
usb = sdi->conn;
//devc->cb_data = cb_data;
devc->cb_data = sdi;
devc->num_samples = 0;
devc->empty_transfer_count = 0;
devc->status = DSL_INIT;
devc->num_transfers = 0;
devc->submitted_transfers = 0;
/* Configures devc->trigger_* and devc->sample_wide */
if (configure_probes(sdi) != SR_OK) {
sr_err("Failed to configure probes.");
return SR_ERR;
}
/* Stop Previous GPIF acquisition */
if ((ret = command_stop_acquisition (usb->devhdl)) != SR_OK) {
sr_err("Stop DSLogic acquisition failed!");
abort_acquisition(devc);
return ret;
} else {
sr_info("Stop Previous DSLogic acquisition!");
}
/* Setting FPGA before acquisition start*/
if ((ret = command_fpga_setting(usb->devhdl, sizeof(struct DSL_setting) / sizeof(uint16_t))) != SR_OK) {
sr_err("Send FPGA setting command failed!");
} else {
if ((ret = fpga_setting(sdi)) != SR_OK) {
sr_err("Configure FPGA failed!");
abort_acquisition(devc);
return ret;
}
}
if (sdi->mode == DSO) {
GList *l;
for(l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, probe, SR_CONF_COUPLING));
if (ret != SR_OK) {
sr_err("Set Coupling command failed!");
return ret;
}
ret = command_dso_ctrl(usb->devhdl, dso_cmd_gen(sdi, probe, SR_CONF_VDIV));
if (ret != SR_OK) {
sr_dbg("%s: Initial setting for DSO mode failed", __func__);
return ret;
}
}
}
if ((ret = command_start_acquisition (usb->devhdl,
devc->cur_samplerate, 1, (sdi->mode == LOGIC))) != SR_OK) {
abort_acquisition(devc);
return ret;
}
test_sample_value = 0;
/* setup callback function for data transfer */
lupfd = libusb_get_pollfds(drvc->sr_ctx->libusb_ctx);
for (i = 0; lupfd[i]; i++);
if (!(devc->usbfd = g_try_malloc(sizeof(struct libusb_pollfd) * (i + 1))))
return SR_ERR;
for (i = 0; lupfd[i]; i++) {
sr_source_add(lupfd[i]->fd, lupfd[i]->events,
get_timeout(devc), receive_data, sdi);
devc->usbfd[i] = lupfd[i]->fd;
}
devc->usbfd[i] = -1;
free(lupfd);
/* poll trigger status transfer*/
if (!(trigger_pos = g_try_malloc0(sizeof(struct ds_trigger_pos)))) {
sr_err("USB trigger_pos buffer malloc failed.");
return SR_ERR_MALLOC;
}
devc->transfers = g_try_malloc0(sizeof(*devc->transfers));
if (!devc->transfers) {
sr_err("USB trigger_pos transfer malloc failed.");
return SR_ERR_MALLOC;
}
devc->num_transfers = 1;
transfer = libusb_alloc_transfer(0);
libusb_fill_bulk_transfer(transfer, usb->devhdl,
6 | LIBUSB_ENDPOINT_IN, trigger_pos, sizeof(struct ds_trigger_pos),
receive_trigger_pos, devc, 0);
if ((ret = libusb_submit_transfer(transfer)) != 0) {
sr_err("Failed to submit trigger_pos transfer: %s.",
libusb_error_name(ret));
libusb_free_transfer(transfer);
g_free(trigger_pos);
abort_acquisition(devc);
return SR_ERR;
}
devc->transfers[0] = transfer;
devc->submitted_transfers++;
devc->status = DSL_START;
devc->mstatus_valid = FALSE;
/* Send header packet to the session bus. */
//std_session_send_df_header(cb_data, LOG_PREFIX);
std_session_send_df_header(sdi, LOG_PREFIX);
return SR_OK;
}
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
{
(void)cb_data;
struct DSL_context *devc;
devc = sdi->priv;
devc->status = DSL_STOP;
sr_info("%s: Stopping", __func__);
//abort_acquisition(sdi->priv);
return SR_OK;
}
static int dev_test(struct sr_dev_inst *sdi)
{
if (sdi) {
struct sr_usb_dev_inst *usb;
struct version_info vi;
int ret = SR_ERR;
usb = sdi->conn;
ret = command_get_fw_version(usb->devhdl, &vi);
if (ret != SR_OK)
sr_err("Device don't exist!");
return ret;
} else {
return SR_ERR;
}
}
static int dev_status_get(struct sr_dev_inst *sdi, struct sr_status *status, int begin, int end)
{
if (sdi) {
struct sr_usb_dev_inst *usb;
int ret = SR_ERR;
struct DSL_context *devc;
devc = sdi->priv;
usb = sdi->conn;
if (sdi->mode == DSO) {
if (devc->mstatus_valid) {
*status = mstatus;
if (devc->zero)
return SR_ERR;
else
return SR_OK;
}
} else {
if (devc->status == DSL_START)
ret = command_get_status(usb->devhdl, (unsigned char*)status, begin, end);
}
return ret;
} else {
return SR_ERR;
}
}
SR_PRIV struct sr_dev_driver DSLogic_driver_info = {
.name = "DSLogic",
.longname = "DSLogic (generic driver for DSLogic LA)",
.api_version = 1,
.init = init,
.cleanup = cleanup,
.scan = scan,
.dev_list = dev_list,
.dev_mode_list = dev_mode_list,
.dev_clear = dev_clear,
.config_get = config_get,
.config_set = config_set,
.config_list = config_list,
.dev_open = dev_open,
.dev_close = dev_close,
.dev_test = dev_test,
.dev_status_get = dev_status_get,
.dev_acquisition_start = dev_acquisition_start,
.dev_acquisition_stop = dev_acquisition_stop,
.priv = NULL,
};