DSView/libsigrok4DSL/hwdriver.c
2022-02-16 10:56:33 +08:00

558 lines
18 KiB
C
Executable File

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "libsigrok.h"
#include "libsigrok-internal.h"
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <dirent.h>
#include <string.h>
#include <glib-2.0/glib.h>
#include "config.h" /* Needed for HAVE_LIBUSB_1_0 and others. */
#include "hardware/DSL/dsl.h"
/* Message logging helpers with subsystem-specific prefix string. */
#define LOG_PREFIX "hwdriver: "
#define sr_log(l, s, args...) sr_log(l, LOG_PREFIX s, ## args)
#define sr_spew(s, args...) sr_spew(LOG_PREFIX s, ## args)
#define sr_dbg(s, args...) sr_dbg(LOG_PREFIX s, ## args)
#define sr_info(s, args...) sr_info(LOG_PREFIX s, ## args)
#define sr_warn(s, args...) sr_warn(LOG_PREFIX s, ## args)
#define sr_err(s, args...) sr_err(LOG_PREFIX s, ## args)
/**
* @file
*
* Hardware driver handling in libsigrok.
*/
/**
* @defgroup grp_driver Hardware drivers
*
* Hardware driver handling in libsigrok.
*
* @{
*/
static struct sr_config_info sr_config_info_data[] = {
{SR_CONF_CONN, SR_T_CHAR, "conn",
"Connection", "Connection", "连接", NULL},
{SR_CONF_SERIALCOMM, SR_T_CHAR, "serialcomm",
"Serial communication", "Serial communication", "串口通讯", NULL},
{SR_CONF_SAMPLERATE, SR_T_UINT64, "samplerate",
"Sample rate", "Sample rate", "采样率", NULL},
{SR_CONF_LIMIT_SAMPLES, SR_T_UINT64, "samplecount",
"Sample count", "Sample count", "采样深度", NULL},
{SR_CONF_ACTUAL_SAMPLES, SR_T_UINT64, "samplecount",
"Sample count", "Sample count", "实际采样数", NULL},
{SR_CONF_CLOCK_TYPE, SR_T_BOOL, "clocktype",
"Using External Clock", "Using External Clock", "使用外部输入时钟采样", NULL},
{SR_CONF_CLOCK_EDGE, SR_T_BOOL, "clockedge",
"Using Clock Negedge", "Using Clock Negedge", "使用时钟下降沿采样", NULL},
{SR_CONF_CAPTURE_RATIO, SR_T_UINT64, "captureratio",
"Pre-trigger capture ratio", "Pre-trigger capture ratio", "触发前采样比例", NULL},
{SR_CONF_PATTERN_MODE, SR_T_CHAR, "pattern",
"Pattern mode", "Pattern mode", "信号模式", NULL},
{SR_CONF_RLE, SR_T_BOOL, "rle",
"Run Length Encoding", "Run Length Encoding", "RLE编码", NULL},
{SR_CONF_WAIT_UPLOAD, SR_T_BOOL, "buf_upload",
"Wait Buffer Upload", "Wait Buffer Upload", "上传已采集数据", NULL},
{SR_CONF_TRIGGER_SLOPE, SR_T_UINT8, "triggerslope",
"Trigger slope", "Trigger slope", "触发沿", NULL},
{SR_CONF_TRIGGER_SOURCE, SR_T_UINT8, "triggersource",
"Trigger source", "Trigger source", "触发源", NULL},
{SR_CONF_TRIGGER_CHANNEL, SR_T_UINT8, "triggerchannel",
"Trigger channel", "Trigger channel", "触发通道", NULL},
{SR_CONF_HORIZ_TRIGGERPOS, SR_T_UINT8, "horiz_triggerpos",
"Horizontal trigger position", "Horizontal trigger position", "触发位置", NULL},
{SR_CONF_TRIGGER_HOLDOFF, SR_T_UINT64, "triggerholdoff",
"Trigger hold off", "Trigger hold off", "触发释抑时间", NULL},
{SR_CONF_TRIGGER_MARGIN, SR_T_UINT8, "triggermargin",
"Trigger margin", "Trigger margin", "触发灵敏度", NULL},
{SR_CONF_BUFFERSIZE, SR_T_UINT64, "buffersize",
"Buffer size", "Buffer size", "缓存大小", NULL},
{SR_CONF_TIMEBASE, SR_T_UINT64, "timebase",
"Time base", "Time base", "时基", NULL},
{SR_CONF_MAX_HEIGHT, SR_T_CHAR, "height",
"Max Height", "Max Height", "最大高度", NULL},
{SR_CONF_MAX_HEIGHT_VALUE, SR_T_UINT8, "height",
"Max Height", "Max Height", "最大高度值", NULL},
{SR_CONF_FILTER, SR_T_CHAR, "filter",
"Filter Targets", "Filter Targets", "滤波器设置", NULL},
{SR_CONF_DATALOG, SR_T_BOOL, "datalog",
"Datalog", "Datalog", "数据记录", NULL},
{SR_CONF_OPERATION_MODE, SR_T_CHAR, "operation",
"Operation Mode", "Operation Mode", "运行模式", NULL},
{SR_CONF_BUFFER_OPTIONS, SR_T_CHAR, "stopoptions",
"Stop Options", "Stop Options", "停止选项", NULL},
{SR_CONF_CHANNEL_MODE, SR_T_CHAR, "channel",
"Channel Mode", "Channel Mode", "通道模式", NULL},
{SR_CONF_THRESHOLD, SR_T_CHAR, "threshold",
"Threshold Level", "Threshold Level", "阈值电压", NULL},
{SR_CONF_VTH, SR_T_FLOAT, "threshold",
"Threshold Level", "Threshold Level", "阈值电压", NULL},
{SR_CONF_RLE_SUPPORT, SR_T_BOOL, "rle",
"Enable RLE Compress", "Enable RLE Compress", "RLE硬件压缩", NULL},
{SR_CONF_BANDWIDTH_LIMIT, SR_T_CHAR, "bandwidth",
"Bandwidth Limit", "Bandwidth Limit", "带宽限制", NULL},
{SR_CONF_PROBE_COUPLING, SR_T_CHAR, "coupling",
"Coupling", "Coupling", "耦合", NULL},
{SR_CONF_PROBE_VDIV, SR_T_RATIONAL_VOLT, "vdiv",
"Volts/div", "Volts/div", "电压/格", NULL},
{SR_CONF_PROBE_FACTOR, SR_T_UINT64, "factor",
"Probe Factor", "Probe Factor", "探头衰减", NULL},
{SR_CONF_PROBE_MAP_DEFAULT, SR_T_BOOL, "mdefault",
"Map Default", "Map Default", "默认电压", NULL},
{SR_CONF_PROBE_MAP_UNIT, SR_T_CHAR, "munit",
"Map Unit", "Map Unit", "对应单位", NULL},
{SR_CONF_PROBE_MAP_MIN, SR_T_FLOAT, "MMIN",
"Map Min", "Map Min", "对应最小值", NULL},
{SR_CONF_PROBE_MAP_MAX, SR_T_FLOAT, "MMAX",
"Map Max", "Map Max", "对应最大值", NULL},
{0, 0, NULL, NULL, NULL, NULL, NULL},
};
/** @cond PRIVATE */
#ifdef HAVE_LA_DEMO
extern SR_PRIV struct sr_dev_driver demo_driver_info;
#endif
#ifdef HAVE_DSL_DEVICE
extern SR_PRIV struct sr_dev_driver DSLogic_driver_info;
extern SR_PRIV struct sr_dev_driver DSCope_driver_info;
#endif
/** @endcond */
static struct sr_dev_driver *drivers_list[] = {
#ifdef HAVE_LA_DEMO
&demo_driver_info,
#endif
#ifdef HAVE_DSL_DEVICE
&DSLogic_driver_info,
&DSCope_driver_info,
#endif
NULL,
};
/**
* Return the list of supported hardware drivers.
*
* @return Pointer to the NULL-terminated list of hardware driver pointers.
*/
SR_API struct sr_dev_driver **sr_driver_list(void)
{
return drivers_list;
}
/**
* Initialize a hardware driver.
*
* This usually involves memory allocations and variable initializations
* within the driver, but _not_ scanning for attached devices.
* The API call sr_driver_scan() is used for that.
*
* @param ctx A libsigrok context object allocated by a previous call to
* sr_init(). Must not be NULL.
* @param driver The driver to initialize. This must be a pointer to one of
* the entries returned by sr_driver_list(). Must not be NULL.
*
* @return SR_OK upon success, SR_ERR_ARG upon invalid parameters,
* SR_ERR_BUG upon internal errors, or another negative error code
* upon other errors.
*/
SR_API int sr_driver_init(struct sr_context *ctx, struct sr_dev_driver *driver)
{
int ret;
if (!ctx) {
sr_err("Invalid libsigrok context, can't initialize.");
return SR_ERR_ARG;
}
if (!driver) {
sr_err("Invalid driver, can't initialize.");
return SR_ERR_ARG;
}
sr_spew("Initializing driver '%s'.", driver->name);
if ((ret = driver->init(ctx)) < 0)
sr_err("Failed to initialize the driver: %d.", ret);
return ret;
}
/**
* Tell a hardware driver to scan for devices.
*
* In addition to the detection, the devices that are found are also
* initialized automatically. On some devices, this involves a firmware upload,
* or other such measures.
*
* The order in which the system is scanned for devices is not specified. The
* caller should not assume or rely on any specific order.
*
* Before calling sr_driver_scan(), the user must have previously initialized
* the driver by calling sr_driver_init().
*
* @param driver The driver that should scan. This must be a pointer to one of
* the entries returned by sr_driver_list(). Must not be NULL.
* @param options A list of 'struct sr_hwopt' options to pass to the driver's
* scanner. Can be NULL/empty.
*
* @return A GSList * of 'struct sr_dev_inst', or NULL if no devices were
* found (or errors were encountered). This list must be freed by the
* caller using g_slist_free(), but without freeing the data pointed
* to in the list.
*/
SR_API GSList *sr_driver_scan(struct sr_dev_driver *driver, GSList *options)
{
GSList *l;
if (!driver) {
sr_err("Invalid driver, can't scan for devices.");
return NULL;
}
if (!driver->priv) {
sr_err("Driver not initialized, can't scan for devices.");
return NULL;
}
l = driver->scan(options);
sr_spew("Scan of '%s' found %d devices.", driver->name,
g_slist_length(l));
return l;
}
/** @private */
SR_PRIV void sr_hw_cleanup_all(void)
{
int i;
struct sr_dev_driver **drivers;
drivers = sr_driver_list();
for (i = 0; drivers[i]; i++) {
if (drivers[i]->cleanup)
drivers[i]->cleanup();
}
}
/** A floating reference can be passed in for data. */
SR_API struct sr_config *sr_config_new(int key, GVariant *data)
{
struct sr_config *src;
if (!(src = g_try_malloc(sizeof(struct sr_config))))
return NULL;
src->key = key;
src->data = g_variant_ref_sink(data);
return src;
}
SR_API void sr_config_free(struct sr_config *src)
{
if (!src || !src->data) {
sr_err("%s: invalid data!", __func__);
return;
}
g_variant_unref(src->data);
g_free(src);
}
/**
* Returns information about the given driver or device instance.
*
* @param driver The sr_dev_driver struct to query.
* @param key The configuration key (SR_CONF_*).
* @param data Pointer to a GVariant where the value will be stored. Must
* not be NULL. The caller is given ownership of the GVariant
* and must thus decrease the refcount after use. However if
* this function returns an error code, the field should be
* considered unused, and should not be unreferenced.
* @param sdi (optional) If the key is specific to a device, this must
* contain a pointer to the struct sr_dev_inst to be checked.
* Otherwise it must be NULL.
*
* @return SR_OK upon success or SR_ERR in case of error. Note SR_ERR_ARG
* may be returned by the driver indicating it doesn't know that key,
* but this is not to be flagged as an error by the caller; merely
* as an indication that it's not applicable.
*/
SR_API int sr_config_get(const struct sr_dev_driver *driver,
const struct sr_dev_inst *sdi,
const struct sr_channel *ch,
const struct sr_channel_group *cg,
int key, GVariant **data)
{
int ret;
if (!driver || !data)
return SR_ERR;
if (!driver->config_get)
return SR_ERR_ARG;
if ((ret = driver->config_get(key, data, sdi, ch, cg)) == SR_OK) {
/* Got a floating reference from the driver. Sink it here,
* caller will need to unref when done with it. */
g_variant_ref_sink(*data);
}
return ret;
}
/**
* Set a configuration key in a device instance.
*
* @param sdi The device instance.
* @param key The configuration key (SR_CONF_*).
* @param data The new value for the key, as a GVariant with GVariantType
* appropriate to that key. A floating reference can be passed
* in; its refcount will be sunk and unreferenced after use.
*
* @return SR_OK upon success or SR_ERR in case of error. Note SR_ERR_ARG
* may be returned by the driver indicating it doesn't know that key,
* but this is not to be flagged as an error by the caller; merely
* as an indication that it's not applicable.
*/
SR_API int sr_config_set(struct sr_dev_inst *sdi,
struct sr_channel *ch,
struct sr_channel_group *cg,
int key, GVariant *data)
{
int ret;
g_variant_ref_sink(data);
if (!sdi || !sdi->driver || !data)
ret = SR_ERR;
else if (!sdi->driver->config_set)
ret = SR_ERR_ARG;
else
ret = sdi->driver->config_set(key, data, sdi, ch, cg);
g_variant_unref(data);
return ret;
}
/**
* List all possible values for a configuration key.
*
* @param driver The sr_dev_driver struct to query.
* @param key The configuration key (SR_CONF_*).
* @param data A pointer to a GVariant where the list will be stored. The
* caller is given ownership of the GVariant and must thus
* unref the GVariant after use. However if this function
* returns an error code, the field should be considered
* unused, and should not be unreferenced.
* @param sdi (optional) If the key is specific to a device, this must
* contain a pointer to the struct sr_dev_inst to be checked.
*
* @return SR_OK upon success or SR_ERR in case of error. Note SR_ERR_ARG
* may be returned by the driver indicating it doesn't know that key,
* but this is not to be flagged as an error by the caller; merely
* as an indication that it's not applicable.
*/
SR_API int sr_config_list(const struct sr_dev_driver *driver,
const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg,
int key, GVariant **data)
{
int ret;
if (!driver || !data)
ret = SR_ERR;
else if (!driver->config_list)
ret = SR_ERR_ARG;
else if ((ret = driver->config_list(key, data, sdi, cg)) == SR_OK)
g_variant_ref_sink(*data);
return ret;
}
/**
* Get information about a configuration key.
*
* @param key The configuration key.
*
* @return A pointer to a struct sr_config_info, or NULL if the key
* was not found.
*/
SR_API const struct sr_config_info *sr_config_info_get(int key)
{
int i;
for (i = 0; sr_config_info_data[i].key; i++) {
if (sr_config_info_data[i].key == key)
return &sr_config_info_data[i];
}
return NULL;
}
/**
* Get status about an acquisition
*
* @param sdi The device instance.
* @param status A pointer to a struct sr_capture_status.
*
* @return SR_OK upon success or SR_ERR in case of error. Note SR_ERR_ARG
* may be returned by the driver indicating it doesn't know that key,
* but this is not to be flagged as an error by the caller; merely
* as an indication that it's not applicable.
*/
SR_API int sr_status_get(const struct sr_dev_inst *sdi,
struct sr_status *status, gboolean prg)
{
int ret;
if (!sdi->driver)
ret = SR_ERR;
else if (!sdi->driver->dev_status_get)
ret = SR_ERR_ARG;
else
ret = sdi->driver->dev_status_get(sdi, status, prg);
return ret;
}
/**
* Get status about an acquisition.
*
* @param optname The configuration key.
*
* @return A pointer to a struct sr_config_info, or NULL if the key
* was not found.
*/
SR_API const struct sr_config_info *sr_config_info_name_get(const char *optname)
{
int i;
for (i = 0; sr_config_info_data[i].key; i++) {
if (!strcmp(sr_config_info_data[i].id, optname))
return &sr_config_info_data[i];
}
return NULL;
}
/* Unnecessary level of indirection follows. */
/** @private */
SR_PRIV int sr_source_remove(int fd)
{
return sr_session_source_remove(fd);
}
/** @private */
SR_PRIV int sr_source_add(int fd, int events, int timeout,
sr_receive_data_callback_t cb, void *cb_data)
{
return sr_session_source_add(fd, events, timeout, cb, cb_data);
}
/** @} */
/*
test usb device api
*/
/*
SR_API void sr_test_usb_api()
{
libusb_context *ctx;
struct libusb_device_descriptor des;
int usb_speed;
int ret;
int i;
int num_devs;
libusb_device **devlist;
int stdnum = 0;
int j;
int bfind = 0;
int dlsnum = 0;
struct libusb_device_handle *devhandle;
printf("\n");
ret = libusb_init(&ctx);
if (ret) {
printf("unable to initialize libusb: %i\n", ret);
return;
}
num_devs = libusb_get_device_list(ctx, &devlist);
printf("usb dev num:%d\n", num_devs);
for (i=0; i<num_devs; i++){
libusb_get_device_descriptor(devlist[i], &des);
usb_speed = libusb_get_device_speed( devlist[i]);
if ((usb_speed != LIBUSB_SPEED_HIGH) && (usb_speed != LIBUSB_SPEED_SUPER))
continue;
stdnum++;
bfind = 0;
for (j = 0; supported_DSLogic[j].vid; j++) {
if (des.idVendor == supported_DSLogic[j].vid &&
des.idProduct == supported_DSLogic[j].pid &&
usb_speed == supported_DSLogic[j].usb_speed) {
bfind = 1;
break;
}
}
if (bfind){
dlsnum++;
devhandle = NULL;
ret = libusb_open(devlist[i], &devhandle);
if (ret){
printf("open device error!%s\n", libusb_error_name(ret));
}
else{
//printf("dev open success\n");
ret = libusb_claim_interface(devhandle, USB_INTERFACE);
if (ret){
printf("Unable to claim interface: %s\n", libusb_error_name(ret));
}
libusb_close(devhandle);
}
}
}
printf("std usb dev num:%d\n", stdnum);
printf("dls dev num:%d\n", dlsnum);
libusb_free_device_list(devlist, 0);
libusb_exit(NULL);
}
*/