2016-07-20 08:59:39 +08:00

332 lines
13 KiB
Python
Executable File

##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2016 Elias Oenal <sigrok@eliasoenal.com>
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions are met:
##
## 1. Redistributions of source code must retain the above copyright notice,
## this list of conditions and the following disclaimer.
## 2. Redistributions in binary form must reproduce the above copyright notice,
## this list of conditions and the following disclaimer in the documentation
## and/or other materials provided with the distribution.
##
## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
## ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
## LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
## CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
## SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
## INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
## CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
## ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
## POSSIBILITY OF SUCH DAMAGE.
##
import sigrokdecode as srd
class Decoder(srd.Decoder):
api_version = 2
id = 'mdio'
name = 'MDIO'
longname = 'Management Data Input/Output'
desc = 'Half-duplex sync serial bus for MII management between MAC and PHY.'
license = 'bsd'
inputs = ['logic']
outputs = ['mdio']
channels = (
{'id': 'mdc', 'name': 'MDC', 'desc': 'Clock'},
{'id': 'mdio', 'name': 'MDIO', 'desc': 'Data'},
)
options = (
{'id': 'show_debug_bits', 'desc': 'Show debug bits',
'default': 'no', 'values': ('yes', 'no')},
)
annotations = (
('bit-val', 'Bit value'),
('bit-num', 'Bit number'),
('frame', 'Frame'),
('frame-idle', 'Bus idle state'),
('frame-error', 'Frame error'),
('decode', 'Decode'),
)
annotation_rows = (
('bit-val', 'Bit value', (0,)),
('bit-num', 'Bit number', (1,)),
('frame', 'Frame', (2, 3)),
('frame-error', 'Frame error', (4,)),
('decode', 'Decode', (5,)),
)
def __init__(self):
self.last_mdc = 1
self.illegal_bus = 0
self.samplenum = -1
self.clause45_addr = -1 # Clause 45 is context sensitive.
self.reset_decoder_state()
def start(self):
self.out_python = self.register(srd.OUTPUT_PYTHON)
self.out_ann = self.register(srd.OUTPUT_ANN)
def putbit(self, mdio, ss, es):
self.put(ss, es, self.out_ann, [0, ['%d' % mdio]])
if self.options['show_debug_bits'] == 'yes':
self.put(ss, es, self.out_ann, [1, ['%d' % (self.bitcount - 1), '%d' % ((self.bitcount - 1) % 10)]])
def putff(self, data):
self.put(self.ss_frame_field, self.samplenum, self.out_ann, data)
def putdata(self):
self.put(self.ss_frame_field, self.mdiobits[0][2], self.out_ann,
[2, ['DATA: %04X' % self.data, 'DATA', 'D']])
if self.clause45 and self.opcode == 0:
self.clause45_addr = self.data
# Decode data.
if self.opcode > 0 or not self.clause45:
decoded_min = ''
if self.clause45 and self.clause45_addr != -1:
decoded_min += str.format('ADDR: %04X ' % self.clause45_addr)
elif self.clause45:
decoded_min += str.format('ADDR: UKWN ' % self.clause45_addr)
if self.clause45 and self.opcode > 1 \
or (not self.clause45 and self.opcode):
decoded_min += str.format('READ: %04X' % self.data)
is_read = 1
else:
decoded_min += str.format('WRITE: %04X' % self.data)
is_read = 0
decoded_ext = str.format(' %s: %02d' % \
('PRTAD' if self.clause45 else 'PHYAD', self.portad))
decoded_ext += str.format(' %s: %02d' % \
('DEVAD' if self.clause45 else 'REGAD', self.devad))
if self.ta_invalid or self.op_invalid:
decoded_ext += ' ERROR'
self.put(self.ss_frame, self.mdiobits[0][2], self.out_ann,
[5, [decoded_min + decoded_ext, decoded_min]])
self.put(self.ss_frame, self.mdiobits[0][2], self.out_python,
[(bool(self.clause45), int(self.clause45_addr), \
bool(is_read), int(self.portad), int(self.devad), \
int(self.data))])
# Post read increment address.
if self.clause45 and self.opcode == 2 and self.clause45_addr != -1:
self.clause45_addr += 1
def reset_decoder_state(self):
self.mdiobits = []
self.bitcount = -1
self.opcode = -1
self.clause45 = 0
self.ss_frame = -1
self.ss_frame_field = -1
self.preamble_len = 0
self.ta_invalid = -1
self.op_invalid = ''
self.portad = -1
self.portad_bits = 5
self.devad = -1
self.devad_bits = 5
self.data = -1
self.data_bits = 16
self.state = 'PRE'
def state_PRE(self, mdio):
if self.illegal_bus:
if mdio == 0: # Stay in illegal bus state.
return
else: # Leave and continue parsing.
self.illegal_bus = 0
self.put(self.ss_illegal, self.samplenum, self.out_ann,
[4, ['ILLEGAL BUS STATE', 'ILL']])
self.ss_frame = self.samplenum
if self.ss_frame == -1:
self.ss_frame = self.samplenum
if mdio == 1:
self.preamble_len += 1
# Valid MDIO can't clock more than 16 succeeding ones without being
# in either IDLE or PRE.
if self.preamble_len > 16:
if self.preamble_len >= 10000 + 32:
self.put(self.ss_frame, self.mdiobits[32][1], self.out_ann,
[3, ['IDLE #%d' % (self.preamble_len - 32), 'IDLE', 'I']])
self.ss_frame = self.mdiobits[32][1]
self.preamble_len = 32
# This is getting out of hand, free some memory.
del self.mdiobits[33:-1]
if mdio == 0:
if self.preamble_len < 32:
self.ss_frame = self.mdiobits[self.preamble_len][1]
self.put(self.ss_frame, self.samplenum, self.out_ann,
[4, ['SHORT PREAMBLE', 'SHRT PRE']])
elif self.preamble_len > 32:
self.ss_frame = self.mdiobits[32][1]
self.put(self.mdiobits[self.preamble_len][1],
self.mdiobits[32][1], self.out_ann,
[3, ['IDLE #%d' % (self.preamble_len - 32),
'IDLE', 'I']])
self.preamble_len = 32
else:
self.ss_frame = self.mdiobits[32][1]
self.put(self.ss_frame, self.samplenum, self.out_ann,
[2, ['PRE #%d' % self.preamble_len, 'PRE', 'P']])
self.ss_frame_field = self.samplenum
self.state = 'ST'
elif mdio == 0:
self.ss_illegal = self.ss_frame
self.illegal_bus = 1
def state_ST(self, mdio):
if mdio == 0:
self.clause45 = 1
self.state = 'OP'
def state_OP(self, mdio):
if self.opcode == -1:
if self.clause45:
st = ['ST (Clause 45)', 'ST 45']
else:
st = ['ST (Clause 22)', 'ST 22']
self.putff([2, st + ['ST', 'S']])
self.ss_frame_field = self.samplenum
if mdio:
self.opcode = 2
else:
self.opcode = 0
else:
if self.clause45:
self.state = 'PRTAD'
self.opcode += mdio
else:
if mdio == self.opcode:
self.op_invalid = 'invalid for Clause 22'
self.state = 'PRTAD'
def state_PRTAD(self, mdio):
if self.portad == -1:
self.portad = 0
if self.clause45:
if self.opcode == 0:
op = ['OP: ADDR', 'OP: A']
elif self.opcode == 1:
op = ['OP: WRITE', 'OP: W']
elif self.opcode == 2:
op = ['OP: READINC', 'OP: RI']
elif self.opcode == 3:
op = ['OP: READ', 'OP: R']
else:
op = ['OP: READ', 'OP: R'] if self.opcode else ['OP: WRITE', 'OP: W']
self.putff([2, op + ['OP', 'O']])
if self.op_invalid:
self.putff([4, ['OP %s' % self.op_invalid, 'OP', 'O']])
self.ss_frame_field = self.samplenum
self.portad_bits -= 1
self.portad |= mdio << self.portad_bits
if not self.portad_bits:
self.state = 'DEVAD'
def state_DEVAD(self, mdio):
if self.devad == -1:
self.devad = 0
if self.clause45:
prtad = ['PRTAD: %02d' % self.portad, 'PRT', 'P']
else:
prtad = ['PHYAD: %02d' % self.portad, 'PHY', 'P']
self.putff([2, prtad])
self.ss_frame_field = self.samplenum
self.devad_bits -= 1
self.devad |= mdio << self.devad_bits
if not self.devad_bits:
self.state = 'TA'
def state_TA(self, mdio):
if self.ta_invalid == -1:
self.ta_invalid = ''
if self.clause45:
regad = ['DEVAD: %02d' % self.devad, 'DEV', 'D']
else:
regad = ['REGAD: %02d' % self.devad, 'REG', 'R']
self.putff([2, regad])
self.ss_frame_field = self.samplenum
if mdio != 1 and ((self.clause45 and self.opcode < 2)
or (not self.clause45 and self.opcode == 0)):
self.ta_invalid = ' invalid (bit1)'
else:
if mdio != 0:
if self.ta_invalid:
self.ta_invalid = ' invalid (bit1 and bit2)'
else:
self.ta_invalid = ' invalid (bit2)'
self.state = 'DATA'
def state_DATA(self, mdio):
if self.data == -1:
self.data = 0
self.putff([2, ['TURNAROUND', 'TA', 'T']])
if self.ta_invalid:
self.putff([4, ['TURNAROUND%s' % self.ta_invalid,
'TA%s' % self.ta_invalid, 'TA', 'T']])
self.ss_frame_field = self.samplenum
self.data_bits -= 1
self.data |= mdio << self.data_bits
if not self.data_bits:
# Output final bit.
self.mdiobits[0][2] = self.mdiobits[0][1] + self.quartile_cycle_length()
self.bitcount += 1
self.putbit(self.mdiobits[0][0], self.mdiobits[0][1], self.mdiobits[0][2])
self.putdata()
self.reset_decoder_state()
def process_state(self, argument, mdio):
method_name = 'state_' + str(argument)
method = getattr(self, method_name)
return method(mdio)
# Returns the first quartile point of the frames cycle lengths. This is a
# conservative guess for the end of the last cycle. On average it will be
# more likely to fall short, than being too long, which makes for better
# readability in GUIs.
def quartile_cycle_length(self):
# 48 is the minimum number of samples we have to have at the end of a
# frame. The last sample only has a leading clock edge and is ignored.
bitlen = []
for i in range(1, 49):
bitlen.append(self.mdiobits[i][2] - self.mdiobits[i][1])
bitlen = sorted(bitlen)
return bitlen[12]
def handle_bit(self, mdio):
self.bitcount += 1
self.mdiobits.insert(0, [mdio, self.samplenum, -1])
if self.bitcount > 0:
self.mdiobits[1][2] = self.samplenum # Note end of last cycle.
# Output the last bit we processed.
self.putbit(self.mdiobits[1][0], self.mdiobits[1][1], self.mdiobits[1][2])
self.process_state(self.state, mdio)
def decode(self, ss, es, data):
for (self.samplenum, pins) in data:
data.itercnt += 1
# Ignore identical samples early on (for performance reasons).
if self.last_mdc == pins[0]:
continue
self.last_mdc = pins[0]
if pins[0] == 0: # Check for rising edge.
continue
# Found the correct clock edge, now get/handle the bit(s).
self.handle_bit(pins[1])