DSView/libsigrok4DSL/session_driver.c
2022-12-09 17:32:39 +08:00

2023 lines
64 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "libsigrok-internal.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/time.h>
#include <assert.h>
#include <string.h>
#include <minizip/unzip.h>
#include "log.h"
/* Message logging helpers with subsystem-specific prefix string. */
#undef LOG_PREFIX
#define LOG_PREFIX "virtual-session: "
/* size of payloads sent across the session bus */
/** @cond PRIVATE */
#define CHUNKSIZE (512 * 1024)
#define UNITLEN 64
/** @endcond */
extern struct sr_session *session;
extern SR_PRIV struct sr_dev_driver session_driver;
static int sr_load_virtual_device_session(struct sr_dev_inst *sdi);
static uint64_t samplerates[1];
static uint64_t samplecounts[1];
static const char *maxHeights[] = {
"1X",
"2X",
"3X",
"4X",
"5X",
};
static const uint64_t vdivs[] = {
SR_mV(10),
SR_mV(20),
SR_mV(50),
SR_mV(100),
SR_mV(200),
SR_mV(500),
SR_V(1),
SR_V(2),
};
static void get_file_short_name(const char *file, char *buf, int buflen)
{
if (file == NULL || *file == '\0' || buf == NULL || buflen < 1)
return;
int len = strlen(file);
int pos = len;
char *wr = buf;
char c;
while (pos >= 0)
{
pos--;
c = *(file + pos);
if (c == '/' || c == '\\')
{
pos++;
break;
}
}
while (pos < len && (wr - buf) <= buflen)
{
*wr = *(file + pos);
wr++;
pos++;
}
*wr = '\0';
}
struct session_packet_buffer;
struct session_vdev
{
int version;
unzFile archive; // zip document
int capfile; // current inner file open status
void *buf;
void *logic_buf;
int64_t bytes_read;
int cur_channel;
int cur_block;
int num_blocks;
uint64_t samplerate;
uint64_t total_samples;
int64_t trig_time;
uint64_t trig_pos;
int num_probes;
int enabled_probes;
uint64_t timebase;
uint64_t max_timebase;
uint64_t min_timebase;
uint8_t unit_bits;
uint32_t ref_min;
uint32_t ref_max;
uint8_t max_height;
struct sr_status mstatus;
struct session_packet_buffer *packet_buffer;
};
#define SESSION_MAX_CHANNEL_COUNT 512
struct session_packet_buffer
{
void *post_buf;
uint64_t post_buf_len;
uint64_t post_len;
uint64_t block_buf_len;
uint64_t block_chan_read_pos;
uint64_t block_data_len;
void *block_bufs[SESSION_MAX_CHANNEL_COUNT];
uint64_t block_read_positions[SESSION_MAX_CHANNEL_COUNT];
};
static const int hwoptions[] = {
SR_CONF_MAX_HEIGHT,
};
static const int32_t sessions[] = {
SR_CONF_MAX_HEIGHT,
};
static const int32_t probeOptions[] = {
SR_CONF_PROBE_MAP_UNIT,
SR_CONF_PROBE_MAP_MIN,
SR_CONF_PROBE_MAP_MAX,
};
static const char *probeMapUnits[] = {
"V",
"A",
"",
"",
"g",
"m",
"m/s",
};
static int trans_data(struct sr_dev_inst *sdi)
{
// translate for old format
struct session_vdev *vdev = sdi->priv;
GSList *l;
struct sr_channel *probe;
assert(vdev->buf != NULL);
assert(vdev->logic_buf != NULL);
assert(CHUNKSIZE % UNITLEN == 0);
// int bytes = ceil(vdev->num_probes / 8.0);
int bytes = 2;
uint8_t *src_ptr = (uint8_t *)vdev->buf;
uint64_t *dest_ptr = (uint64_t *)vdev->logic_buf;
for (int k = 0; k < CHUNKSIZE / (UNITLEN * bytes); k++)
{
src_ptr = (uint8_t *)vdev->buf + (k * bytes * UNITLEN);
for (l = sdi->channels; l; l = l->next)
{
probe = l->data;
if (!probe->enabled)
continue;
uint64_t mask = 1ULL << probe->index;
uint64_t result = 0;
for (int j = 0; j < UNITLEN; j++)
{
if (*(uint64_t *)(src_ptr + j * bytes) & mask)
result += 1ULL << j;
}
*dest_ptr++ = result;
}
}
return SR_OK;
}
static int close_archive(struct session_vdev *vdev)
{
assert(vdev->archive);
// close current inner file
if (vdev->capfile)
{
unzCloseCurrentFile(vdev->archive);
vdev->capfile = 0;
}
int ret = unzClose(vdev->archive);
if (ret != UNZ_OK)
{
sr_err("close zip archive error!");
}
vdev->archive = NULL;
return SR_OK;
}
static void send_error_packet(const struct sr_dev_inst *cb_sdi, struct session_vdev *vdev, struct sr_datafeed_packet *packet)
{
packet->type = SR_DF_END;
packet->status = SR_PKT_SOURCE_ERROR;
ds_data_forward(cb_sdi, packet);
sr_session_source_remove(-1);
close_archive(vdev);
}
static int receive_data(int fd, int revents, const struct sr_dev_inst *sdi)
{
struct session_vdev *vdev = NULL;
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
struct sr_datafeed_dso dso;
struct sr_datafeed_analog analog;
GSList *l;
int ret;
char file_name[32];
struct sr_channel *probe = NULL;
GSList *pl;
int channel;
assert(sdi);
assert(sdi->priv);
(void)fd;
(void)revents;
sr_detail("Feed chunk.");
ret = 0;
packet.status = SR_PKT_OK;
vdev = sdi->priv;
assert(vdev->unit_bits > 0);
assert(vdev->cur_channel >= 0);
assert(vdev->archive);
if (vdev->cur_channel < vdev->num_probes)
{
if (vdev->version == 1)
{
ret = unzReadCurrentFile(vdev->archive, vdev->buf, CHUNKSIZE);
if (-1 == ret)
{
sr_err("%s: Read inner file error!", __func__);
send_error_packet(sdi, vdev, &packet);
return FALSE;
}
}
else if (vdev->version == 2)
{
channel = vdev->cur_channel;
pl = sdi->channels;
while (channel--){
pl = pl->next;
}
probe = (struct sr_channel *)pl->data;
if (vdev->capfile == 0)
{
char *type_name = (probe->type == SR_CHANNEL_LOGIC) ? "L" : (probe->type == SR_CHANNEL_DSO) ? "O"
: (probe->type == SR_CHANNEL_ANALOG) ? "A"
: "U";
snprintf(file_name, sizeof(file_name)-1, "%s-%d/%d", type_name,
sdi->mode == LOGIC ? probe->index : 0, vdev->cur_block);
if (unzLocateFile(vdev->archive, file_name, 0) != UNZ_OK)
{
sr_err("cant't locate zip inner file:%s", file_name);
send_error_packet(sdi, vdev, &packet);
return FALSE;
}
if (unzOpenCurrentFile(vdev->archive) != UNZ_OK)
{
sr_err("cant't open zip inner file:%s", file_name);
send_error_packet(sdi, vdev, &packet);
return FALSE;
}
vdev->capfile = 1;
}
if (vdev->capfile)
{
ret = unzReadCurrentFile(vdev->archive, vdev->buf, CHUNKSIZE);
if (-1 == ret)
{
sr_err("read zip inner file error:%s", file_name);
send_error_packet(sdi, vdev, &packet);
return FALSE;
}
}
}
if (ret > 0)
{
if (sdi->mode == DSO)
{
packet.type = SR_DF_DSO;
packet.payload = &dso;
dso.num_samples = ret / vdev->num_probes;
dso.data = vdev->buf;
dso.probes = sdi->channels;
dso.mq = SR_MQ_VOLTAGE;
dso.unit = SR_UNIT_VOLT;
dso.mqflags = SR_MQFLAG_AC;
}
else if (sdi->mode == ANALOG)
{
packet.type = SR_DF_ANALOG;
packet.payload = &analog;
analog.probes = sdi->channels;
analog.num_samples = ret / vdev->num_probes / ((vdev->unit_bits + 7) / 8);
analog.unit_bits = vdev->unit_bits;
analog.mq = SR_MQ_VOLTAGE;
analog.unit = SR_UNIT_VOLT;
analog.mqflags = SR_MQFLAG_AC;
analog.data = vdev->buf;
}
else
{
if (vdev->version == 2){
assert(0);
}
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = ret;
logic.format = LA_CROSS_DATA;
if (probe)
logic.index = probe->index;
else
logic.index = 0;
logic.order = vdev->cur_channel;
//version == 1
logic.length = ret / 16 * vdev->enabled_probes;
logic.data = vdev->logic_buf;
trans_data(sdi);
}
vdev->bytes_read += ret;
ds_data_forward(sdi, &packet);
}
else
{
/* done with this capture file */
unzCloseCurrentFile(vdev->archive);
vdev->capfile = 0;
if (vdev->version == 1)
{
vdev->cur_channel++;
}
else if (vdev->version == 2)
{
vdev->cur_block++;
// if read to the last block, move to next channel
if (vdev->cur_block == vdev->num_blocks)
{
vdev->cur_block = 0;
vdev->cur_channel++;
}
}
}
}
if (vdev->cur_channel >= vdev->num_probes || revents == -1)
{
packet.type = SR_DF_END;
ds_data_forward(sdi, &packet);
sr_session_source_remove(-1);
if (NULL != vdev)
{
// abort
close_archive(vdev);
vdev->bytes_read = 0;
}
}
return TRUE;
}
static int receive_data_logic2(int fd, int revents, const struct sr_dev_inst *sdi)
{
struct session_vdev *vdev = NULL;
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
struct sr_datafeed_dso dso;
struct sr_datafeed_analog analog;
GSList *l;
int ret;
char file_name[32];
GSList *pl;
int channel;
int ch_index, ch_index2;
struct session_packet_buffer *pack_buffer;
unz_file_info64 fileInfo;
char szFilePath[15];
int bToEnd;
int chIndex;
int chan_num;
void *p_wr;
void *p_rd;
assert(sdi);
assert(sdi->priv);
(void)fd;
(void)revents;
sr_detail("Feed chunk.");
ret = 0;
bToEnd = 0;
packet.status = SR_PKT_OK;
vdev = sdi->priv;
assert(vdev->unit_bits > 0);
assert(vdev->archive);
chan_num = vdev->num_probes;
if (chan_num < 1){
sr_err("%s: channel count < 1.", __func__);
return SR_ERR_ARG;
}
if (vdev->packet_buffer == NULL){
vdev->cur_block = 0;
vdev->packet_buffer = g_try_malloc0(sizeof(struct session_packet_buffer));
if (vdev->packet_buffer == NULL){
sr_err("%s: vdev->packet_buffer malloc failed", __func__);
return SR_ERR_MALLOC;
}
for (ch_index = 0; ch_index < SESSION_MAX_CHANNEL_COUNT; ch_index++){
vdev->packet_buffer->block_bufs[ch_index] = NULL;
vdev->packet_buffer->block_read_positions[ch_index] = 0;
}
vdev->packet_buffer->post_buf_len = 8 * chan_num * 1000;
vdev->packet_buffer->post_buf = g_try_malloc0(vdev->packet_buffer->post_buf_len + 1);
if (vdev->packet_buffer->post_buf == NULL){
sr_err("%s: vdev->packet_buffer->post_buf malloc failed", __func__);
return SR_ERR_MALLOC;
}
pack_buffer = vdev->packet_buffer;
pack_buffer->post_len;
pack_buffer->block_buf_len = 0;
pack_buffer->block_data_len = 0;
pack_buffer->block_chan_read_pos = 0;
}
pack_buffer = vdev->packet_buffer;
// Make packet.
chIndex = 0;
while (pack_buffer->post_len < pack_buffer->post_buf_len)
{
if (pack_buffer->block_chan_read_pos >= pack_buffer->block_data_len)
{
if (vdev->cur_block >= vdev->num_blocks){
bToEnd = 1;
break;
}
for (ch_index = 0; ch_index < chan_num; ch_index++)
{
snprintf(file_name, sizeof(file_name)-1, "%s-%d/%d", "L",
ch_index, vdev->cur_block);
if (unzLocateFile(vdev->archive, file_name, 0) != UNZ_OK)
{
sr_err("cant't locate zip inner file:%s", file_name);
send_error_packet(sdi, vdev, &packet);
return FALSE;
}
if (unzGetCurrentFileInfo64(vdev->archive, &fileInfo, szFilePath,
sizeof(szFilePath), NULL, 0, NULL, 0) != UNZ_OK)
{
sr_err("%s: unzGetCurrentFileInfo64 error.", __func__);
send_error_packet(sdi, vdev, &packet);
return FALSE;
}
if (ch_index == 0){
pack_buffer->block_data_len = fileInfo.uncompressed_size;
if (pack_buffer->block_data_len > pack_buffer->block_buf_len){
for (ch_index2 = 0; ch_index2 < chan_num; ch_index2++)
{
// Release the old buffer.
if (pack_buffer->block_bufs[ch_index2] != NULL){
g_free(pack_buffer->block_bufs[ch_index2]);
pack_buffer->block_bufs[ch_index2] = NULL;
}
pack_buffer->block_bufs[ch_index2] = g_try_malloc0(pack_buffer->block_data_len + 1);
if (pack_buffer->block_bufs[ch_index2] == NULL){
sr_err("%s: block buffer malloc failed", __func__);
send_error_packet(sdi, vdev, &packet);
return FALSE;
}
pack_buffer->block_buf_len = pack_buffer->block_data_len;
}
}
}
else
{
if (pack_buffer->block_data_len != fileInfo.uncompressed_size){
sr_err("The block size is not coincident:%s", file_name);
send_error_packet(sdi, vdev, &packet);
return FALSE;
}
}
// Read the data to buffer.
if (unzOpenCurrentFile(vdev->archive) != UNZ_OK)
{
sr_err("cant't open zip inner file:%s", file_name);
send_error_packet(sdi, vdev, &packet);
return FALSE;
}
ret = unzReadCurrentFile(vdev->archive, pack_buffer->block_bufs[ch_index], pack_buffer->block_data_len);
if (-1 == ret)
{
sr_err("read zip inner file error:%s", file_name);
send_error_packet(sdi, vdev, &packet);
return FALSE;
}
unzCloseCurrentFile(vdev->archive);
pack_buffer->block_read_positions[ch_index] = 0; // Reset the read position.
}
vdev->cur_block++;
pack_buffer->block_chan_read_pos = 0;
}
p_wr = (pack_buffer->post_buf + pack_buffer->post_len);
p_rd = (pack_buffer->block_bufs[chIndex] + pack_buffer->block_read_positions[chIndex]);
*(uint8_t*)p_wr = *(uint8_t*)p_rd;
pack_buffer->post_len++;
pack_buffer->block_read_positions[chIndex]++;
if (pack_buffer->block_read_positions[chIndex] % 8 == 0
|| pack_buffer->block_read_positions[chIndex] == pack_buffer->block_data_len)
{
chIndex++;
if (pack_buffer->block_read_positions[chIndex] == pack_buffer->block_data_len){
sr_info("Block read end.");
if (vdev->cur_block < vdev->num_blocks){
sr_err("%s", "The block data is not align.");
break;
}
}
if (chIndex == chan_num){
chIndex = 0;
pack_buffer->block_chan_read_pos += 8;
}
}
}
if (pack_buffer->post_len >= 8 * chan_num)
{
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.format = LA_CROSS_DATA;
logic.index = 0;
logic.order = 0;
logic.length = pack_buffer->post_len;
logic.data = pack_buffer->post_buf;
vdev->bytes_read += ret;
ds_data_forward(sdi, &packet);
pack_buffer->post_len = 0;
}
if (bToEnd || revents == -1)
{
packet.type = SR_DF_END;
ds_data_forward(sdi, &packet);
sr_session_source_remove(-1);
close_archive(vdev);
vdev->bytes_read = 0;
}
return TRUE;
}
/* driver callbacks */
static int dev_clear(void);
static int init(struct sr_context *sr_ctx)
{
(void)sr_ctx;
return SR_OK;
}
static const GSList *dev_mode_list(const struct sr_dev_inst *sdi)
{
GSList *l = NULL;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(sr_mode_list); i++)
{
if (sdi->mode == sr_mode_list[i].mode)
l = g_slist_append(l, &sr_mode_list[i]);
}
return l;
}
static int dev_clear(void)
{
return SR_OK;
}
static int dev_open(struct sr_dev_inst *sdi)
{
int ret;
struct session_vdev *vdev;
assert(sdi);
if (sdi->status == SR_ST_ACTIVE){
// Is opened.
return SR_OK;
}
assert(sdi->priv == NULL);
sdi->priv = g_try_malloc0(sizeof(struct session_vdev));
if (sdi->priv == NULL)
{
sr_err("%s: sdi->priv malloc failed", __func__);
return SR_ERR_MALLOC;
}
vdev = sdi->priv;
vdev->buf = NULL;
vdev->trig_pos = 0;
vdev->trig_time = 0;
vdev->cur_block = 0;
vdev->cur_channel = 0;
vdev->num_blocks = 0;
vdev->unit_bits = 1;
vdev->ref_min = 0;
vdev->ref_max = 0;
vdev->max_timebase = MAX_TIMEBASE;
vdev->min_timebase = MIN_TIMEBASE;
vdev->max_height = 0;
vdev->mstatus.measure_valid = TRUE;
vdev->archive = NULL;
vdev->capfile = 0;
vdev->packet_buffer = NULL;
vdev->logic_buf = NULL;
sdi->status = SR_ST_ACTIVE;
vdev->buf = g_try_malloc(CHUNKSIZE + sizeof(uint64_t));
if (vdev->buf == NULL){
sr_err("%s: vdev->buf malloc failed", __func__);
return SR_ERR_MALLOC;
}
ret = sr_load_virtual_device_session(sdi);
if (ret != SR_OK)
{
sr_err("%s", "Error!Load session file failed.");
return ret;
}
return SR_OK;
}
static int dev_close(struct sr_dev_inst *sdi)
{
struct session_vdev *vdev;
int i;
struct session_packet_buffer *pack_buf;
if (sdi && sdi->priv)
{
vdev = sdi->priv;
if (vdev->packet_buffer != NULL){
pack_buf = vdev->packet_buffer;
g_safe_free(pack_buf->post_buf);
for (i = 0; i < SESSION_MAX_CHANNEL_COUNT; i++){
if (pack_buf->block_bufs[i] != NULL){
g_free(pack_buf->block_bufs[i]);
pack_buf->block_bufs[i] = NULL;
}
}
}
g_safe_free(vdev->packet_buffer);
g_safe_free(vdev->buf);
g_safe_free(vdev->logic_buf);
g_safe_free(sdi->priv);
sdi->status = SR_ST_INACTIVE;
return SR_OK;
}
return SR_ERR_CALL_STATUS;
}
static int dev_destroy(struct sr_dev_inst *sdi)
{
assert(sdi);
dev_close(sdi);
sr_dev_inst_free(sdi);
}
static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel *ch,
const struct sr_channel_group *cg)
{
(void)cg;
assert(sdi);
assert(sdi->priv);
struct session_vdev *vdev;
switch (id)
{
case SR_CONF_SAMPLERATE:
if (sdi)
{
vdev = sdi->priv;
*data = g_variant_new_uint64(vdev->samplerate);
}
else
return SR_ERR;
break;
case SR_CONF_LIMIT_SAMPLES:
if (sdi)
{
vdev = sdi->priv;
*data = g_variant_new_uint64(vdev->total_samples);
}
else
return SR_ERR;
break;
case SR_CONF_TRIGGER_TIME:
if (sdi)
{
vdev = sdi->priv;
*data = g_variant_new_int64(vdev->trig_time);
}
else
return SR_ERR;
break;
case SR_CONF_TIMEBASE:
if (sdi)
{
vdev = sdi->priv;
*data = g_variant_new_uint64(vdev->timebase);
}
else
return SR_ERR;
break;
case SR_CONF_MAX_TIMEBASE:
if (sdi)
{
vdev = sdi->priv;
*data = g_variant_new_uint64(vdev->max_timebase);
}
else
return SR_ERR;
break;
case SR_CONF_MIN_TIMEBASE:
if (sdi)
{
vdev = sdi->priv;
*data = g_variant_new_uint64(vdev->min_timebase);
}
else
return SR_ERR;
break;
case SR_CONF_UNIT_BITS:
if (sdi)
{
vdev = sdi->priv;
*data = g_variant_new_byte(vdev->unit_bits);
}
else
return SR_ERR;
break;
case SR_CONF_REF_MIN:
if (sdi)
{
vdev = sdi->priv;
if (vdev->ref_min == 0)
return SR_ERR;
else
*data = g_variant_new_uint32(vdev->ref_min);
}
else
return SR_ERR;
break;
case SR_CONF_REF_MAX:
if (sdi)
{
vdev = sdi->priv;
if (vdev->ref_max == 0)
return SR_ERR;
else
*data = g_variant_new_uint32(vdev->ref_max);
}
else
return SR_ERR;
break;
case SR_CONF_PROBE_EN:
if (sdi && ch)
{
*data = g_variant_new_boolean(ch->enabled);
}
else
return SR_ERR;
break;
case SR_CONF_PROBE_COUPLING:
if (sdi && ch)
{
*data = g_variant_new_byte(ch->coupling);
}
else
return SR_ERR;
break;
case SR_CONF_PROBE_VDIV:
if (sdi && ch)
{
*data = g_variant_new_uint64(ch->vdiv);
}
else
return SR_ERR;
break;
case SR_CONF_PROBE_FACTOR:
if (sdi && ch)
{
*data = g_variant_new_uint64(ch->vfactor);
}
else
return SR_ERR;
break;
case SR_CONF_PROBE_OFFSET:
if (sdi && ch)
{
*data = g_variant_new_uint16(ch->offset);
}
else
return SR_ERR;
break;
case SR_CONF_PROBE_HW_OFFSET:
if (sdi && ch)
{
*data = g_variant_new_uint16(ch->hw_offset);
}
else
return SR_ERR;
break;
case SR_CONF_PROBE_MAP_UNIT:
if (!sdi || !ch)
return SR_ERR;
*data = g_variant_new_string(ch->map_unit);
break;
case SR_CONF_PROBE_MAP_MIN:
if (!sdi || !ch)
return SR_ERR;
*data = g_variant_new_double(ch->map_min);
break;
case SR_CONF_PROBE_MAP_MAX:
if (!sdi || !ch)
return SR_ERR;
*data = g_variant_new_double(ch->map_max);
break;
case SR_CONF_TRIGGER_VALUE:
if (sdi && ch)
{
*data = g_variant_new_byte(ch->trig_value);
}
else
return SR_ERR;
break;
case SR_CONF_MAX_DSO_SAMPLERATE:
if (!sdi)
return SR_ERR;
vdev = sdi->priv;
*data = g_variant_new_uint64(vdev->samplerate);
break;
case SR_CONF_MAX_DSO_SAMPLELIMITS:
if (!sdi)
return SR_ERR;
vdev = sdi->priv;
*data = g_variant_new_uint64(vdev->total_samples);
break;
case SR_CONF_HW_DEPTH:
if (!sdi)
return SR_ERR;
vdev = sdi->priv;
*data = g_variant_new_uint64(vdev->total_samples);
break;
case SR_CONF_MAX_HEIGHT:
if (!sdi)
return SR_ERR;
vdev = sdi->priv;
*data = g_variant_new_string(maxHeights[vdev->max_height]);
break;
case SR_CONF_MAX_HEIGHT_VALUE:
if (!sdi)
return SR_ERR;
vdev = sdi->priv;
*data = g_variant_new_byte(vdev->max_height);
break;
case SR_CONF_VLD_CH_NUM:
if (!sdi)
return SR_ERR;
vdev = sdi->priv;
*data = g_variant_new_int16(vdev->num_probes);
break;
case SR_CONF_FILE_VERSION:
if (!sdi)
return SR_ERR;
vdev = sdi->priv;
*data = g_variant_new_int16(vdev->version);
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int config_set(int id, GVariant *data, struct sr_dev_inst *sdi,
struct sr_channel *ch,
struct sr_channel_group *cg)
{
(void)cg;
struct session_vdev *vdev;
const char *stropt;
unsigned int i;
assert(sdi);
assert(sdi->priv);
vdev = sdi->priv;
switch (id)
{
case SR_CONF_SAMPLERATE:
vdev->samplerate = g_variant_get_uint64(data);
samplerates[0] = vdev->samplerate;
sr_dbg("Setting samplerate to %llu.", vdev->samplerate);
break;
case SR_CONF_TIMEBASE:
vdev->timebase = g_variant_get_uint64(data);
sr_dbg("Setting timebase to %llu.", vdev->timebase);
break;
case SR_CONF_MAX_TIMEBASE:
vdev->max_timebase = g_variant_get_uint64(data);
sr_dbg("Setting max timebase to %llu.", vdev->max_timebase);
break;
case SR_CONF_MIN_TIMEBASE:
vdev->min_timebase = g_variant_get_uint64(data);
sr_dbg("Setting min timebase to %llu.", vdev->min_timebase);
break;
case SR_CONF_UNIT_BITS:
vdev->unit_bits = g_variant_get_byte(data);
sr_dbg("Setting unit bits to %d.", vdev->unit_bits);
break;
case SR_CONF_REF_MIN:
vdev->ref_min = g_variant_get_uint32(data);
sr_dbg("Setting ref min to %d.", vdev->ref_min);
break;
case SR_CONF_REF_MAX:
vdev->ref_max = g_variant_get_uint32(data);
sr_dbg("Setting ref max to %d.", vdev->ref_max);
break;
case SR_CONF_FILE_VERSION:
vdev->version = g_variant_get_int16(data);
sr_dbg("Setting file version to '%d'.", vdev->version);
break;
case SR_CONF_LIMIT_SAMPLES:
vdev->total_samples = g_variant_get_uint64(data);
samplecounts[0] = vdev->total_samples;
sr_dbg("Setting limit samples to %llu.", vdev->total_samples);
break;
case SR_CONF_TRIGGER_TIME:
vdev->trig_time = g_variant_get_int64(data);
sr_dbg("Setting trigger time to %llu.", vdev->trig_time);
break;
case SR_CONF_TRIGGER_POS:
vdev->trig_pos = g_variant_get_uint64(data);
sr_dbg("Setting trigger position to %llu.", vdev->trig_pos);
break;
case SR_CONF_NUM_BLOCKS:
vdev->num_blocks = g_variant_get_uint64(data);
sr_dbg("Setting block number to %llu.", vdev->num_blocks);
break;
case SR_CONF_CAPTURE_NUM_PROBES:
vdev->num_probes = g_variant_get_uint64(data);
if (vdev->version == 1)
{
if (sdi->mode == LOGIC)
{
if (!(vdev->logic_buf = g_try_malloc(CHUNKSIZE / 16 * vdev->num_probes)))
{
sr_err("%s: vdev->logic_buf malloc failed", __func__);
}
}
}
else
{
vdev->logic_buf = NULL;
}
break;
case SR_CONF_PROBE_EN:
ch->enabled = g_variant_get_boolean(data);
break;
case SR_CONF_PROBE_COUPLING:
ch->coupling = g_variant_get_byte(data);
break;
case SR_CONF_PROBE_VDIV:
ch->vdiv = g_variant_get_uint64(data);
break;
case SR_CONF_PROBE_FACTOR:
ch->vfactor = g_variant_get_uint64(data);
break;
case SR_CONF_PROBE_OFFSET:
ch->offset = g_variant_get_uint16(data);
break;
case SR_CONF_PROBE_HW_OFFSET:
ch->hw_offset = g_variant_get_uint16(data);
ch->offset = ch->hw_offset;
break;
case SR_CONF_PROBE_MAP_UNIT:
ch->map_unit = g_variant_get_string(data, NULL);
break;
case SR_CONF_PROBE_MAP_MIN:
ch->map_min = g_variant_get_double(data);
break;
case SR_CONF_PROBE_MAP_MAX:
ch->map_max = g_variant_get_double(data);
break;
case SR_CONF_TRIGGER_VALUE:
ch->trig_value = g_variant_get_byte(data);
break;
case SR_CONF_STATUS_PERIOD:
if (ch->index == 0)
vdev->mstatus.ch0_cyc_tlen = g_variant_get_uint32(data);
else
vdev->mstatus.ch1_cyc_tlen = g_variant_get_uint32(data);
break;
case SR_CONF_STATUS_PCNT:
if (ch->index == 0)
vdev->mstatus.ch0_cyc_cnt = g_variant_get_uint32(data);
else
vdev->mstatus.ch1_cyc_cnt = g_variant_get_uint32(data);
break;
case SR_CONF_STATUS_MAX:
if (ch->index == 0)
vdev->mstatus.ch0_max = g_variant_get_byte(data);
else
vdev->mstatus.ch1_max = g_variant_get_byte(data);
break;
case SR_CONF_STATUS_MIN:
if (ch->index == 0)
vdev->mstatus.ch0_min = g_variant_get_byte(data);
else
vdev->mstatus.ch1_min = g_variant_get_byte(data);
break;
case SR_CONF_STATUS_PLEN:
if (ch->index == 0)
vdev->mstatus.ch0_cyc_plen = g_variant_get_uint32(data);
else
vdev->mstatus.ch1_cyc_plen = g_variant_get_uint32(data);
break;
case SR_CONF_STATUS_LLEN:
if (ch->index == 0)
vdev->mstatus.ch0_cyc_llen = g_variant_get_uint32(data);
else
vdev->mstatus.ch0_cyc_llen = g_variant_get_uint32(data);
break;
case SR_CONF_STATUS_LEVEL:
if (ch->index == 0)
vdev->mstatus.ch0_level_valid = g_variant_get_boolean(data);
else
vdev->mstatus.ch1_level_valid = g_variant_get_boolean(data);
break;
case SR_CONF_STATUS_PLEVEL:
if (ch->index == 0)
vdev->mstatus.ch0_plevel = g_variant_get_boolean(data);
else
vdev->mstatus.ch1_plevel = g_variant_get_boolean(data);
break;
case SR_CONF_STATUS_LOW:
if (ch->index == 0)
vdev->mstatus.ch0_low_level = g_variant_get_byte(data);
else
vdev->mstatus.ch1_low_level = g_variant_get_byte(data);
break;
case SR_CONF_STATUS_HIGH:
if (ch->index == 0)
vdev->mstatus.ch0_high_level = g_variant_get_byte(data);
else
vdev->mstatus.ch1_high_level = g_variant_get_byte(data);
break;
case SR_CONF_STATUS_RLEN:
if (ch->index == 0)
vdev->mstatus.ch0_cyc_rlen = g_variant_get_uint32(data);
else
vdev->mstatus.ch1_cyc_rlen = g_variant_get_uint32(data);
break;
case SR_CONF_STATUS_FLEN:
if (ch->index == 0)
vdev->mstatus.ch0_cyc_flen = g_variant_get_uint32(data);
else
vdev->mstatus.ch1_cyc_flen = g_variant_get_uint32(data);
break;
case SR_CONF_STATUS_RMS:
if (ch->index == 0)
vdev->mstatus.ch0_acc_square = g_variant_get_uint64(data);
else
vdev->mstatus.ch1_acc_square = g_variant_get_uint64(data);
break;
case SR_CONF_STATUS_MEAN:
if (ch->index == 0)
vdev->mstatus.ch0_acc_mean = g_variant_get_uint32(data);
else
vdev->mstatus.ch1_acc_mean = g_variant_get_uint32(data);
break;
case SR_CONF_MAX_HEIGHT:
stropt = g_variant_get_string(data, NULL);
for (i = 0; i < ARRAY_SIZE(maxHeights); i++)
{
if (!strcmp(stropt, maxHeights[i]))
{
vdev->max_height = i;
break;
}
}
sr_dbg("%s: setting Signal Max Height to %d",
__func__, vdev->max_height);
break;
case SR_CONF_INSTANT:
case SR_CONF_RLE:
break;
default:
sr_err("Unknown capability: %d.", id);
return SR_ERR_NA;
}
return SR_OK;
}
static int config_list(int key, GVariant **data,
const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
(void)cg;
GVariant *gvar;
GVariantBuilder gvb;
(void)sdi;
switch (key)
{
case SR_CONF_DEVICE_OPTIONS:
*data = g_variant_new_from_data(G_VARIANT_TYPE("ai"),
hwoptions, ARRAY_SIZE(hwoptions) * sizeof(int32_t), TRUE, NULL, NULL);
break;
case SR_CONF_DEVICE_SESSIONS:
*data = g_variant_new_from_data(G_VARIANT_TYPE("ai"),
sessions, ARRAY_SIZE(sessions) * sizeof(int32_t), TRUE, NULL, NULL);
break;
case SR_CONF_SAMPLERATE:
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
gvar = g_variant_new_from_data(G_VARIANT_TYPE("at"),
samplerates, ARRAY_SIZE(samplerates) * sizeof(uint64_t), TRUE, NULL, NULL);
g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_LIMIT_SAMPLES:
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
gvar = g_variant_new_from_data(G_VARIANT_TYPE("at"),
samplecounts, ARRAY_SIZE(samplecounts) * sizeof(uint64_t), TRUE, NULL, NULL);
g_variant_builder_add(&gvb, "{sv}", "samplecounts", gvar);
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_MAX_HEIGHT:
*data = g_variant_new_strv(maxHeights, ARRAY_SIZE(maxHeights));
break;
case SR_CONF_PROBE_CONFIGS:
*data = g_variant_new_from_data(G_VARIANT_TYPE("ai"),
probeOptions, ARRAY_SIZE(probeOptions) * sizeof(int32_t), TRUE, NULL, NULL);
break;
case SR_CONF_PROBE_VDIV:
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
gvar = g_variant_new_from_data(G_VARIANT_TYPE("at"),
vdivs, ARRAY_SIZE(vdivs) * sizeof(uint64_t), TRUE, NULL, NULL);
g_variant_builder_add(&gvb, "{sv}", "vdivs", gvar);
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_PROBE_MAP_UNIT:
*data = g_variant_new_strv(probeMapUnits, ARRAY_SIZE(probeMapUnits));
break;
default:
return SR_ERR_ARG;
}
return SR_OK;
}
static int dev_status_get(const struct sr_dev_inst *sdi, struct sr_status *status, gboolean prg)
{
(void)prg;
struct session_vdev *vdev;
if (sdi)
{
vdev = sdi->priv;
*status = vdev->mstatus;
return SR_OK;
}
else
{
return SR_ERR;
}
}
static int dev_acquisition_start(struct sr_dev_inst *sdi, void *cb_data)
{
(void)cb_data;
struct session_vdev *vdev;
struct sr_datafeed_packet packet;
int ret;
GSList *l;
struct sr_channel *probe;
assert(sdi);
assert(sdi->priv);
assert(sdi->path);
if (sdi->dev_type != DEV_TYPE_FILELOG)
{
assert(0);
}
vdev = sdi->priv;
vdev->enabled_probes = 0;
packet.status = SR_PKT_OK;
// reset status
vdev->cur_block = 0;
vdev->cur_channel = 0;
if (vdev->archive != NULL)
{
sr_err("history archive is not closed.");
}
sr_dbg("Opening archive file %s", sdi->path);
vdev->archive = unzOpen64(sdi->path);
if (NULL == vdev->archive)
{
sr_err("Failed to open session file '%s': "
"zip error %d\n",
sdi->path, ret);
return SR_ERR;
}
if (vdev->version == 1)
{
if (unzLocateFile(vdev->archive, "data", 0) != UNZ_OK)
{
sr_err("cant't locate zip inner file:%s", "data");
close_archive(vdev);
return SR_ERR;
}
if (unzOpenCurrentFile(vdev->archive) != UNZ_OK)
{
sr_err("cant't open zip inner file:%s", "data");
close_archive(vdev);
return SR_ERR;
}
vdev->capfile = 1;
vdev->cur_channel = vdev->num_probes - 1;
}
else
{
if (sdi->mode == LOGIC)
vdev->cur_channel = 0;
else
vdev->cur_channel = vdev->num_probes - 1;
}
for (l = sdi->channels; l; l = l->next)
{
probe = l->data;
if (probe->enabled)
vdev->enabled_probes++;
}
/* Send header packet to the session bus. */
std_session_send_df_header(sdi, LOG_PREFIX);
/* Send trigger packet to the session bus */
if (vdev->trig_pos != 0)
{
struct ds_trigger_pos session_trigger;
if (sdi->mode == DSO)
session_trigger.real_pos = vdev->trig_pos * vdev->enabled_probes / vdev->num_probes;
else
session_trigger.real_pos = vdev->trig_pos;
packet.type = SR_DF_TRIGGER;
packet.payload = &session_trigger;
ds_data_forward(sdi, &packet);
}
/* freewheeling source */
if (sdi->mode == LOGIC && vdev->version == 2){
sr_session_source_add(-1, 0, 0, receive_data_logic2, sdi);
}
else{
sr_session_source_add(-1, 0, 0, receive_data, sdi);
}
return SR_OK;
}
SR_PRIV int sr_new_virtual_device(const char *filename, struct sr_dev_inst **out_di)
{
struct sr_dev_inst *sdi;
char short_name[50];
GKeyFile *kf;
char **sections, **keys, *metafile, *val;
int mode = LOGIC;
unzFile archive;
unz_file_info64 fileInfo;
char szFilePath[15];
int i, j;
archive = NULL;
sdi = NULL;
if (!filename)
{
sr_err("%s: filename was NULL", __func__);
return SR_ERR_ARG;
}
if (out_di == NULL)
{
sr_err("%s: @out_di was NULL", __func__);
return SR_ERR_ARG;
}
archive = unzOpen64(filename);
if (NULL == archive)
{
sr_err("load zip file error:%s", filename);
return SR_ERR;
}
if (unzLocateFile(archive, "header", 0) != UNZ_OK)
{
unzClose(archive);
sr_err("unzLocateFile error:'header', %s", filename);
return SR_ERR;
}
if (unzGetCurrentFileInfo64(archive, &fileInfo, szFilePath,
sizeof(szFilePath), NULL, 0, NULL, 0) != UNZ_OK)
{
unzClose(archive);
sr_err("unzGetCurrentFileInfo64 error,'header', %s", filename);
return SR_ERR;
}
if (unzOpenCurrentFile(archive) != UNZ_OK)
{
sr_err("cant't open zip inner file:'header',%s", filename);
unzClose(archive);
return SR_ERR;
}
if (!(metafile = g_try_malloc(fileInfo.uncompressed_size)))
{
sr_err("%s: metafile malloc failed", __func__);
return SR_ERR_MALLOC;
}
unzReadCurrentFile(archive, metafile, fileInfo.uncompressed_size);
unzCloseCurrentFile(archive);
if (unzClose(archive) != UNZ_OK)
{
sr_err("close zip archive error:%s", filename);
return SR_ERR;
}
archive = NULL;
kf = g_key_file_new();
if (!g_key_file_load_from_data(kf, metafile, fileInfo.uncompressed_size, 0, NULL))
{
sr_err("Failed to parse metadata.");
return SR_ERR;
}
// Get mode value.
sections = g_key_file_get_groups(kf, NULL);
for (i = 0; sections[i]; i++)
{
if (strncmp(sections[i], "header", 6) == 0)
{
keys = g_key_file_get_keys(kf, sections[i], NULL, NULL);
for (j = 0; keys[j]; j++)
{
if (strcmp(keys[j], "device mode") == 0)
{
val = g_key_file_get_string(kf, sections[i], keys[j], NULL);
mode = strtoull(val, NULL, 10);
break;
}
}
g_strfreev(keys);
}
}
g_strfreev(sections);
g_key_file_free(kf);
g_free(metafile);
sdi = sr_dev_inst_new(mode, SR_ST_INACTIVE, NULL, NULL, NULL);
sdi->driver = &session_driver;
sdi->dev_type = DEV_TYPE_FILELOG;
get_file_short_name(filename, short_name, sizeof(short_name) - 1);
strncpy(sdi->name, short_name, sizeof(short_name) - 1);
sdi->path = g_strdup(filename);
*out_di = sdi;
return SR_OK;
}
static int sr_load_virtual_device_session(struct sr_dev_inst *sdi)
{
GKeyFile *kf;
unzFile archive = NULL;
char szFilePath[15];
unz_file_info64 fileInfo;
struct sr_channel *probe;
int ret, devcnt, i, j;
uint16_t probenum;
uint64_t tmp_u64, total_probes, enabled_probes;
uint16_t p;
int64_t tmp_64;
char **sections, **keys, *metafile, *val;
char probename[SR_MAX_PROBENAME_LEN + 1];
int mode = LOGIC;
int channel_type = SR_CHANNEL_LOGIC;
double tmp_double;
int version = 1;
assert(sdi);
assert(sdi->path);
if (sdi->dev_type != DEV_TYPE_FILELOG)
{
sr_err("%s: Is not a virtual device instance.", __func__);
return SR_ERR_ARG;
}
// Clear all channels.
sr_dev_probes_free(sdi);
archive = unzOpen64(sdi->path);
if (NULL == archive)
{
sr_err("%s: Load zip file error.", __func__);
return SR_ERR;
}
if (unzLocateFile(archive, "header", 0) != UNZ_OK)
{
unzClose(archive);
sr_err("%s: unzLocateFile error.", __func__);
return SR_ERR;
}
if (unzGetCurrentFileInfo64(archive, &fileInfo, szFilePath,
sizeof(szFilePath), NULL, 0, NULL, 0) != UNZ_OK)
{
unzClose(archive);
sr_err("%s: unzGetCurrentFileInfo64 error.", __func__);
return SR_ERR;
}
if (unzOpenCurrentFile(archive) != UNZ_OK)
{
sr_err("%s: Cant't open zip inner file.", __func__);
unzClose(archive);
return SR_ERR;
}
if (!(metafile = g_try_malloc(fileInfo.uncompressed_size)))
{
sr_err("%s: metafile malloc failed", __func__);
return SR_ERR_MALLOC;
}
unzReadCurrentFile(archive, metafile, fileInfo.uncompressed_size);
unzCloseCurrentFile(archive);
if (unzClose(archive) != UNZ_OK)
{
sr_err("%s: Close zip archive error.", __func__);
return SR_ERR;
}
archive = NULL;
kf = g_key_file_new();
if (!g_key_file_load_from_data(kf, metafile, fileInfo.uncompressed_size, 0, NULL))
{
sr_err("Failed to parse metadata.");
return SR_ERR;
}
devcnt = 0;
sections = g_key_file_get_groups(kf, NULL);
for (i = 0; sections[i]; i++)
{
if (!strcmp(sections[i], "version"))
{
keys = g_key_file_get_keys(kf, sections[i], NULL, NULL);
for (j = 0; keys[j]; j++)
{
val = g_key_file_get_string(kf, sections[i], keys[j], NULL);
if (!strcmp(keys[j], "version"))
{
version = strtoull(val, NULL, 10);
}
}
}
if (!strncmp(sections[i], "header", 6))
{
/* device section */
enabled_probes = total_probes = 0;
keys = g_key_file_get_keys(kf, sections[i], NULL, NULL);
for (j = 0; keys[j]; j++)
{
val = g_key_file_get_string(kf, sections[i], keys[j], NULL);
if (!strcmp(keys[j], "device mode"))
{
mode = strtoull(val, NULL, 10);
}
else if (!strcmp(keys[j], "capturefile"))
{
sdi->driver->config_set(SR_CONF_FILE_VERSION,
g_variant_new_int16(version), sdi, NULL, NULL);
}
else if (!strcmp(keys[j], "samplerate"))
{
sr_parse_sizestring(val, &tmp_u64);
sdi->driver->config_set(SR_CONF_SAMPLERATE,
g_variant_new_uint64(tmp_u64), sdi, NULL, NULL);
}
else if (!strcmp(keys[j], "total samples"))
{
tmp_u64 = strtoull(val, NULL, 10);
sdi->driver->config_set(SR_CONF_LIMIT_SAMPLES,
g_variant_new_uint64(tmp_u64), sdi, NULL, NULL);
}
else if (!strcmp(keys[j], "hDiv"))
{
tmp_u64 = strtoull(val, NULL, 10);
sdi->driver->config_set(SR_CONF_TIMEBASE,
g_variant_new_uint64(tmp_u64), sdi, NULL, NULL);
}
else if (!strcmp(keys[j], "hDiv min"))
{
tmp_u64 = strtoull(val, NULL, 10);
sdi->driver->config_set(SR_CONF_MIN_TIMEBASE,
g_variant_new_uint64(tmp_u64), sdi, NULL, NULL);
}
else if (!strcmp(keys[j], "hDiv max"))
{
tmp_u64 = strtoull(val, NULL, 10);
sdi->driver->config_set(SR_CONF_MAX_TIMEBASE,
g_variant_new_uint64(tmp_u64), sdi, NULL, NULL);
}
else if (!strcmp(keys[j], "bits"))
{
tmp_u64 = strtoull(val, NULL, 10);
sdi->driver->config_set(SR_CONF_UNIT_BITS,
g_variant_new_byte(tmp_u64), sdi, NULL, NULL);
}
else if (!strcmp(keys[j], "ref min"))
{
tmp_u64 = strtoull(val, NULL, 10);
sdi->driver->config_set(SR_CONF_REF_MIN,
g_variant_new_uint32(tmp_u64), sdi, NULL, NULL);
}
else if (!strcmp(keys[j], "ref max"))
{
tmp_u64 = strtoull(val, NULL, 10);
sdi->driver->config_set(SR_CONF_REF_MAX,
g_variant_new_uint32(tmp_u64), sdi, NULL, NULL);
}
else if (!strcmp(keys[j], "trigger time"))
{
tmp_64 = strtoll(val, NULL, 10);
sdi->driver->config_set(SR_CONF_TRIGGER_TIME,
g_variant_new_int64(tmp_64), sdi, NULL, NULL);
}
else if (!strcmp(keys[j], "trigger pos"))
{
tmp_u64 = strtoull(val, NULL, 10);
sdi->driver->config_set(SR_CONF_TRIGGER_POS,
g_variant_new_uint64(tmp_u64), sdi, NULL, NULL);
}
else if (!strcmp(keys[j], "total blocks"))
{
tmp_u64 = strtoull(val, NULL, 10);
sdi->driver->config_set(SR_CONF_NUM_BLOCKS,
g_variant_new_uint64(tmp_u64), sdi, NULL, NULL);
}
else if (!strcmp(keys[j], "total probes"))
{
total_probes = strtoull(val, NULL, 10);
sdi->driver->config_set(SR_CONF_CAPTURE_NUM_PROBES,
g_variant_new_uint64(total_probes), sdi, NULL, NULL);
if (version == 1)
{
channel_type = (mode == DSO) ? SR_CHANNEL_DSO : (mode == ANALOG) ? SR_CHANNEL_ANALOG
: SR_CHANNEL_LOGIC;
for (p = 0; p < total_probes; p++)
{
snprintf(probename, SR_MAX_PROBENAME_LEN, "%u", p);
if (!(probe = sr_channel_new(p, channel_type, FALSE, probename)))
{
sr_err("%s: create channel failed", __func__);
sr_dev_inst_free(sdi);
return SR_ERR;
}
sdi->channels = g_slist_append(sdi->channels, probe);
}
}
}
else if (!strncmp(keys[j], "probe", 5))
{
enabled_probes++;
tmp_u64 = strtoul(keys[j] + 5, NULL, 10);
/* sr_session_save() */
if (version == 1)
{
sr_dev_probe_name_set(sdi, tmp_u64, val);
sr_dev_probe_enable(sdi, tmp_u64, TRUE);
}
else if (version == 2)
{
channel_type = (mode == DSO) ? SR_CHANNEL_DSO : (mode == ANALOG) ? SR_CHANNEL_ANALOG
: SR_CHANNEL_LOGIC;
if (!(probe = sr_channel_new(tmp_u64, channel_type, TRUE, val)))
{
sr_err("%s: create channel failed", __func__);
sr_dev_inst_free(sdi);
return SR_ERR;
}
sdi->channels = g_slist_append(sdi->channels, probe);
}
}
else if (!strncmp(keys[j], "trigger", 7))
{
probenum = strtoul(keys[j] + 7, NULL, 10);
sr_dev_trigger_set(sdi, probenum, val);
}
else if (!strncmp(keys[j], "enable", 6))
{
if (mode != LOGIC)
continue;
probenum = strtoul(keys[j] + 6, NULL, 10);
tmp_u64 = strtoull(val, NULL, 10);
if (probenum < g_slist_length(sdi->channels))
{
probe = g_slist_nth(sdi->channels, probenum)->data;
sdi->driver->config_set(SR_CONF_PROBE_EN,
g_variant_new_boolean(tmp_u64), sdi, probe, NULL);
}
}
else if (!strncmp(keys[j], "coupling", 8))
{
probenum = strtoul(keys[j] + 8, NULL, 10);
tmp_u64 = strtoull(val, NULL, 10);
if (probenum < g_slist_length(sdi->channels))
{
probe = g_slist_nth(sdi->channels, probenum)->data;
sdi->driver->config_set(SR_CONF_PROBE_COUPLING,
g_variant_new_byte(tmp_u64), sdi, probe, NULL);
}
}
else if (!strncmp(keys[j], "vDiv", 4))
{
probenum = strtoul(keys[j] + 4, NULL, 10);
tmp_u64 = strtoull(val, NULL, 10);
if (probenum < g_slist_length(sdi->channels))
{
probe = g_slist_nth(sdi->channels, probenum)->data;
sdi->driver->config_set(SR_CONF_PROBE_VDIV,
g_variant_new_uint64(tmp_u64), sdi, probe, NULL);
}
}
else if (!strncmp(keys[j], "vFactor", 7))
{
probenum = strtoul(keys[j] + 7, NULL, 10);
tmp_u64 = strtoull(val, NULL, 10);
if (probenum < g_slist_length(sdi->channels))
{
probe = g_slist_nth(sdi->channels, probenum)->data;
sdi->driver->config_set(SR_CONF_PROBE_FACTOR,
g_variant_new_uint64(tmp_u64), sdi, probe, NULL);
}
}
else if (!strncmp(keys[j], "vOffset", 7))
{
probenum = strtoul(keys[j] + 7, NULL, 10);
tmp_u64 = strtoull(val, NULL, 10);
if (probenum < g_slist_length(sdi->channels))
{
probe = g_slist_nth(sdi->channels, probenum)->data;
sdi->driver->config_set(SR_CONF_PROBE_HW_OFFSET,
g_variant_new_uint16(tmp_u64), sdi, probe, NULL);
}
}
else if (!strncmp(keys[j], "vTrig", 5))
{
probenum = strtoul(keys[j] + 5, NULL, 10);
tmp_u64 = strtoull(val, NULL, 10);
if (probenum < g_slist_length(sdi->channels))
{
probe = g_slist_nth(sdi->channels, probenum)->data;
sdi->driver->config_set(SR_CONF_TRIGGER_VALUE,
g_variant_new_byte(tmp_u64), sdi, probe, NULL);
}
}
else if (!strncmp(keys[j], "period", 6))
{
probenum = strtoul(keys[j] + 6, NULL, 10);
tmp_u64 = strtoull(val, NULL, 10);
if (probenum < g_slist_length(sdi->channels))
{
probe = g_slist_nth(sdi->channels, probenum)->data;
sdi->driver->config_set(SR_CONF_STATUS_PERIOD,
g_variant_new_uint32(tmp_u64), sdi, probe, NULL);
}
}
else if (!strncmp(keys[j], "pcnt", 4))
{
probenum = strtoul(keys[j] + 4, NULL, 10);
tmp_u64 = strtoull(val, NULL, 10);
if (probenum < g_slist_length(sdi->channels))
{
probe = g_slist_nth(sdi->channels, probenum)->data;
sdi->driver->config_set(SR_CONF_STATUS_PCNT,
g_variant_new_uint32(tmp_u64), sdi, probe, NULL);
}
}
else if (!strncmp(keys[j], "max", 3))
{
probenum = strtoul(keys[j] + 3, NULL, 10);
tmp_u64 = strtoull(val, NULL, 10);
if (probenum < g_slist_length(sdi->channels))
{
probe = g_slist_nth(sdi->channels, probenum)->data;
sdi->driver->config_set(SR_CONF_STATUS_MAX,
g_variant_new_byte(tmp_u64), sdi, probe, NULL);
}
}
else if (!strncmp(keys[j], "min", 3))
{
probenum = strtoul(keys[j] + 3, NULL, 10);
tmp_u64 = strtoull(val, NULL, 10);
if (probenum < g_slist_length(sdi->channels))
{
probe = g_slist_nth(sdi->channels, probenum)->data;
sdi->driver->config_set(SR_CONF_STATUS_MIN,
g_variant_new_byte(tmp_u64), sdi, probe, NULL);
}
}
else if (!strncmp(keys[j], "plen", 4))
{
probenum = strtoul(keys[j] + 4, NULL, 10);
tmp_u64 = strtoull(val, NULL, 10);
if (probenum < g_slist_length(sdi->channels))
{
probe = g_slist_nth(sdi->channels, probenum)->data;
sdi->driver->config_set(SR_CONF_STATUS_PLEN,
g_variant_new_uint32(tmp_u64), sdi, probe, NULL);
}
}
else if (!strncmp(keys[j], "llen", 4))
{
probenum = strtoul(keys[j] + 4, NULL, 10);
tmp_u64 = strtoull(val, NULL, 10);
if (probenum < g_slist_length(sdi->channels))
{
probe = g_slist_nth(sdi->channels, probenum)->data;
sdi->driver->config_set(SR_CONF_STATUS_LLEN,
g_variant_new_uint32(tmp_u64), sdi, probe, NULL);
}
}
else if (!strncmp(keys[j], "level", 5))
{
probenum = strtoul(keys[j] + 5, NULL, 10);
tmp_u64 = strtoull(val, NULL, 10);
if (probenum < g_slist_length(sdi->channels))
{
probe = g_slist_nth(sdi->channels, probenum)->data;
sdi->driver->config_set(SR_CONF_STATUS_LEVEL,
g_variant_new_boolean(tmp_u64), sdi, probe, NULL);
}
}
else if (!strncmp(keys[j], "plevel", 6))
{
probenum = strtoul(keys[j] + 6, NULL, 10);
tmp_u64 = strtoull(val, NULL, 10);
if (probenum < g_slist_length(sdi->channels))
{
probe = g_slist_nth(sdi->channels, probenum)->data;
sdi->driver->config_set(SR_CONF_STATUS_PLEVEL,
g_variant_new_boolean(tmp_u64), sdi, probe, NULL);
}
}
else if (!strncmp(keys[j], "low", 3))
{
probenum = strtoul(keys[j] + 3, NULL, 10);
tmp_u64 = strtoull(val, NULL, 10);
if (probenum < g_slist_length(sdi->channels))
{
probe = g_slist_nth(sdi->channels, probenum)->data;
sdi->driver->config_set(SR_CONF_STATUS_LOW,
g_variant_new_byte(tmp_u64), sdi, probe, NULL);
}
}
else if (!strncmp(keys[j], "high", 4))
{
probenum = strtoul(keys[j] + 4, NULL, 10);
tmp_u64 = strtoull(val, NULL, 10);
if (probenum < g_slist_length(sdi->channels))
{
probe = g_slist_nth(sdi->channels, probenum)->data;
sdi->driver->config_set(SR_CONF_STATUS_HIGH,
g_variant_new_byte(tmp_u64), sdi, probe, NULL);
}
}
else if (!strncmp(keys[j], "rlen", 4))
{
probenum = strtoul(keys[j] + 4, NULL, 10);
tmp_u64 = strtoull(val, NULL, 10);
if (probenum < g_slist_length(sdi->channels))
{
probe = g_slist_nth(sdi->channels, probenum)->data;
sdi->driver->config_set(SR_CONF_STATUS_RLEN,
g_variant_new_uint32(tmp_u64), sdi, probe, NULL);
}
}
else if (!strncmp(keys[j], "flen", 4))
{
probenum = strtoul(keys[j] + 4, NULL, 10);
tmp_u64 = strtoull(val, NULL, 10);
if (probenum < g_slist_length(sdi->channels))
{
probe = g_slist_nth(sdi->channels, probenum)->data;
sdi->driver->config_set(SR_CONF_STATUS_FLEN,
g_variant_new_uint32(tmp_u64), sdi, probe, NULL);
}
}
else if (!strncmp(keys[j], "rms", 3))
{
probenum = strtoul(keys[j] + 3, NULL, 10);
tmp_u64 = strtoull(val, NULL, 10);
if (probenum < g_slist_length(sdi->channels))
{
probe = g_slist_nth(sdi->channels, probenum)->data;
sdi->driver->config_set(SR_CONF_STATUS_RMS,
g_variant_new_uint64(tmp_u64), sdi, probe, NULL);
}
}
else if (!strncmp(keys[j], "mean", 4))
{
probenum = strtoul(keys[j] + 4, NULL, 10);
tmp_u64 = strtoull(val, NULL, 10);
if (probenum < g_slist_length(sdi->channels))
{
probe = g_slist_nth(sdi->channels, probenum)->data;
sdi->driver->config_set(SR_CONF_STATUS_MEAN,
g_variant_new_uint32(tmp_u64), sdi, probe, NULL);
}
}
else if (!strncmp(keys[j], "mapUnit", 7))
{
probenum = strtoul(keys[j] + 7, NULL, 10);
if (probenum < g_slist_length(sdi->channels))
{
probe = g_slist_nth(sdi->channels, probenum)->data;
sdi->driver->config_set(SR_CONF_PROBE_MAP_UNIT,
g_variant_new_string(val), sdi, probe, NULL);
}
}
else if (!strncmp(keys[j], "mapMax", 6))
{
probenum = strtoul(keys[j] + 6, NULL, 10);
tmp_double = strtod(val, NULL);
if (probenum < g_slist_length(sdi->channels))
{
probe = g_slist_nth(sdi->channels, probenum)->data;
sdi->driver->config_set(SR_CONF_PROBE_MAP_MAX,
g_variant_new_double(tmp_double), sdi, probe, NULL);
}
}
else if (!strncmp(keys[j], "mapMin", 6))
{
probenum = strtoul(keys[j] + 6, NULL, 10);
tmp_double = strtod(val, NULL);
if (probenum < g_slist_length(sdi->channels))
{
probe = g_slist_nth(sdi->channels, probenum)->data;
sdi->driver->config_set(SR_CONF_PROBE_MAP_MIN,
g_variant_new_double(tmp_double), sdi, probe, NULL);
}
}
}
g_strfreev(keys);
}
devcnt++;
}
g_strfreev(sections);
g_key_file_free(kf);
g_free(metafile);
return SR_OK;
}
/** @private */
SR_PRIV struct sr_dev_driver session_driver = {
.name = "virtual-session",
.longname = "Session-emulating driver",
.api_version = 1,
.driver_type = DRIVER_TYPE_FILE,
.init = init,
.cleanup = dev_clear,
.scan = NULL,
.dev_mode_list = dev_mode_list,
.config_get = config_get,
.config_set = config_set,
.config_list = config_list,
.dev_open = dev_open,
.dev_close = dev_close,
.dev_destroy = dev_destroy,
.dev_status_get = dev_status_get,
.dev_acquisition_start = dev_acquisition_start,
.dev_acquisition_stop = NULL,
.priv = NULL,
};