2016-07-20 08:59:39 +08:00

431 lines
16 KiB
Python
Executable File

##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2014 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
import sigrokdecode as srd
from .lists import *
class Decoder(srd.Decoder):
api_version = 2
id = 'eeprom24xx'
name = '24xx EEPROM'
longname = '24xx I²C EEPROM'
desc = '24xx series I²C EEPROM protocol.'
license = 'gplv2+'
inputs = ['i2c']
outputs = ['eeprom24xx']
options = (
{'id': 'chip', 'desc': 'Chip', 'default': 'generic',
'values': tuple(chips.keys())},
{'id': 'addr_counter', 'desc': 'Initial address counter value',
'default': 0},
)
annotations = (
# Warnings
('warnings', 'Warnings'),
# Bits/bytes
('control-code', 'Control code'),
('address-pin', 'Address pin (A0/A1/A2)'),
('rw-bit', 'Read/write bit'),
('word-addr-byte', 'Word address byte'),
('data-byte', 'Data byte'),
# Fields
('control-word', 'Control word'),
('word-addr', 'Word address'),
('data', 'Data'),
# Operations
('byte-write', 'Byte write'),
('page-write', 'Page write'),
('cur-addr-read', 'Current address read'),
('random-read', 'Random read'),
('seq-random-read', 'Sequential random read'),
('seq-cur-addr-read', 'Sequential current address read'),
('ack-polling', 'Acknowledge polling'),
('set-bank-addr', 'Set bank address'), # SBA. Only 34AA04.
('read-bank-addr', 'Read bank address'), # RBA. Only 34AA04.
('set-wp', 'Set write protection'), # SWP
('clear-all-wp', 'Clear all write protection'), # CWP
('read-wp', 'Read write protection status'), # RPS
)
annotation_rows = (
('bits-bytes', 'Bits/bytes', (1, 2, 3, 4, 5)),
('fields', 'Fields', (6, 7, 8)),
('ops', 'Operations', tuple(range(9, 21))),
('warnings', 'Warnings', (0,)),
)
binary = (
('binary', 'Binary'),
)
def __init__(self, **kwargs):
self.reset()
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
self.out_bin = self.register(srd.OUTPUT_BINARY)
self.chip = chips[self.options['chip']]
self.addr_counter = self.options['addr_counter']
def putb(self, data):
self.put(self.ss_block, self.es_block, self.out_ann, data)
def putbin(self, data):
self.put(self.ss_block, self.es_block, self.out_bin, data)
def putbits(self, bit1, bit2, bits, data):
self.put(bits[bit1][1], bits[bit2][2], self.out_ann, data)
def reset(self):
self.state = 'WAIT FOR START'
self.packets = []
self.bytebuf = []
self.is_cur_addr_read = False
self.is_random_access_read = False
self.is_seq_random_read = False
self.is_byte_write = False
self.is_page_write = False
def packet_append(self):
self.packets.append([self.ss, self.es, self.cmd, self.databyte, self.bits])
if self.cmd in ('DATA READ', 'DATA WRITE'):
self.bytebuf.append(self.databyte)
def hexbytes(self, idx):
return ' '.join(['%02X' % b for b in self.bytebuf[idx:]])
def put_control_word(self, bits):
s = ''.join(['%d' % b[0] for b in reversed(bits[4:])])
self.putbits(7, 4, bits, [1, ['Control code bits: ' + s,
'Control code: ' + s, 'Ctrl code: ' + s, 'Ctrl code', 'Ctrl', 'C']])
for i in reversed(range(self.chip['addr_pins'])):
self.putbits(i + 1, i + 1, bits,
[2, ['Address bit %d: %d' % (i, bits[i + 1][0]),
'Addr bit %d' % i, 'A%d' % i, 'A']])
s1 = 'read' if bits[0][0] == 1 else 'write'
s2 = 'R' if bits[0][0] == 1 else 'W'
self.putbits(0, 0, bits, [3, ['R/W bit: ' + s1, 'R/W', 'RW', s2]])
self.putbits(7, 0, bits, [6, ['Control word', 'Control', 'CW', 'C']])
def put_word_addr(self, p):
if self.chip['addr_bytes'] == 1:
a = p[1][3]
self.put(p[1][0], p[1][1], self.out_ann,
[4, ['Word address byte: %02X' % a, 'Word addr byte: %02X' % a,
'Addr: %02X' % a, 'A: %02X' % a, '%02X' % a]])
self.put(p[1][0], p[1][1], self.out_ann, [7, ['Word address',
'Word addr', 'Addr', 'A']])
self.addr_counter = a
else:
a = p[1][3]
self.put(p[1][0], p[1][1], self.out_ann,
[4, ['Word address high byte: %02X' % a,
'Word addr high byte: %02X' % a,
'Addr high: %02X' % a, 'AH: %02X' % a, '%02X' % a]])
a = p[2][3]
self.put(p[2][0], p[2][1], self.out_ann,
[4, ['Word address low byte: %02X' % a,
'Word addr low byte: %02X' % a,
'Addr low: %02X' % a, 'AL: %02X' % a, '%02X' % a]])
self.put(p[1][0], p[2][1], self.out_ann, [7, ['Word address',
'Word addr', 'Addr', 'A']])
self.addr_counter = (p[1][3] << 8) | p[2][3]
def put_data_byte(self, p):
if self.chip['addr_bytes'] == 1:
s = '%02X' % self.addr_counter
else:
s = '%04X' % self.addr_counter
self.put(p[0], p[1], self.out_ann, [5, ['Data byte %s: %02X' % \
(s, p[3]), 'Data byte: %02X' % p[3], \
'Byte: %02X' % p[3], 'DB: %02X' % p[3], '%02X' % p[3]]])
def put_data_bytes(self, idx, cls, s):
for p in self.packets[idx:]:
self.put_data_byte(p)
self.addr_counter += 1
self.put(self.packets[idx][0], self.packets[-1][1], self.out_ann,
[8, ['Data', 'D']])
a = ''.join(['%s' % c[0] for c in s.split()]).upper()
self.putb([cls, ['%s (%s): %s' % (s, self.addr_and_len(), \
self.hexbytes(self.chip['addr_bytes'])),
'%s (%s)' % (s, self.addr_and_len()), s, a, s[0]]])
self.putbin((0, bytes(self.bytebuf[self.chip['addr_bytes']:])))
def addr_and_len(self):
if self.chip['addr_bytes'] == 1:
a = '%02X' % self.bytebuf[0]
else:
a = '%02X%02X' % tuple(self.bytebuf[:2])
num_data_bytes = len(self.bytebuf) - self.chip['addr_bytes']
d = '%d bytes' % num_data_bytes
if num_data_bytes <= 1:
d = d[:-1]
return 'addr=%s, %s' % (a, d)
def decide_on_seq_or_rnd_read(self):
if len(self.bytebuf) < 2:
self.reset()
return
if len(self.bytebuf) == 2:
self.is_random_access_read = True
else:
self.is_seq_random_read = True
def put_operation(self):
idx = 1 + self.chip['addr_bytes']
if self.is_byte_write:
# Byte write: word address, one data byte.
self.put_word_addr(self.packets)
self.put_data_bytes(idx, 9, 'Byte write')
elif self.is_page_write:
# Page write: word address, two or more data bytes.
self.put_word_addr(self.packets)
intitial_addr = self.addr_counter
self.put_data_bytes(idx, 10, 'Page write')
num_bytes_to_write = len(self.packets[idx:])
if num_bytes_to_write > self.chip['page_size']:
self.putb([0, ['Warning: Wrote %d bytes but page size is '
'only %d bytes!' % (num_bytes_to_write,
self.chip['page_size'])]])
page1 = int(intitial_addr / self.chip['page_size'])
page2 = int((self.addr_counter - 1) / self.chip['page_size'])
if page1 != page2:
self.putb([0, ['Warning: Page write crossed page boundary '
'from page %d to %d!' % (page1, page2)]])
elif self.is_cur_addr_read:
# Current address read: no word address, one data byte.
self.put_data_byte(self.packets[1])
self.put(self.packets[1][0], self.packets[-1][1], self.out_ann,
[8, ['Data', 'D']])
self.putb([11, ['Current address read: %02X' % self.bytebuf[0],
'Current address read', 'Cur addr read', 'CAR', 'C']])
self.putbin((0, bytes([self.bytebuf[0]])))
self.addr_counter += 1
elif self.is_random_access_read:
# Random access read: word address, one data byte.
self.put_control_word(self.packets[idx][4])
self.put_word_addr(self.packets)
self.put_data_bytes(idx + 1, 12, 'Random access read')
elif self.is_seq_random_read:
# Sequential random read: word address, two or more data bytes.
self.put_control_word(self.packets[idx][4])
self.put_word_addr(self.packets)
self.put_data_bytes(idx + 1, 13, 'Sequential random read')
def handle_wait_for_start(self):
# Wait for an I²C START condition.
if self.cmd not in ('START', 'START REPEAT'):
return
self.ss_block = self.ss
self.state = 'GET CONTROL WORD'
def handle_get_control_word(self):
# The packet after START must be an ADDRESS READ or ADDRESS WRITE.
if self.cmd not in ('ADDRESS READ', 'ADDRESS WRITE'):
self.reset()
return
self.packet_append()
self.put_control_word(self.bits)
self.state = '%s GET ACK NACK AFTER CONTROL WORD' % self.cmd[8]
def handle_r_get_ack_nack_after_control_word(self):
if self.cmd == 'ACK':
self.state = 'R GET WORD ADDR OR BYTE'
elif self.cmd == 'NACK':
self.es_block = self.es
self.putb([0, ['Warning: No reply from slave!']])
self.reset()
else:
self.reset()
def handle_r_get_word_addr_or_byte(self):
if self.cmd == 'STOP':
self.es_block = self.es
self.putb([0, ['Warning: Slave replied, but master aborted!']])
self.reset()
return
elif self.cmd != 'DATA READ':
self.reset()
return
self.packet_append()
self.state = 'R GET ACK NACK AFTER WORD ADDR OR BYTE'
def handle_r_get_ack_nack_after_word_addr_or_byte(self):
if self.cmd == 'ACK':
self.state = 'R GET RESTART'
elif self.cmd == 'NACK':
self.is_cur_addr_read = True
self.state = 'GET STOP AFTER LAST BYTE'
else:
self.reset()
def handle_r_get_restart(self):
if self.cmd == 'RESTART':
self.state = 'R READ BYTE'
else:
self.reset()
def handle_r_read_byte(self):
if self.cmd == 'DATA READ':
self.packet_append()
self.state = 'R GET ACK NACK AFTER BYTE WAS READ'
else:
self.reset()
def handle_r_get_ack_nack_after_byte_was_read(self):
if self.cmd == 'ACK':
self.state = 'R READ BYTE'
elif self.cmd == 'NACK':
# It's either a RANDOM READ or a SEQUENTIAL READ.
self.state = 'GET STOP AFTER LAST BYTE'
else:
self.reset()
def handle_w_get_ack_nack_after_control_word(self):
if self.cmd == 'ACK':
self.state = 'W GET WORD ADDR'
elif self.cmd == 'NACK':
self.es_block = self.es
self.putb([0, ['Warning: No reply from slave!']])
self.reset()
else:
self.reset()
def handle_w_get_word_addr(self):
if self.cmd == 'STOP':
self.es_block = self.es
self.putb([0, ['Warning: Slave replied, but master aborted!']])
self.reset()
return
elif self.cmd != 'DATA WRITE':
self.reset()
return
self.packet_append()
self.state = 'W GET ACK AFTER WORD ADDR'
def handle_w_get_ack_after_word_addr(self):
if self.cmd == 'ACK':
self.state = 'W DETERMINE EEPROM READ OR WRITE'
else:
self.reset()
def handle_w_determine_eeprom_read_or_write(self):
if self.cmd == 'START REPEAT':
# It's either a RANDOM ACCESS READ or SEQUENTIAL RANDOM READ.
self.state = 'R2 GET CONTROL WORD'
elif self.cmd == 'DATA WRITE':
self.packet_append()
self.state = 'W GET ACK NACK AFTER BYTE WAS WRITTEN'
else:
self.reset()
def handle_w_write_byte(self):
if self.cmd == 'DATA WRITE':
self.packet_append()
self.state = 'W GET ACK NACK AFTER BYTE WAS WRITTEN'
elif self.cmd == 'STOP':
if len(self.bytebuf) < 2:
self.reset()
return
self.es_block = self.es
if len(self.bytebuf) == 2:
self.is_byte_write = True
else:
self.is_page_write = True
self.put_operation()
self.reset()
elif self.cmd == 'START REPEAT':
# It's either a RANDOM ACCESS READ or SEQUENTIAL RANDOM READ.
self.state = 'R2 GET CONTROL WORD'
else:
self.reset()
def handle_w_get_ack_nack_after_byte_was_written(self):
if self.cmd == 'ACK':
self.state = 'W WRITE BYTE'
else:
self.reset()
def handle_r2_get_control_word(self):
if self.cmd == 'ADDRESS READ':
self.packet_append()
self.state = 'R2 GET ACK AFTER ADDR READ'
else:
self.reset()
def handle_r2_get_ack_after_addr_read(self):
if self.cmd == 'ACK':
self.state = 'R2 READ BYTE'
else:
self.reset()
def handle_r2_read_byte(self):
if self.cmd == 'DATA READ':
self.packet_append()
self.state = 'R2 GET ACK NACK AFTER BYTE WAS READ'
elif self.cmd == 'STOP':
self.decide_on_seq_or_rnd_read()
self.es_block = self.es
self.putb([0, ['Warning: STOP expected after a NACK (not ACK)']])
self.put_operation()
self.reset()
else:
self.reset()
def handle_r2_get_ack_nack_after_byte_was_read(self):
if self.cmd == 'ACK':
self.state = 'R2 READ BYTE'
elif self.cmd == 'NACK':
self.decide_on_seq_or_rnd_read()
self.state = 'GET STOP AFTER LAST BYTE'
else:
self.reset()
def handle_get_stop_after_last_byte(self):
if self.cmd == 'STOP':
self.es_block = self.es
self.put_operation()
self.reset()
elif self.cmd == 'START REPEAT':
self.es_block = self.es
self.putb([0, ['Warning: STOP expected (not RESTART)']])
self.put_operation()
self.reset()
self.ss_block = self.ss
self.state = 'GET CONTROL WORD'
else:
self.reset()
def decode(self, ss, es, data):
self.cmd, self.databyte = data
# Collect the 'BITS' packet, then return. The next packet is
# guaranteed to belong to these bits we just stored.
if self.cmd == 'BITS':
self.bits = self.databyte
return
# Store the start/end samples of this I²C packet.
self.ss, self.es = ss, es
# State machine.
s = 'handle_%s' % self.state.lower().replace(' ', '_')
handle_state = getattr(self, s)
handle_state()