2020-05-09 10:47:40 +08:00

440 lines
16 KiB
Python
Executable File

##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2011-2014 Uwe Hermann <uwe@hermann-uwe.de>
## Copyright (C) 2019 DreamSourceLab <support@dreamsourcelab.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
from common.srdhelper import bitpack
from math import floor, ceil
'''
OUTPUT_PYTHON format:
Packet:
[<ptype>, <rxtx>, <pdata>]
This is the list of <ptype>s and their respective <pdata> values:
- 'STARTBIT': The data is the (integer) value of the start bit (0/1).
- 'DATA': This is always a tuple containing two items:
- 1st item: the (integer) value of the UART data. Valid values
range from 0 to 511 (as the data can be up to 9 bits in size).
- 2nd item: the list of individual data bits and their ss/es numbers.
- 'PARITYBIT': The data is the (integer) value of the parity bit (0/1).
- 'STOPBIT': The data is the (integer) value of the stop bit (0 or 1).
- 'INVALID STARTBIT': The data is the (integer) value of the start bit (0/1).
- 'INVALID STOPBIT': The data is the (integer) value of the stop bit (0/1).
- 'PARITY ERROR': The data is a tuple with two entries. The first one is
the expected parity value, the second is the actual parity value.
- 'BREAK': The data is always 0.
- 'FRAME': The data is always a tuple containing two items: The (integer)
value of the UART data, and a boolean which reflects the validity of the
UART frame.
'''
# Given a parity type to check (odd, even, zero, one), the value of the
# parity bit, the value of the data, and the length of the data (5-9 bits,
# usually 8 bits) return True if the parity is correct, False otherwise.
# 'none' is _not_ allowed as value for 'parity_type'.
def parity_ok(parity_type, parity_bit, data, num_data_bits):
# Handle easy cases first (parity bit is always 1 or 0).
if parity_type == 'zero':
return parity_bit == 0
elif parity_type == 'one':
return parity_bit == 1
# Count number of 1 (high) bits in the data (and the parity bit itself!).
ones = bin(data).count('1') + parity_bit
# Check for odd/even parity.
if parity_type == 'odd':
return (ones % 2) == 1
elif parity_type == 'even':
return (ones % 2) == 0
class SamplerateError(Exception):
pass
class ChannelError(Exception):
pass
class Decoder(srd.Decoder):
api_version = 3
id = '1:uart'
name = '1:UART'
longname = 'Universal Asynchronous Receiver/Transmitter'
desc = 'Asynchronous, serial bus.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['uart']
tags = ['Embedded/industrial']
channels = (
{'id': 'rxtx', 'type': 209, 'name': 'RX/TX', 'desc': 'UART transceive line'},
)
options = (
{'id': 'baudrate', 'desc': 'Baud rate', 'default': 115200},
{'id': 'num_data_bits', 'desc': 'Data bits', 'default': 8,
'values': tuple(range(4,129,1))},
{'id': 'parity_type', 'desc': 'Parity type', 'default': 'none',
'values': ('none', 'odd', 'even', 'zero', 'one')},
{'id': 'parity_check', 'desc': 'Check parity?', 'default': 'yes',
'values': ('yes', 'no')},
{'id': 'num_stop_bits', 'desc': 'Stop bits', 'default': 1.0,
'values': (0.0, 0.5, 1.0, 1.5, 2.0, 2.5)},
{'id': 'bit_order', 'desc': 'Bit order', 'default': 'lsb-first',
'values': ('lsb-first', 'msb-first')},
{'id': 'format', 'desc': 'Data format', 'default': 'hex',
'values': ('ascii', 'dec', 'hex', 'oct', 'bin')},
{'id': 'invert', 'desc': 'Invert Signal?', 'default': 'no',
'values': ('yes', 'no')},
{'id': 'anno_startstop', 'desc': 'Display Start/Stop?', 'default': 'yes',
'values': ('yes', 'no')},
)
annotations = (
('108', 'data', 'data'),
('7', 'start', 'start bits'),
('6', 'parity-ok', 'parity OK bits'),
('0', 'parity-err', 'parity error bits'),
('1', 'stop', 'stop bits'),
('1000', 'warnings', 'warnings'),
('209', 'data-bits', 'data bits'),
('10', 'break', 'break'),
)
annotation_rows = (
('data', 'RX/TX', (0, 1, 2, 3, 4)),
('data-bits', 'Bits', (6,)),
('warnings', 'Warnings', (5,)),
('break', 'break', (7,)),
)
binary = (
('rxtx', 'RX/TX dump'),
)
idle_state = 'WAIT FOR START BIT'
def putx(self, data):
s, halfbit = self.startsample, self.bit_width / 2.0
if self.options['anno_startstop'] == 'yes' :
self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_ann, data)
else :
self.put(self.frame_start, self.samplenum + ceil(halfbit * (1+self.options['num_stop_bits'])), self.out_ann, data)
def putpx(self, data):
s, halfbit = self.startsample, self.bit_width / 2.0
self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_python, data)
def putg(self, data):
s, halfbit = self.samplenum, self.bit_width / 2.0
self.put(s - floor(halfbit), s + ceil(halfbit), self.out_ann, data)
def putp(self, data):
s, halfbit = self.samplenum, self.bit_width / 2.0
self.put(s - floor(halfbit), s + ceil(halfbit), self.out_python, data)
def putgse(self, ss, es, data):
self.put(ss, es, self.out_ann, data)
def putpse(self, ss, es, data):
self.put(ss, es, self.out_python, data)
def putbin(self, data):
s, halfbit = self.startsample, self.bit_width / 2.0
self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_binary, data)
def __init__(self):
self.reset()
def reset(self):
self.samplerate = None
self.samplenum = 0
self.frame_start = -1
self.frame_valid = None
self.startbit = -1
self.cur_data_bit = 0
self.datavalue = 0
self.paritybit = -1
self.stopbit1 = -1
self.startsample = -1
self.state = 'WAIT FOR START BIT'
self.databits = []
self.break_start = None
def start(self):
self.out_python = self.register(srd.OUTPUT_PYTHON)
self.out_binary = self.register(srd.OUTPUT_BINARY)
self.out_ann = self.register(srd.OUTPUT_ANN)
self.bw = (self.options['num_data_bits'] + 7) // 8
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
# The width of one UART bit in number of samples.
self.bit_width = float(self.samplerate) / float(self.options['baudrate'])
def get_sample_point(self, bitnum):
# Determine absolute sample number of a bit slot's sample point.
# bitpos is the samplenumber which is in the middle of the
# specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit
# (if used) or the first stop bit, and so on).
# The samples within bit are 0, 1, ..., (bit_width - 1), therefore
# index of the middle sample within bit window is (bit_width - 1) / 2.
bitpos = self.frame_start + (self.bit_width - 1) / 2.0
bitpos += bitnum * self.bit_width
return bitpos
def wait_for_start_bit(self, signal):
# Save the sample number where the start bit begins.
self.frame_start = self.samplenum
self.frame_valid = True
self.state = 'GET START BIT'
def get_start_bit(self, signal):
self.startbit = signal
# The startbit must be 0. If not, we report an error and wait
# for the next start bit (assuming this one was spurious).
if self.startbit != 0:
self.putp(['INVALID STARTBIT', 0, self.startbit])
self.putg([5, ['Frame error', 'Frame err', 'FE']])
self.frame_valid = False
es = self.samplenum + ceil(self.bit_width / 2.0)
self.putpse(self.frame_start, es, ['FRAME', 0,
(self.datavalue, self.frame_valid)])
self.state = 'WAIT FOR START BIT'
return
self.cur_data_bit = 0
self.datavalue = 0
self.startsample = -1
self.putp(['STARTBIT', 0, self.startbit])
if self.options['anno_startstop'] == 'yes':
self.putg([1, ['Start bit', 'Start', 'S']])
self.state = 'GET DATA BITS'
def get_data_bits(self, signal):
# Save the sample number of the middle of the first data bit.
if self.startsample == -1:
self.startsample = self.samplenum
self.putg([6, ['%d' % signal]])
# Store individual data bits and their start/end samplenumbers.
s, halfbit = self.samplenum, int(self.bit_width / 2)
self.databits.append([signal, s - halfbit, s + halfbit])
# Return here, unless we already received all data bits.
self.cur_data_bit += 1
if self.cur_data_bit < self.options['num_data_bits']:
return
# Convert accumulated data bits to a data value.
bits = [b[0] for b in self.databits]
if self.options['bit_order'] == 'msb-first':
bits.reverse()
self.datavalue = bitpack(bits)
self.putpx(['DATA', 0, (self.datavalue, self.databits)])
b = self.datavalue
formatted = self.format_value(b)
if formatted is not None:
self.putx([0, [formatted]])
bdata = b.to_bytes(self.bw, byteorder='big')
self.putbin([0, bdata])
self.putbin([1, bdata])
self.databits = []
# Advance to either reception of the parity bit, or reception of
# the STOP bits if parity is not applicable.
self.state = 'GET PARITY BIT'
if self.options['parity_type'] == 'none':
self.state = 'GET STOP BITS'
def format_value(self, v):
# Format value 'v' according to configured options.
# Reflects the user selected kind of representation, as well as
# the number of data bits in the UART frames.
fmt, bits = self.options['format'], self.options['num_data_bits']
# Assume "is printable" for values from 32 to including 126,
# below 32 is "control" and thus not printable, above 127 is
# "not ASCII" in its strict sense, 127 (DEL) is not printable,
# fall back to hex representation for non-printables.
if fmt == 'ascii':
if v in range(32, 126 + 1):
return chr(v)
hexfmt = "[{:02X}]" if bits <= 8 else "[{:03X}]"
return hexfmt.format(v)
# Mere number to text conversion without prefix and padding
# for the "decimal" output format.
if fmt == 'dec':
return "{:d}".format(v)
# Padding with leading zeroes for hex/oct/bin formats, but
# without a prefix for density -- since the format is user
# specified, there is no ambiguity.
if fmt == 'hex':
digits = (bits + 4 - 1) // 4
fmtchar = "X"
elif fmt == 'oct':
digits = (bits + 3 - 1) // 3
fmtchar = "o"
elif fmt == 'bin':
digits = bits
fmtchar = "b"
else:
fmtchar = None
if fmtchar is not None:
fmt = "{{:0{:d}{:s}}}".format(digits, fmtchar)
return fmt.format(v)
return None
def get_parity_bit(self, signal):
self.paritybit = signal
if parity_ok(self.options['parity_type'], self.paritybit,
self.datavalue, self.options['num_data_bits']):
self.putp(['PARITYBIT', 0, self.paritybit])
self.putg([2, ['Parity bit', 'Parity', 'P']])
else:
# TODO: Return expected/actual parity values.
self.putp(['PARITY ERROR', 0, (0, 1)]) # FIXME: Dummy tuple...
self.putg([3, ['Parity error', 'Parity err', 'PE']])
self.frame_valid = False
self.state = 'GET STOP BITS'
# TODO: Currently only supports 1 stop bit.
def get_stop_bits(self, signal):
self.stopbit1 = signal
# Stop bits must be 1. If not, we report an error.
if self.stopbit1 != 1:
self.putp(['INVALID STOPBIT', 0, self.stopbit1])
self.putg([5, ['Frame error', 'Frame err', 'FE']])
self.frame_valid = False
self.putp(['STOPBIT', 0, self.stopbit1])
if self.options['anno_startstop'] == 'yes':
self.putg([2, ['Stop bit', 'Stop', 'T']])
# Pass the complete UART frame to upper layers.
es = self.samplenum + ceil(self.bit_width / 2.0)
self.putpse(self.frame_start, es, ['FRAME', 0,
(self.datavalue, self.frame_valid)])
self.state = 'WAIT FOR START BIT'
def handle_break(self):
self.putpse(self.frame_start, self.samplenum,
['BREAK', 0, 0])
self.putgse(self.frame_start, self.samplenum,
[7, ['Break condition', 'Break', 'Brk', 'B']])
self.state = 'WAIT FOR START BIT'
def get_wait_cond(self, inv):
# Return condititions that are suitable for Decoder.wait(). Those
# conditions either match the falling edge of the START bit, or
# the sample point of the next bit time.
state = self.state
if state == 'WAIT FOR START BIT':
return {0: 'r' if inv else 'f'}
if state == 'GET START BIT':
bitnum = 0
elif state == 'GET DATA BITS':
bitnum = 1 + self.cur_data_bit
elif state == 'GET PARITY BIT':
bitnum = 1 + self.options['num_data_bits']
elif state == 'GET STOP BITS':
bitnum = 1 + self.options['num_data_bits']
bitnum += 0 if self.options['parity_type'] == 'none' else 1
want_num = ceil(self.get_sample_point(bitnum))
return {'skip': want_num - self.samplenum}
def inspect_sample(self, signal, inv):
# Inspect a sample returned by .wait() for the specified UART line.
if inv:
signal = not signal
state = self.state
if state == 'WAIT FOR START BIT':
self.wait_for_start_bit(signal)
elif state == 'GET START BIT':
self.get_start_bit(signal)
elif state == 'GET DATA BITS':
self.get_data_bits(signal)
elif state == 'GET PARITY BIT':
self.get_parity_bit(signal)
elif state == 'GET STOP BITS':
self.get_stop_bits(signal)
def inspect_edge(self, signal, inv):
# Inspect edges, independently from traffic, to detect break conditions.
if inv:
signal = not signal
if not signal:
# Signal went low. Start another interval.
self.break_start = self.samplenum
return
# Signal went high. Was there an extended period with low signal?
if self.break_start is None:
return
diff = self.samplenum - self.break_start
if diff >= self.break_min_sample_count:
self.handle_break()
self.break_start = None
def decode(self):
if not self.samplerate:
raise SamplerateError('Cannot decode without samplerate.')
inv = self.options['invert'] == 'yes'
cond_data_idx = None
# Determine the number of samples for a complete frame's time span.
# A period of low signal (at least) that long is a break condition.
frame_samples = 1 # START
frame_samples += self.options['num_data_bits']
frame_samples += 0 if self.options['parity_type'] == 'none' else 1
frame_samples += self.options['num_stop_bits']
frame_samples *= self.bit_width
self.break_min_sample_count = ceil(frame_samples)
cond_edge_idx = None
while True:
conds = []
cond_data_idx = len(conds)
conds.append(self.get_wait_cond(inv))
cond_edge_idx = len(conds)
conds.append({0: 'e'})
(rxtx, ) = self.wait(conds)
if cond_data_idx is not None and (self.matched & (0b1 << cond_data_idx)):
self.inspect_sample(rxtx, inv)
if cond_edge_idx is not None and (self.matched & (0b1 << cond_edge_idx)):
self.inspect_edge(rxtx, inv)