mirror of
https://github.com/DreamSourceLab/DSView.git
synced 2025-01-13 13:32:53 +08:00
175 lines
6.9 KiB
Python
Executable File
175 lines
6.9 KiB
Python
Executable File
##
|
|
## This file is part of the libsigrokdecode project.
|
|
##
|
|
## Copyright (C) 2016 Fabian J. Stumpf <sigrok@fabianstumpf.de>
|
|
##
|
|
## This program is free software; you can redistribute it and/or modify
|
|
## it under the terms of the GNU General Public License as published by
|
|
## the Free Software Foundation; either version 2 of the License, or
|
|
## (at your option) any later version.
|
|
##
|
|
## This program is distributed in the hope that it will be useful,
|
|
## but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
## GNU General Public License for more details.
|
|
##
|
|
## You should have received a copy of the GNU General Public License
|
|
## along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
##
|
|
|
|
import sigrokdecode as srd
|
|
|
|
class Decoder(srd.Decoder):
|
|
api_version = 3
|
|
id = 'dmx512'
|
|
name = 'DMX512'
|
|
longname = 'Digital MultipleX 512'
|
|
desc = 'Digital MultipleX 512 (DMX512) lighting protocol.'
|
|
license = 'gplv2+'
|
|
inputs = ['logic']
|
|
outputs = []
|
|
tags = ['Embedded/industrial', 'Lighting']
|
|
channels = (
|
|
{'id': 'dmx', 'name': 'DMX data', 'desc': 'Any DMX data line'},
|
|
)
|
|
options = (
|
|
{'id': 'invert', 'desc': 'Invert Signal?', 'default': 'no',
|
|
'values': ('yes', 'no')},
|
|
)
|
|
annotations = (
|
|
('bit', 'Bit'),
|
|
('break', 'Break'),
|
|
('mab', 'Mark after break'),
|
|
('startbit', 'Start bit'),
|
|
('stopbits', 'Stop bit'),
|
|
('startcode', 'Start code'),
|
|
('channel', 'Channel'),
|
|
('interframe', 'Interframe'),
|
|
('interpacket', 'Interpacket'),
|
|
('data', 'Data'),
|
|
('error', 'Error'),
|
|
)
|
|
annotation_rows = (
|
|
('name', 'Logical', (1, 2, 5, 6, 7, 8)),
|
|
('data', 'Data', (9,)),
|
|
('bits', 'Bits', (0, 3, 4)),
|
|
('errors', 'Errors', (10,)),
|
|
)
|
|
|
|
def __init__(self):
|
|
self.reset()
|
|
|
|
def reset(self):
|
|
self.samplerate = None
|
|
self.sample_usec = None
|
|
self.run_start = -1
|
|
self.state = 'FIND BREAK'
|
|
|
|
def start(self):
|
|
self.out_ann = self.register(srd.OUTPUT_ANN)
|
|
|
|
def metadata(self, key, value):
|
|
if key == srd.SRD_CONF_SAMPLERATE:
|
|
self.samplerate = value
|
|
self.sample_usec = 1 / value * 1000000
|
|
self.skip_per_bit = int(4 / self.sample_usec)
|
|
|
|
def putr(self, data):
|
|
self.put(self.run_start, self.samplenum, self.out_ann, data)
|
|
|
|
def decode(self):
|
|
if not self.samplerate:
|
|
raise SamplerateError('Cannot decode without samplerate.')
|
|
|
|
inv = self.options['invert'] == 'yes'
|
|
|
|
while True:
|
|
# Seek for an interval with no state change with a length between
|
|
# 88 and 1000000 us (BREAK).
|
|
if self.state == 'FIND BREAK':
|
|
(dmx,) = self.wait({0: 'h' if inv else 'l'})
|
|
self.run_start = self.samplenum
|
|
(dmx,) = self.wait({0: 'f' if inv else 'r'})
|
|
runlen = (self.samplenum - self.run_start) * self.sample_usec
|
|
if runlen > 88 and runlen < 1000000:
|
|
self.putr([1, ['Break']])
|
|
self.state = 'MARK MAB'
|
|
self.channel = 0
|
|
elif runlen >= 1000000:
|
|
# Error condition.
|
|
self.putr([10, ['Invalid break length']])
|
|
# Directly following the BREAK is the MARK AFTER BREAK.
|
|
elif self.state == 'MARK MAB':
|
|
self.run_start = self.samplenum
|
|
(dmx,) = self.wait({0: 'r' if inv else 'f'})
|
|
self.putr([2, ['MAB']])
|
|
self.state = 'READ BYTE'
|
|
self.channel = 0
|
|
self.bit = 0
|
|
self.aggreg = dmx
|
|
self.run_start = self.samplenum
|
|
# Mark and read a single transmitted byte
|
|
# (start bit, 8 data bits, 2 stop bits).
|
|
elif self.state == 'READ BYTE':
|
|
bit_start = self.samplenum
|
|
bit_end = self.run_start + (self.bit + 1) * self.skip_per_bit
|
|
(dmx,) = self.wait({'skip': round(self.skip_per_bit/2)})
|
|
bit_value = not dmx if inv else dmx
|
|
|
|
if self.bit == 0:
|
|
self.byte = 0
|
|
self.put(bit_start, bit_end,
|
|
self.out_ann, [3, ['Start bit']])
|
|
if bit_value != 0:
|
|
# (Possibly) invalid start bit, mark but don't fail.
|
|
self.put(bit_start, bit_end,
|
|
self.out_ann, [10, ['Invalid start bit']])
|
|
elif self.bit >= 9:
|
|
self.put(bit_start, bit_end,
|
|
self.out_ann, [4, ['Stop bit']])
|
|
if bit_value != 1:
|
|
# Invalid stop bit, mark.
|
|
self.put(bit_start, bit_end,
|
|
self.out_ann, [10, ['Invalid stop bit']])
|
|
if self.bit == 10:
|
|
# On invalid 2nd stop bit, search for new break.
|
|
self.state = 'FIND BREAK'
|
|
else:
|
|
# Label and process one bit.
|
|
self.put(bit_start, bit_end,
|
|
self.out_ann, [0, [str(bit_value)]])
|
|
self.byte |= bit_value << (self.bit - 1)
|
|
|
|
# Label a complete byte.
|
|
if self.state == 'READ BYTE' and self.bit == 10:
|
|
if self.channel == 0:
|
|
d = [5, ['Start code']]
|
|
else:
|
|
d = [6, ['Channel ' + str(self.channel)]]
|
|
self.put(self.run_start, bit_end, self.out_ann, d)
|
|
self.put(self.run_start + self.skip_per_bit,
|
|
bit_end - 2 * self.skip_per_bit,
|
|
self.out_ann, [9, [str(self.byte) + ' / ' + \
|
|
str(hex(self.byte))]])
|
|
# Continue by scanning the IFT.
|
|
self.channel += 1
|
|
self.run_start = self.samplenum
|
|
self.state = 'MARK IFT'
|
|
|
|
self.bit += 1
|
|
(dmx,) = self.wait({'skip': round(bit_end - self.samplenum)})
|
|
# Mark the INTERFRAME-TIME between bytes / INTERPACKET-TIME between packets.
|
|
elif self.state == 'MARK IFT':
|
|
self.run_start = self.samplenum
|
|
(dmx,) = self.wait({0: 'l' if inv else 'h'})
|
|
(dmx,) = self.wait({0: 'r' if inv else 'f'})
|
|
if self.channel > 512:
|
|
self.putr([8, ['Interpacket']])
|
|
self.state = 'FIND BREAK'
|
|
self.run_start = self.samplenum
|
|
else:
|
|
self.putr([7, ['Interframe']])
|
|
self.state = 'READ BYTE'
|
|
self.bit = 0
|
|
self.run_start = self.samplenum
|