2022-07-26 15:45:46 +08:00

2483 lines
86 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2017 DreamSourceLab <dreamsourcelab@dreamsourcelab.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "../../libsigrok-internal.h"
#include "command.h"
#include "dsl.h"
#include "../../log.h"
#include <math.h>
#include <assert.h>
#include <sys/stat.h>
#undef LOG_PREFIX
#define LOG_PREFIX "DSL Hardware: "
extern struct ds_trigger *trigger;
static const int32_t probeOptions[] = {
SR_CONF_PROBE_COUPLING,
SR_CONF_PROBE_VDIV,
SR_CONF_PROBE_MAP_DEFAULT,
SR_CONF_PROBE_MAP_UNIT,
SR_CONF_PROBE_MAP_MIN,
SR_CONF_PROBE_MAP_MAX,
};
static const int32_t probeSessions[] = {
SR_CONF_PROBE_COUPLING,
SR_CONF_PROBE_VDIV,
SR_CONF_PROBE_MAP_DEFAULT,
SR_CONF_PROBE_MAP_UNIT,
SR_CONF_PROBE_MAP_MIN,
SR_CONF_PROBE_MAP_MAX,
};
static const uint8_t probeCoupling[] = {
SR_DC_COUPLING,
SR_AC_COUPLING,
};
const char *probeMapUnits[] = {
"V",
"A",
"",
"",
"g",
"m",
"m/s",
};
static const char *probe_names[] = {
"0", "1", "2", "3", "4", "5", "6", "7",
"8", "9", "10", "11", "12", "13", "14", "15",
"16", "17", "18", "19", "20", "21", "22", "23",
"24", "25", "26", "27", "28", "29", "30", "31",
NULL,
};
static const gboolean default_ms_en[] = {
FALSE, /* DSO_MS_BEGIN */
TRUE, /* DSO_MS_FREQ */
FALSE, /* DSO_MS_PERD */
TRUE, /* DSO_MS_VMAX */
TRUE, /* DSO_MS_VMIN */
FALSE, /* DSO_MS_VRMS */
FALSE, /* DSO_MS_VMEA */
FALSE, /* DSO_MS_VP2P */
};
SR_PRIV void dsl_probe_init(struct sr_dev_inst *sdi)
{
unsigned int i, j;
GSList *l;
struct DSL_context *devc = sdi->priv;
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
probe->bits = channel_modes[devc->ch_mode].unit_bits;
probe->vdiv = 1000;
probe->vfactor = 1;
probe->cali_fgain0 = 1;
probe->cali_fgain1 = 1;
probe->cali_fgain2 = 1;
probe->cali_fgain3 = 1;
probe->cali_comb_fgain0 = 1;
probe->cali_comb_fgain1 = 1;
probe->cali_comb_fgain2 = 1;
probe->cali_comb_fgain3 = 1;
probe->offset = (1 << (probe->bits - 1));
probe->coupling = SR_DC_COUPLING;
probe->trig_value = (1 << (probe->bits - 1));
probe->vpos_trans = devc->profile->dev_caps.default_pwmtrans;
probe->comb_comp = devc->profile->dev_caps.default_comb_comp;
probe->digi_fgain = 0;
probe->map_default = TRUE;
probe->map_unit = probeMapUnits[0];
probe->map_min = -(probe->vdiv * probe->vfactor * DS_CONF_DSO_VDIVS / 2000.0);
probe->map_max = probe->vdiv * probe->vfactor * DS_CONF_DSO_VDIVS / 2000.0;
if (devc->profile->dev_caps.vdivs && probe->vga_ptr == NULL) {
for (i = 0; devc->profile->dev_caps.vdivs[i]; i++);
probe->vga_ptr = g_try_malloc((i+1)*sizeof(struct DSL_vga));
for (i = 0; devc->profile->dev_caps.vdivs[i]; i++) {
(probe->vga_ptr + i)->id = devc->profile->dev_caps.vga_id;
(probe->vga_ptr + i)->key = devc->profile->dev_caps.vdivs[i];
for (j = 0; j < ARRAY_SIZE(vga_defaults); j++) {
if (vga_defaults[j].id == devc->profile->dev_caps.vga_id &&
vga_defaults[j].key == devc->profile->dev_caps.vdivs[i]) {
(probe->vga_ptr+i)->vgain = vga_defaults[j].vgain;
(probe->vga_ptr+i)->preoff = vga_defaults[j].preoff;
(probe->vga_ptr + i)->preoff_comp = 0;
}
}
}
// end flag must have
(probe->vga_ptr + i)->id = 0;
(probe->vga_ptr + i)->key = 0;
(probe->vga_ptr+i)->vgain = 0;
(probe->vga_ptr+i)->preoff = 0;
(probe->vga_ptr + i)->preoff_comp = 0;
}
}
}
SR_PRIV int dsl_setup_probes(struct sr_dev_inst *sdi, int num_probes)
{
uint16_t j;
struct sr_channel *probe;
struct DSL_context *devc = sdi->priv;
for (j = 0; j < num_probes; j++) {
if (!(probe = sr_channel_new(j, channel_modes[devc->ch_mode].type,
TRUE, probe_names[j])))
return SR_ERR;
sdi->channels = g_slist_append(sdi->channels, probe);
}
dsl_probe_init(sdi);
return SR_OK;
}
SR_PRIV int dsl_adjust_probes(struct sr_dev_inst *sdi, int num_probes)
{
uint16_t j;
struct sr_channel *probe;
struct DSL_context *devc = sdi->priv;
GSList *l;
assert(num_probes > 0);
j = g_slist_length(sdi->channels);
while(j < num_probes) {
if (!(probe = sr_channel_new(j, channel_modes[devc->ch_mode].type,
TRUE, probe_names[j])))
return SR_ERR;
sdi->channels = g_slist_append(sdi->channels, probe);
j++;
}
while(j > num_probes) {
sdi->channels = g_slist_delete_link(sdi->channels, g_slist_last(sdi->channels));
j--;
}
for(l = sdi->channels; l; l = l->next) {
probe = (struct sr_channel *)l->data;
probe->enabled = TRUE;
probe->type = channel_modes[devc->ch_mode].type;
}
return SR_OK;
}
SR_PRIV const GSList *dsl_mode_list(const struct sr_dev_inst *sdi)
{
struct DSL_context *devc;
GSList *l = NULL;
unsigned int i;
devc = sdi->priv;
for (i = 0; i < ARRAY_SIZE(sr_mode_list); i++) {
if (devc->profile->dev_caps.mode_caps & (1 << i))
l = g_slist_append(l, &sr_mode_list[i]);
}
return l;
}
SR_PRIV void dsl_adjust_samplerate(struct DSL_context *devc)
{
int i;
for (i = 0; devc->profile->dev_caps.samplerates[i]; i++) {
if (devc->profile->dev_caps.samplerates[i] >
channel_modes[devc->ch_mode].max_samplerate)
break;
}
devc->samplerates_max_index = i-1;
for (i = 0; devc->profile->dev_caps.samplerates[i]; i++) {
if (devc->profile->dev_caps.samplerates[i] >=
channel_modes[devc->ch_mode].min_samplerate)
break;
}
devc->samplerates_min_index = i;
assert(devc->samplerates_max_index >= devc->samplerates_min_index);
if (devc->cur_samplerate > devc->profile->dev_caps.samplerates[devc->samplerates_max_index])
devc->cur_samplerate = devc->profile->dev_caps.samplerates[devc->samplerates_max_index];
if (devc->cur_samplerate < devc->profile->dev_caps.samplerates[devc->samplerates_min_index])
devc->cur_samplerate = devc->profile->dev_caps.samplerates[devc->samplerates_min_index];
}
SR_PRIV int dsl_en_ch_num(const struct sr_dev_inst *sdi)
{
GSList *l;
int channel_en_cnt = 0;
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
channel_en_cnt += probe->enabled;
}
channel_en_cnt += (channel_en_cnt == 0);
return channel_en_cnt;
}
/**
* Check the USB configuration to determine if this is an dsl device.
*
* @return TRUE if the device's configuration profile match dsl hardware
* configuration, FALSE otherwise.
*/
SR_PRIV gboolean dsl_check_conf_profile(libusb_device *dev)
{
struct libusb_device_descriptor des;
struct libusb_device_handle *hdl;
gboolean ret;
unsigned char strdesc[64];
hdl = NULL;
ret = FALSE;
while (!ret) {
/* Assume the FW has not been loaded, unless proven wrong. */
if (libusb_get_device_descriptor(dev, &des) != 0)
break;
if (libusb_open(dev, &hdl) != 0)
break;
if (libusb_get_string_descriptor_ascii(hdl,
des.iManufacturer, strdesc, sizeof(strdesc)) < 0)
break;
if (strncmp((const char *)strdesc, "DreamSourceLab", 14))
break;
if (libusb_get_string_descriptor_ascii(hdl,
des.iProduct, strdesc, sizeof(strdesc)) < 0)
break;
if (strncmp((const char *)strdesc, "USB-based DSL Instrument v2", 27))
break;
/* If we made it here, it must be an dsl device. */
ret = TRUE;
}
if (hdl)
libusb_close(hdl);
return ret;
}
static int hw_dev_open(struct sr_dev_driver *di, struct sr_dev_inst *sdi)
{
libusb_device **devlist;
struct sr_usb_dev_inst *usb;
struct libusb_device_descriptor des;
struct DSL_context *devc;
struct drv_context *drvc;
struct version_info vi;
int ret, skip, i, device_count;
struct ctl_rd_cmd rd_cmd;
uint8_t rd_cmd_data[2];
drvc = di->priv;
devc = sdi->priv;
usb = sdi->conn;
if (sdi->status == SR_ST_ACTIVE) {
/* Device is already in use. */
return SR_ERR;
}
skip = 0;
device_count = libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist);
if (device_count < 0) {
sr_err("Failed to get device list: %s.",
libusb_error_name(device_count));
return SR_ERR;
}
for (i = 0; i < device_count; i++) {
if ((ret = libusb_get_device_descriptor(devlist[i], &des))) {
sr_err("Failed to get device descriptor: %s.",
libusb_error_name(ret));
continue;
}
if (des.idVendor != devc->profile->vid
|| des.idProduct != devc->profile->pid)
continue;
if (sdi->status == SR_ST_INITIALIZING) {
if (skip != sdi->index) {
/* Skip devices of this type that aren't the one we want. */
skip += 1;
continue;
}
} else if (sdi->status == SR_ST_INACTIVE) {
/*
* This device is fully enumerated, so we need to find
* this device by vendor, product, bus and address.
*/
if (libusb_get_bus_number(devlist[i]) != usb->bus
|| libusb_get_device_address(devlist[i]) != usb->address)
/* This is not the one. */
continue;
}
if (!(ret = libusb_open(devlist[i], &usb->devhdl))) {
if (usb->address == 0xff)
/*
* First time we touch this device after FW
* upload, so we don't know the address yet.
*/
usb->address = libusb_get_device_address(devlist[i]);
} else {
sr_err("Failed to open device: %s.",
libusb_error_name(ret));
break;
}
rd_cmd.header.dest = DSL_CTL_FW_VERSION;
rd_cmd.header.size = 2;
rd_cmd.data = rd_cmd_data;
if ((ret = command_ctl_rd(usb->devhdl, rd_cmd)) != SR_OK) {
sr_err("Failed to get firmware version.");
break;
}
vi.major = rd_cmd_data[0];
vi.minor = rd_cmd_data[1];
/*
* Different versions may have incompatible issue,
* Mark for up level process
*/
if (vi.major != DSL_REQUIRED_VERSION_MAJOR) {
sr_err("Expected firmware version %d.%d, "
"got %d.%d.", DSL_REQUIRED_VERSION_MAJOR, DSL_REQUIRED_VERSION_MINOR,
vi.major, vi.minor);
sdi->status = SR_ST_INCOMPATIBLE;
} else {
sdi->status = SR_ST_ACTIVE;
}
sr_info("Opened device %d on %d.%d, "
"interface %d, firmware %d.%d.",
sdi->index, usb->bus, usb->address,
USB_INTERFACE, vi.major, vi.minor);
break;
}
libusb_free_device_list(devlist, 1);
if ((sdi->status != SR_ST_ACTIVE) &&
(sdi->status != SR_ST_INCOMPATIBLE))
return SR_ERR;
return SR_OK;
}
SR_PRIV int dsl_configure_probes(const struct sr_dev_inst *sdi)
{
struct DSL_context *devc;
struct sr_channel *probe;
GSList *l;
int probe_bit, stage, i;
char *tc;
devc = sdi->priv;
for (i = 0; i < NUM_TRIGGER_STAGES; i++) {
devc->trigger_mask[i] = 0;
devc->trigger_value[i] = 0;
}
stage = -1;
for (l = sdi->channels; l; l = l->next) {
probe = (struct sr_channel *)l->data;
if (probe->enabled == FALSE)
continue;
probe_bit = 1 << (probe->index);
if (!(probe->trigger))
continue;
stage = 0;
for (tc = probe->trigger; *tc; tc++) {
devc->trigger_mask[stage] |= probe_bit;
if (*tc == '1')
devc->trigger_value[stage] |= probe_bit;
stage++;
if (stage > NUM_TRIGGER_STAGES)
return SR_ERR;
}
}
return SR_OK;
}
SR_PRIV uint64_t dsl_channel_depth(const struct sr_dev_inst *sdi)
{
struct DSL_context *devc = sdi->priv;
int ch_num = dsl_en_ch_num(sdi);
return (devc->profile->dev_caps.hw_depth / (ch_num ? ch_num : 1)) & ~SAMPLES_ALIGN;
}
SR_PRIV int dsl_hdl_version(const struct sr_dev_inst *sdi, uint8_t *value)
{
struct sr_usb_dev_inst *usb;
struct libusb_device_handle *hdl;
struct ctl_rd_cmd rd_cmd;
int ret;
uint8_t rdata[HDL_VERSION_ADDR+1];
usb = sdi->conn;
hdl = usb->devhdl;
rd_cmd.header.dest = DSL_CTL_I2C_STATUS;
rd_cmd.header.offset = 0;
rd_cmd.header.size = HDL_VERSION_ADDR+1;
rd_cmd.data = rdata;
if ((ret = command_ctl_rd(hdl, rd_cmd)) != SR_OK) {
sr_err("Sent DSL_CTL_I2C_STATUS command failed.");
return SR_ERR;
}
*value = rdata[HDL_VERSION_ADDR];
return SR_OK;
}
SR_PRIV int dsl_wr_reg(const struct sr_dev_inst *sdi, uint8_t addr, uint8_t value)
{
struct sr_usb_dev_inst *usb;
struct libusb_device_handle *hdl;
struct ctl_wr_cmd wr_cmd;
int ret;
usb = sdi->conn;
hdl = usb->devhdl;
wr_cmd.header.dest = DSL_CTL_I2C_REG;
wr_cmd.header.offset = addr;
wr_cmd.header.size = 1;
wr_cmd.data[0] = value;
if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK) {
sr_err("Sent DSL_CTL_I2C_REG command failed.");
return SR_ERR;
}
return SR_OK;
}
SR_PRIV int dsl_rd_reg(const struct sr_dev_inst *sdi, uint8_t addr, uint8_t *value)
{
struct sr_usb_dev_inst *usb;
struct ctl_rd_cmd rd_cmd;
int ret;
usb = sdi->conn;
rd_cmd.header.dest = DSL_CTL_I2C_STATUS;
rd_cmd.header.offset = addr;
rd_cmd.header.size = 1;
rd_cmd.data = value;
if ((ret = command_ctl_rd(usb->devhdl, rd_cmd)) != SR_OK) {
sr_err("Sent DSL_CTL_I2C_STATUS read command failed.");
return SR_ERR;
}
return SR_OK;
}
SR_PRIV int dsl_wr_ext(const struct sr_dev_inst *sdi, uint8_t addr, uint8_t value)
{
struct sr_usb_dev_inst *usb;
struct libusb_device_handle *hdl;
struct ctl_wr_cmd wr_cmd;
struct DSL_context *devc = sdi->priv;
uint8_t rdata;
int ret;
if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_POGOPIN) {
usb = sdi->conn;
hdl = usb->devhdl;
wr_cmd.header.dest = DSL_CTL_I2C_EXT;
wr_cmd.header.offset = addr;
wr_cmd.header.size = 1;
wr_cmd.data[0] = value;
if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK) {
sr_err("Sent DSL_CTL_I2C_EXT command failed.");
return SR_ERR;
}
} else {
// write addr + wr
ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_TXR_OFF, EI2C_AWR);
ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_STA | bmEI2C_WR);
// check done
ret = dsl_rd_reg(sdi, EI2C_ADDR+EI2C_SR_OFF, &rdata);
if (rdata & bmEI2C_RXNACK) {
ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_STO | bmEI2C_WR);
return SR_ERR;
}
// write offset + wr
ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_TXR_OFF, addr);
ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_WR);
// check done
ret = dsl_rd_reg(sdi, EI2C_ADDR+EI2C_SR_OFF, &rdata);
if (rdata & bmEI2C_RXNACK) {
ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_STO | bmEI2C_WR);
return SR_ERR;
}
// write value + wr
ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_TXR_OFF, value);
ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_STO | bmEI2C_WR);
// check done
ret = dsl_rd_reg(sdi, EI2C_ADDR+EI2C_SR_OFF, &rdata);
if (rdata & bmEI2C_RXNACK) {
ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_STO | bmEI2C_WR);
return SR_ERR;
}
}
return ret;
}
SR_PRIV int dsl_rd_ext(const struct sr_dev_inst *sdi, unsigned char *ctx, uint16_t addr, uint8_t len)
{
struct sr_usb_dev_inst *usb;
struct libusb_device_handle *hdl;
struct ctl_rd_cmd rd_cmd;
struct DSL_context *devc = sdi->priv;
uint8_t rdata;
int ret;
if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_POGOPIN) {
usb = sdi->conn;
hdl = usb->devhdl;
rd_cmd.header.dest = DSL_CTL_I2C_EXT;
rd_cmd.header.size = len;
rd_cmd.header.offset = addr;
rd_cmd.data = ctx;
if ((ret = command_ctl_rd(hdl, rd_cmd)) != SR_OK) {
sr_err("Sent DSL_CTL_I2C_EXT read command failed.");
return SR_ERR;
}
} else {
// write addr + wr
ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_TXR_OFF, EI2C_AWR);
ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_STA | bmEI2C_WR);
// check done
ret = dsl_rd_reg(sdi, EI2C_ADDR+EI2C_SR_OFF, &rdata);
if (rdata & bmEI2C_RXNACK) {
ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_STO | bmEI2C_WR);
return SR_ERR;
}
// write offset + wr
ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_TXR_OFF, addr);
ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_WR);
// check done
ret = dsl_rd_reg(sdi, EI2C_ADDR+EI2C_SR_OFF, &rdata);
if (rdata & bmEI2C_RXNACK) {
ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_STO | bmEI2C_WR);
return SR_ERR;
}
// write read addr + wr
ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_TXR_OFF, EI2C_ARD);
ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_STA | bmEI2C_WR);
// check done
ret = dsl_rd_reg(sdi, EI2C_ADDR+EI2C_SR_OFF, &rdata);
if (rdata & bmEI2C_RXNACK) {
ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_STO | bmEI2C_WR);
return SR_ERR;
}
while(--len) {
ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_RD);
ret = dsl_rd_reg(sdi, EI2C_ADDR+EI2C_RXR_OFF, ctx);
ctx++;
}
ret = dsl_wr_reg(sdi, EI2C_ADDR+EI2C_CR_OFF, bmEI2C_STO | bmEI2C_RD | bmEI2C_NACK);
ret = dsl_rd_reg(sdi, EI2C_ADDR+EI2C_RXR_OFF, ctx);
}
return ret;
}
SR_PRIV int dsl_wr_dso(const struct sr_dev_inst *sdi, uint64_t cmd)
{
struct sr_usb_dev_inst *usb;
struct libusb_device_handle *hdl;
struct ctl_wr_cmd wr_cmd;
int ret;
usb = sdi->conn;
hdl = usb->devhdl;
wr_cmd.header.dest = DSL_CTL_I2C_DSO;
wr_cmd.header.offset = 0;
wr_cmd.header.size = 8;
wr_cmd.data[0] = (uint8_t)cmd;
wr_cmd.data[1] = (uint8_t)(cmd >> 8);
wr_cmd.data[2] = (uint8_t)(cmd >> 16);
wr_cmd.data[3] = (uint8_t)(cmd >> 24);
wr_cmd.data[4] = (uint8_t)(cmd >> 32);
wr_cmd.data[5] = (uint8_t)(cmd >> 40);
wr_cmd.data[6] = (uint8_t)(cmd >> 48);
wr_cmd.data[7] = (uint8_t)(cmd >> 56);
if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK) {
sr_err("Sent DSL_CTL_I2C_DSO command failed.");
return SR_ERR;
}
return SR_OK;
}
SR_PRIV int dsl_wr_nvm(const struct sr_dev_inst *sdi, unsigned char *ctx, uint16_t addr, uint8_t len)
{
struct sr_usb_dev_inst *usb;
struct libusb_device_handle *hdl;
struct ctl_wr_cmd wr_cmd;
int ret;
int i;
usb = sdi->conn;
hdl = usb->devhdl;
wr_cmd.header.dest = DSL_CTL_NVM;
wr_cmd.header.offset = addr;
wr_cmd.header.size = len;
for (i = 0; i < len; i++)
wr_cmd.data[i] = *(ctx+i);
if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK) {
sr_err("Sent DSL_CTL_NVM write command failed.");
return SR_ERR;
}
return SR_OK;
}
SR_PRIV int dsl_rd_nvm(const struct sr_dev_inst *sdi, unsigned char *ctx, uint16_t addr, uint8_t len)
{
struct sr_usb_dev_inst *usb;
struct libusb_device_handle *hdl;
struct ctl_rd_cmd rd_cmd;
int ret;
usb = sdi->conn;
hdl = usb->devhdl;
rd_cmd.header.dest = DSL_CTL_NVM;
rd_cmd.header.size = len;
rd_cmd.header.offset = addr;
rd_cmd.data = ctx;
if ((ret = command_ctl_rd(hdl, rd_cmd)) != SR_OK) {
sr_err("Sent DSL_CTL_NVM read command failed.");
return SR_ERR;
}
return SR_OK;
}
SR_PRIV int dsl_config_adc(const struct sr_dev_inst *sdi, const struct DSL_adc_config *config)
{
while(config->dest) {
assert((config->cnt > 0) && (config->cnt <= 4));
if (config->delay >0)
g_usleep(config->delay*1000);
for (int i = 0; i < config->cnt; i++) {
dsl_wr_reg(sdi, config->dest, config->byte[i]);
}
config++;
}
return SR_OK;
}
SR_PRIV double dsl_adc_code2fgain(uint8_t code)
{
double xcode = code & 0x40 ? -(~code & 0x3F) : code & 0x3F;
return (1 + xcode / (1 << 13));
}
SR_PRIV uint8_t dsl_adc_fgain2code(double gain)
{
int xratio = (gain - 1) * (1 << 13);
uint8_t code = xratio > 63 ? 63 :
xratio > 0 ? xratio :
xratio < -63 ? 64 : ~(-xratio) & 0x7F;
return code;
}
SR_PRIV int dsl_config_adc_fgain(const struct sr_dev_inst *sdi, uint8_t branch, double gain0, double gain1)
{
dsl_wr_reg(sdi, ADCC_ADDR, 0x00);
dsl_wr_reg(sdi, ADCC_ADDR, dsl_adc_fgain2code(gain0));
dsl_wr_reg(sdi, ADCC_ADDR, dsl_adc_fgain2code(gain1));
dsl_wr_reg(sdi, ADCC_ADDR, 0x34 + branch);
return SR_OK;
}
SR_PRIV int dsl_config_fpga_fgain(const struct sr_dev_inst *sdi)
{
GSList *l;
int ret = SR_OK;
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
if (probe->index == 0) {
ret = dsl_wr_reg(sdi, ADCC_ADDR+3, (probe->digi_fgain & 0x00FF));
ret = dsl_wr_reg(sdi, ADCC_ADDR+4, (probe->digi_fgain >> 8));
} else if (probe->index == 1) {
ret = dsl_wr_reg(sdi, ADCC_ADDR+5, (probe->digi_fgain & 0x00FF));
ret = dsl_wr_reg(sdi, ADCC_ADDR+6, (probe->digi_fgain >>8));
}
}
return ret;
}
SR_PRIV int dsl_skew_fpga_fgain(const struct sr_dev_inst *sdi, gboolean comb, double skew[])
{
uint8_t fgain_up = 0;
uint8_t fgain_dn = 0;
GSList *l;
gboolean tmp;
int ret;
for (int i = 0; i <= 7; i++) {
tmp = (-skew[i] > 1.6*MAX_ACC_VARIANCE);
fgain_up += (tmp << i);
}
if (comb) {
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
if (probe->index == 0) {
probe->digi_fgain |= (probe->digi_fgain & 0xFF00) + fgain_up;
fgain_up = (probe->digi_fgain & 0x00FF);
break;
}
}
ret = dsl_wr_reg(sdi, ADCC_ADDR+3, fgain_up);
} else {
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
if (probe->index == 0) {
probe->digi_fgain |= (fgain_up << 8) + (probe->digi_fgain & 0x00FF);
fgain_up = (probe->digi_fgain>>8);
break;
}
}
ret = dsl_wr_reg(sdi, ADCC_ADDR+4, fgain_up);
}
for (int i = 0; i <= 7; i++) {
tmp = (skew[i] > 1.6*MAX_ACC_VARIANCE);
fgain_dn += (tmp << i);
}
if (comb) {
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
if (probe->index == 1) {
probe->digi_fgain |= (probe->digi_fgain & 0xFF00) + fgain_dn;
fgain_dn = (probe->digi_fgain & 0x00FF);
break;
}
}
ret = dsl_wr_reg(sdi, ADCC_ADDR+5, fgain_dn);
} else {
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
if (probe->index == 1) {
probe->digi_fgain |= (fgain_dn << 8) + (probe->digi_fgain & 0x00FF);
fgain_dn = (probe->digi_fgain>>8);
break;
}
}
ret = dsl_wr_reg(sdi, ADCC_ADDR+6, fgain_dn);
}
return ret;
}
SR_PRIV int dsl_probe_cali_fgain(struct DSL_context *devc, struct sr_channel *probe, double mean, gboolean comb, gboolean reset)
{
const double UPGAIN = 1.0077;
const double DNGAIN = 0.9923;
const double MDGAIN = 1;
const double ignore_ratio = 2.0;
const double ratio = 2.0;
double drift;
if (reset) {
if (comb) {
probe->cali_comb_fgain0 = MDGAIN;
probe->cali_comb_fgain1 = MDGAIN;
probe->cali_comb_fgain2 = MDGAIN;
probe->cali_comb_fgain3 = MDGAIN;
} else {
probe->cali_fgain0 = MDGAIN;
probe->cali_fgain1 = MDGAIN;
probe->cali_fgain2 = MDGAIN;
probe->cali_fgain3 = MDGAIN;
}
} else {
if (comb) {
/*
* not consist with hmcad1511 datasheet
*
* byte order | acc_mean | single channel branch (datasheet)
* 0 ch0_acc_mean 1 (0->cali_comb_fgain0)
* 1 ch1_acc_mean 6 (1->cali_comb_fgain1)
* 2 ch0_acc_mean_p1 2 (0->cali_comb_fgain1)
* 3 ch1_acc_mean_p1 5 (1->cali_comb_fgain0)
* 4 ch0_acc_mean_p2 8 (1->cali_comb_fgain3)
* 5 ch1_acc_mean_p2 3 (0->cali_comb_fgain2)
* 6 ch0_acc_mean_p3 7 (1->cali_comb_fgain2)
* 7 ch1_acc_mean_p3 4 (0->cali_comb_fgain3)
*/
if (probe->index == 0) {
drift = (devc->mstatus.ch0_acc_mean / mean - 1) / ratio;
if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio)
probe->cali_comb_fgain0 /= (1 + drift);
drift = (devc->mstatus.ch0_acc_mean_p1 / mean - 1) / ratio;
if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio)
probe->cali_comb_fgain1 /= (1 + drift);
drift = (devc->mstatus.ch1_acc_mean_p2 / mean - 1) / ratio;
if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio)
probe->cali_comb_fgain2 /= (1 + drift);
drift = (devc->mstatus.ch1_acc_mean_p3 / mean - 1) / ratio;
if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio)
probe->cali_comb_fgain3 /= (1 + drift);
} else {
drift = (devc->mstatus.ch1_acc_mean_p1 / mean - 1) / ratio;
if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio)
probe->cali_comb_fgain0 /= (1 + drift);
drift = (devc->mstatus.ch1_acc_mean / mean - 1) / ratio;
if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio)
probe->cali_comb_fgain1 /= (1 + drift);
drift = (devc->mstatus.ch0_acc_mean_p3 / mean - 1) / ratio;
if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio)
probe->cali_comb_fgain2 /= (1 + drift);
drift = (devc->mstatus.ch0_acc_mean_p2 / mean - 1) / ratio;
if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio)
probe->cali_comb_fgain3 /= (1 + drift);
}
probe->cali_comb_fgain0 = max(min(probe->cali_comb_fgain0, UPGAIN), DNGAIN);
probe->cali_comb_fgain1 = max(min(probe->cali_comb_fgain1, UPGAIN), DNGAIN);
probe->cali_comb_fgain2 = max(min(probe->cali_comb_fgain2, UPGAIN), DNGAIN);
probe->cali_comb_fgain3 = max(min(probe->cali_comb_fgain3, UPGAIN), DNGAIN);
} else {
/*
* byte order | acc_mean | dual channel branch
* 0 ch0_acc_mean 1 (0->cali_fgain0)
* 1 ch0_acc_mean_p1 3 (0->cali_fgain2)
* 2 ch0_acc_mean_p2 2 (0->cali_fgain1)
* 3 ch0_acc_mean_p3 4 (0->cali_fgain3)
* 4 ch1_acc_mean 5 (1->cali_fgain0)
* 5 ch1_acc_mean_p1 7 (1->cali_fgain2)
* 6 ch1_acc_mean_p2 6 (1->cali_fgain1)
* 7 ch1_acc_mean_p3 8 (1->cali_fgain3)
*/
if (probe->index == 0) {
drift = (devc->mstatus.ch0_acc_mean / mean - 1) / ratio;
if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio)
probe->cali_fgain0 /= (1 + drift);
drift = (devc->mstatus.ch0_acc_mean_p2 / mean - 1) / ratio;
if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio)
probe->cali_fgain1 /= (1 + drift);
drift = (devc->mstatus.ch0_acc_mean_p1 / mean - 1) / ratio;
if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio)
probe->cali_fgain2 /= (1 + drift);
drift = (devc->mstatus.ch0_acc_mean_p3 / mean - 1) / ratio;
if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio)
probe->cali_fgain3 /= (1 + drift);
} else {
drift = (devc->mstatus.ch1_acc_mean / mean - 1) / ratio;
if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio)
probe->cali_fgain0 /= (1 + drift);
drift = (devc->mstatus.ch1_acc_mean_p2 / mean - 1) / ratio;
if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio)
probe->cali_fgain1 /= (1 + drift);
drift = (devc->mstatus.ch1_acc_mean_p1 / mean - 1) / ratio;
if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio)
probe->cali_fgain2 /= (1 + drift);
drift = (devc->mstatus.ch1_acc_mean_p3 / mean - 1) / ratio;
if (fabs(drift) > MAX_ACC_VARIANCE / ignore_ratio)
probe->cali_fgain3 /= (1 + drift);
}
probe->cali_fgain0 = max(min(probe->cali_fgain0, UPGAIN), DNGAIN);
probe->cali_fgain1 = max(min(probe->cali_fgain1, UPGAIN), DNGAIN);
probe->cali_fgain2 = max(min(probe->cali_fgain2, UPGAIN), DNGAIN);
probe->cali_fgain3 = max(min(probe->cali_fgain3, UPGAIN), DNGAIN);
}
}
return SR_OK;
}
SR_PRIV gboolean dsl_probe_fgain_inrange(struct sr_channel *probe, gboolean comb, double skew[])
{
const double UPGAIN = 1.0077;
const double DNGAIN = 0.9923;
if (comb) {
if (probe->index == 0) {
if (fabs(skew[0]) > MAX_ACC_VARIANCE && probe->cali_comb_fgain0 > DNGAIN && probe->cali_comb_fgain0 < UPGAIN)
return TRUE;
if (fabs(skew[1]) > MAX_ACC_VARIANCE && probe->cali_comb_fgain1 > DNGAIN && probe->cali_comb_fgain1 < UPGAIN)
return TRUE;
if (fabs(skew[6]) > MAX_ACC_VARIANCE && probe->cali_comb_fgain2 > DNGAIN && probe->cali_comb_fgain2 < UPGAIN)
return TRUE;
if (fabs(skew[7]) > MAX_ACC_VARIANCE && probe->cali_comb_fgain3 > DNGAIN && probe->cali_comb_fgain3 < UPGAIN)
return TRUE;
} else {
if (fabs(skew[5]) > MAX_ACC_VARIANCE && probe->cali_comb_fgain0 > DNGAIN && probe->cali_comb_fgain0 < UPGAIN)
return TRUE;
if (fabs(skew[4]) > MAX_ACC_VARIANCE && probe->cali_comb_fgain1 > DNGAIN && probe->cali_comb_fgain1 < UPGAIN)
return TRUE;
if (fabs(skew[3]) > MAX_ACC_VARIANCE && probe->cali_comb_fgain2 > DNGAIN && probe->cali_comb_fgain2 < UPGAIN)
return TRUE;
if (fabs(skew[2]) > MAX_ACC_VARIANCE && probe->cali_comb_fgain3 > DNGAIN && probe->cali_comb_fgain3 < UPGAIN)
return TRUE;
}
} else {
if (probe->index == 0) {
if (fabs(skew[0]) > MAX_ACC_VARIANCE && probe->cali_fgain0 > DNGAIN && probe->cali_fgain0 < UPGAIN)
return TRUE;
if (fabs(skew[2]) > MAX_ACC_VARIANCE && probe->cali_fgain1 > DNGAIN && probe->cali_fgain1 < UPGAIN)
return TRUE;
if (fabs(skew[1]) > MAX_ACC_VARIANCE && probe->cali_fgain2 > DNGAIN && probe->cali_fgain2 < UPGAIN)
return TRUE;
if (fabs(skew[3]) > MAX_ACC_VARIANCE && probe->cali_fgain3 > DNGAIN && probe->cali_fgain3 < UPGAIN)
return TRUE;
} else {
if (fabs(skew[4]) > MAX_ACC_VARIANCE && probe->cali_fgain0 > DNGAIN && probe->cali_fgain0 < UPGAIN)
return TRUE;
if (fabs(skew[6]) > MAX_ACC_VARIANCE && probe->cali_fgain1 > DNGAIN && probe->cali_fgain1 < UPGAIN)
return TRUE;
if (fabs(skew[5]) > MAX_ACC_VARIANCE && probe->cali_fgain2 > DNGAIN && probe->cali_fgain2 < UPGAIN)
return TRUE;
if (fabs(skew[7]) > MAX_ACC_VARIANCE && probe->cali_fgain3 > DNGAIN && probe->cali_fgain3 < UPGAIN)
return TRUE;
}
}
return FALSE;
}
SR_PRIV int dsl_rd_probe(const struct sr_dev_inst *sdi, unsigned char *ctx, uint16_t addr, uint8_t len)
{
struct sr_usb_dev_inst *usb;
struct libusb_device_handle *hdl;
struct ctl_rd_cmd rd_cmd;
int ret;
usb = sdi->conn;
hdl = usb->devhdl;
rd_cmd.header.dest = DSL_CTL_I2C_PROBE;
rd_cmd.header.size = len;
rd_cmd.header.offset = addr;
rd_cmd.data = ctx;
if ((ret = command_ctl_rd(hdl, rd_cmd)) != SR_OK) {
sr_err("Sent DSL_CTL_NVM read command failed.");
return SR_ERR;
}
return SR_OK;
}
SR_PRIV int dsl_fpga_arm(const struct sr_dev_inst *sdi)
{
struct DSL_context *devc;
struct sr_usb_dev_inst *usb;
struct libusb_device_handle *hdl;
struct DSL_setting setting;
struct DSL_setting_ext32 setting_ext32;
int ret;
int transferred;
int i;
GSList *l;
uint32_t tmp_u32;
uint64_t tmp_u64;
const int ch_num = dsl_en_ch_num(sdi);
uint32_t arm_size;
struct ctl_wr_cmd wr_cmd;
struct ctl_rd_cmd rd_cmd;
uint8_t rd_cmd_data;
gboolean qutr_trig;
gboolean half_trig;
devc = sdi->priv;
usb = sdi->conn;
hdl = usb->devhdl;
setting.sync = 0xf5a5f5a5;
setting.mode_header = 0x0001;
setting.divider_header = 0x0102;
setting.count_header = 0x0302;
setting.trig_pos_header = 0x0502;
setting.trig_glb_header = 0x0701;
setting.dso_count_header = 0x0802;
setting.ch_en_header = 0x0a02;
setting.fgain_header = 0x0c01;
setting.trig_header = 0x40a0;
setting.end_sync = 0xfa5afa5a;
setting_ext32.sync = 0xf5a5f5a5;
setting_ext32.trig_header = 0x6060;
setting_ext32.align_bytes = 0xffff;
setting_ext32.end_sync = 0xfa5afa5a;
// basic configuration
setting.mode = (trigger->trigger_en << TRIG_EN_BIT) +
(devc->clock_type << CLK_TYPE_BIT) +
(devc->clock_edge << CLK_EDGE_BIT) +
(devc->rle_mode << RLE_MODE_BIT) +
((sdi->mode == DSO) << DSO_MODE_BIT) +
((devc->cur_samplerate == devc->profile->dev_caps.half_samplerate) << HALF_MODE_BIT) +
((devc->cur_samplerate == devc->profile->dev_caps.quarter_samplerate) << QUAR_MODE_BIT) +
((sdi->mode == ANALOG) << ANALOG_MODE_BIT) +
((devc->filter == SR_FILTER_1T) << FILTER_BIT) +
(devc->instant << INSTANT_BIT) +
((trigger->trigger_mode == SERIAL_TRIGGER) << STRIG_MODE_BIT) +
((devc->stream) << STREAM_MODE_BIT) +
((devc->test_mode == SR_TEST_LOOPBACK) << LPB_TEST_BIT) +
((devc->test_mode == SR_TEST_EXTERNAL) << EXT_TEST_BIT) +
((devc->test_mode == SR_TEST_INTERNAL) << INT_TEST_BIT);
// sample rate divider
tmp_u32 = (sdi->mode == DSO) ? (uint32_t)ceil(channel_modes[devc->ch_mode].max_samplerate * 1.0 / devc->cur_samplerate / ch_num) :
(sdi->mode == ANALOG) ? (uint32_t)ceil(channel_modes[devc->ch_mode].hw_max_samplerate * 1.0 / max(devc->cur_samplerate, channel_modes[devc->ch_mode].hw_min_samplerate)) :
(uint32_t)ceil(channel_modes[devc->ch_mode].hw_max_samplerate * 1.0 / devc->cur_samplerate);
devc->unit_pitch = ceil(channel_modes[devc->ch_mode].hw_min_samplerate * 1.0 / devc->cur_samplerate);
setting.div_h = ((tmp_u32 >= channel_modes[devc->ch_mode].pre_div) ? channel_modes[devc->ch_mode].pre_div - 1U : tmp_u32 - 1U) << 8;
tmp_u32 = (uint32_t)ceil(tmp_u32 * 1.0 / channel_modes[devc->ch_mode].pre_div);
setting.div_l = tmp_u32 & 0x0000ffff;
setting.div_h += tmp_u32 >> 16;
// capture counter
tmp_u64 = (sdi->mode == DSO) ? (devc->actual_samples / (channel_modes[devc->ch_mode].num / ch_num)) :
(devc->actual_samples);
tmp_u64 >>= 4; // hardware minimum unit 64
setting.cnt_l = tmp_u64 & 0x0000ffff;
setting.cnt_h = tmp_u64 >> 16;
tmp_u64 = (sdi->mode == DSO) ? (devc->limit_samples / (channel_modes[devc->ch_mode].num / ch_num)) :
(devc->actual_samples);
setting.dso_cnt_l = tmp_u64 & 0x0000ffff;
setting.dso_cnt_h = tmp_u64 >> 16;
// trigger position
// must be align to minimum parallel bits
tmp_u32 = max((uint32_t)(trigger->trigger_pos / 100.0 * devc->limit_samples), DSLOGIC_ATOMIC_SAMPLES);
if (devc->stream)
tmp_u32 = min(tmp_u32, dsl_channel_depth(sdi) * 10 / 100);
else
tmp_u32 = min(tmp_u32, dsl_channel_depth(sdi) * DS_MAX_TRIG_PERCENT / 100);
setting.tpos_l = tmp_u32 & DSLOGIC_ATOMIC_MASK;
setting.tpos_h = tmp_u32 >> 16;
// trigger global settings
setting.trig_glb = ((ch_num & 0x1f) << 8) +
(trigger->trigger_stages & 0x00ff);
// channel enable mapping
setting.ch_en_l = 0;
setting.ch_en_h = 0;
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
if (probe->index < 16)
setting.ch_en_l += probe->enabled << probe->index;
else
setting.ch_en_h += probe->enabled << (probe->index - 16);
}
// digital fgain
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
setting.fgain = probe->digi_fgain;
break;
}
// trigger advanced configuration
if (trigger->trigger_mode == SIMPLE_TRIGGER) {
qutr_trig = !(devc->profile->dev_caps.feature_caps & CAPS_FEATURE_USB30) && (setting.mode & (1 << QUAR_MODE_BIT));
half_trig = (!(devc->profile->dev_caps.feature_caps & CAPS_FEATURE_USB30) && setting.mode & (1 << HALF_MODE_BIT)) ||
((devc->profile->dev_caps.feature_caps & CAPS_FEATURE_USB30) && setting.mode & (1 << QUAR_MODE_BIT));
setting.trig_mask0[0] = ds_trigger_get_mask0(TriggerStages, TriggerProbes-1, 0, qutr_trig, half_trig);
setting.trig_mask1[0] = ds_trigger_get_mask1(TriggerStages, TriggerProbes-1, 0, qutr_trig, half_trig);
setting.trig_value0[0] = ds_trigger_get_value0(TriggerStages, TriggerProbes-1, 0, qutr_trig, half_trig);
setting.trig_value1[0] = ds_trigger_get_value1(TriggerStages, TriggerProbes-1, 0, qutr_trig, half_trig);
setting.trig_edge0[0] = ds_trigger_get_edge0(TriggerStages, TriggerProbes-1, 0, qutr_trig, half_trig);
setting.trig_edge1[0] = ds_trigger_get_edge1(TriggerStages, TriggerProbes-1, 0, qutr_trig, half_trig);
setting_ext32.trig_mask0[0] = ds_trigger_get_mask0(TriggerStages, 2*TriggerProbes-1, TriggerProbes, qutr_trig, half_trig);
setting_ext32.trig_mask1[0] = ds_trigger_get_mask1(TriggerStages, 2*TriggerProbes-1, TriggerProbes, qutr_trig, half_trig);
setting_ext32.trig_value0[0] = ds_trigger_get_value0(TriggerStages, 2*TriggerProbes-1, TriggerProbes, qutr_trig, half_trig);
setting_ext32.trig_value1[0] = ds_trigger_get_value1(TriggerStages, 2*TriggerProbes-1, TriggerProbes, qutr_trig, half_trig);
setting_ext32.trig_edge0[0] = ds_trigger_get_edge0(TriggerStages, 2*TriggerProbes-1, TriggerProbes, qutr_trig, half_trig);
setting_ext32.trig_edge1[0] = ds_trigger_get_edge1(TriggerStages, 2*TriggerProbes-1, TriggerProbes, qutr_trig, half_trig);
setting.trig_logic0[0] = (trigger->trigger_logic[TriggerStages] << 1) + trigger->trigger0_inv[TriggerStages];
setting.trig_logic1[0] = (trigger->trigger_logic[TriggerStages] << 1) + trigger->trigger1_inv[TriggerStages];
setting.trig_count[0] = trigger->trigger0_count[TriggerStages];
for (i = 1; i < NUM_TRIGGER_STAGES; i++) {
setting.trig_mask0[i] = 0xffff;
setting.trig_mask1[i] = 0xffff;
setting.trig_value0[i] = 0;
setting.trig_value1[i] = 0;
setting.trig_edge0[i] = 0;
setting.trig_edge1[i] = 0;
setting_ext32.trig_mask0[i] = 0xffff;
setting_ext32.trig_mask1[i] = 0xffff;
setting_ext32.trig_value0[i] = 0;
setting_ext32.trig_value1[i] = 0;
setting_ext32.trig_edge0[i] = 0;
setting_ext32.trig_edge1[i] = 0;
setting.trig_logic0[i] = 2;
setting.trig_logic1[i] = 2;
setting.trig_count[i] = 0;
}
} else {
for (i = 0; i < NUM_TRIGGER_STAGES; i++) {
if (setting.mode & (1 << STRIG_MODE_BIT) && i == STriggerDataStage) {
qutr_trig = FALSE;
half_trig = FALSE;
} else {
qutr_trig = !(devc->profile->dev_caps.feature_caps & CAPS_FEATURE_USB30) && (setting.mode & (1 << QUAR_MODE_BIT));
half_trig = (!(devc->profile->dev_caps.feature_caps & CAPS_FEATURE_USB30) && setting.mode & (1 << HALF_MODE_BIT)) ||
((devc->profile->dev_caps.feature_caps & CAPS_FEATURE_USB30) && setting.mode & (1 << QUAR_MODE_BIT));
}
setting.trig_mask0[i] = ds_trigger_get_mask0(i, TriggerProbes-1 , 0, qutr_trig, half_trig);
setting.trig_mask1[i] = ds_trigger_get_mask1(i, TriggerProbes-1, 0, qutr_trig, half_trig);
setting.trig_value0[i] = ds_trigger_get_value0(i, TriggerProbes-1, 0, qutr_trig, half_trig);
setting.trig_value1[i] = ds_trigger_get_value1(i, TriggerProbes-1, 0, qutr_trig, half_trig);
setting.trig_edge0[i] = ds_trigger_get_edge0(i, TriggerProbes-1, 0, qutr_trig, half_trig);
setting.trig_edge1[i] = ds_trigger_get_edge1(i, TriggerProbes-1, 0, qutr_trig, half_trig);
setting_ext32.trig_mask0[i] = ds_trigger_get_mask0(i, 2*TriggerProbes-1, TriggerProbes, qutr_trig, half_trig);
setting_ext32.trig_mask1[i] = ds_trigger_get_mask1(i, 2*TriggerProbes-1, TriggerProbes, qutr_trig, half_trig);
setting_ext32.trig_value0[i] = ds_trigger_get_value0(i, 2*TriggerProbes-1, TriggerProbes, qutr_trig, half_trig);
setting_ext32.trig_value1[i] = ds_trigger_get_value1(i, 2*TriggerProbes-1, TriggerProbes, qutr_trig, half_trig);
setting_ext32.trig_edge0[i] = ds_trigger_get_edge0(i, 2*TriggerProbes-1, TriggerProbes, qutr_trig, half_trig);
setting_ext32.trig_edge1[i] = ds_trigger_get_edge1(i, 2*TriggerProbes-1, TriggerProbes, qutr_trig, half_trig);
setting.trig_logic0[i] = (trigger->trigger_logic[i] << 1) + trigger->trigger0_inv[i];
setting.trig_logic1[i] = (trigger->trigger_logic[i] << 1) + trigger->trigger1_inv[i];
setting.trig_count[i] = trigger->trigger0_count[i];
}
}
if (!(devc->profile->usb_speed == LIBUSB_SPEED_SUPER)) {
// set GPIF to be wordwide
wr_cmd.header.dest = DSL_CTL_WORDWIDE;
wr_cmd.header.size = 1;
wr_cmd.data[0] = bmWR_WORDWIDE;
if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK) {
sr_err("Sent DSL_CTL_WORDWIDE command failed.");
return SR_ERR;
}
}
// send bulk write control command
arm_size = sizeof(struct DSL_setting) / sizeof(uint16_t);
wr_cmd.header.dest = DSL_CTL_BULK_WR;
wr_cmd.header.size = 3;
wr_cmd.data[0] = (uint8_t)arm_size;
wr_cmd.data[1] = (uint8_t)(arm_size >> 8);
wr_cmd.data[2] = (uint8_t)(arm_size >> 16);
if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK) {
sr_err("Sent bulk write command of arm FPGA failed.");
return SR_ERR;
}
// check sys_clr dessert
rd_cmd.header.dest = DSL_CTL_HW_STATUS;
rd_cmd.header.size = 1;
rd_cmd_data = 0;
rd_cmd.data = &rd_cmd_data;
while(1) {
if ((ret = command_ctl_rd(hdl, rd_cmd)) != SR_OK)
return SR_ERR;
if (rd_cmd_data & bmSYS_CLR)
break;
}
// send bulk data
// setting
ret = libusb_bulk_transfer(hdl, 2 | LIBUSB_ENDPOINT_OUT,
(unsigned char *)&setting,
sizeof(struct DSL_setting),
&transferred, 1000);
if (ret < 0) {
sr_err("Unable to arm FPGA of dsl device: %s.",
libusb_error_name(ret));
return SR_ERR;
} else if (transferred != sizeof(struct DSL_setting)) {
sr_err("Arm FPGA error: expacted transfer size %d; actually %d",
sizeof(struct DSL_setting), transferred);
return SR_ERR;
}
// setting_ext32
if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_LA_CH32) {
ret = libusb_bulk_transfer(hdl, 2 | LIBUSB_ENDPOINT_OUT,
(unsigned char *)&setting_ext32,
sizeof(struct DSL_setting_ext32),
&transferred, 1000);
if (ret < 0) {
sr_err("Unable to arm FPGA(setting_ext32) of dsl device: %s.",
libusb_error_name(ret));
return SR_ERR;
} else if (transferred != sizeof(struct DSL_setting_ext32)) {
sr_err("Arm FPGA(setting_ext32) error: expacted transfer size %d; actually %d",
sizeof(struct DSL_setting_ext32), transferred);
return SR_ERR;
}
}
// assert INTRDY high (indicate data end)
wr_cmd.header.dest = DSL_CTL_INTRDY;
wr_cmd.header.size = 1;
wr_cmd.data[0] = bmWR_INTRDY;
if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK)
return SR_ERR;
// check FPGA_DONE bit
rd_cmd.header.dest = DSL_CTL_HW_STATUS;
rd_cmd.header.size = 1;
rd_cmd_data = 0;
rd_cmd.data = &rd_cmd_data;
if ((ret = command_ctl_rd(hdl, rd_cmd)) != SR_OK)
return SR_ERR;
if (rd_cmd_data & bmGPIF_DONE) {
sr_info("Arm FPGA done");
return SR_OK;
} else {
return SR_ERR;
}
}
SR_PRIV int dsl_fpga_config(struct libusb_device_handle *hdl, const char *filename)
{
FILE *fw;
int chunksize, ret;
unsigned char *buf;
int transferred;
uint64_t filesize;
struct ctl_wr_cmd wr_cmd;
struct ctl_rd_cmd rd_cmd;
uint8_t rd_cmd_data;
struct stat f_stat;
sr_info("Configure FPGA using %s", filename);
if ((fw = fopen(filename, "rb")) == NULL) {
sr_err("Unable to open FPGA bit file %s for reading: %s",
filename, strerror(errno));
return SR_ERR;
}
if (stat(filename, &f_stat) == -1){
fclose(fw);
return SR_ERR;
}
filesize = (uint64_t)f_stat.st_size;
if ((buf = g_try_malloc(filesize)) == NULL) {
sr_err("FPGA configure buf malloc failed.");
fclose(fw);
return SR_ERR;
}
// step0: assert PROG_B low
wr_cmd.header.dest = DSL_CTL_PROG_B;
wr_cmd.header.size = 1;
wr_cmd.data[0] = ~bmWR_PROG_B;
if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK){
fclose(fw);
g_free(buf);
return SR_ERR;
}
// step1: turn off GREEN/RED led
wr_cmd.header.dest = DSL_CTL_LED;
wr_cmd.header.size = 1;
wr_cmd.data[0] = ~bmLED_GREEN & ~bmLED_RED;
if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK){
fclose(fw);
g_free(buf);
return SR_ERR;
}
// step2: assert PORG_B high
wr_cmd.header.dest = DSL_CTL_PROG_B;
wr_cmd.header.size = 1;
wr_cmd.data[0] = bmWR_PROG_B;
if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK){
fclose(fw);
g_free(buf);
return SR_ERR;
}
// step3: wait INIT_B go high
rd_cmd.header.dest = DSL_CTL_HW_STATUS;
rd_cmd.header.size = 1;
rd_cmd_data = 0;
rd_cmd.data = &rd_cmd_data;
while(1) {
if ((ret = command_ctl_rd(hdl, rd_cmd)) != SR_OK){
fclose(fw);
g_free(buf);
return SR_ERR;
}
if (rd_cmd_data & bmFPGA_INIT_B)
break;
}
// step4: send config ctl command
wr_cmd.header.dest = DSL_CTL_INTRDY;
wr_cmd.header.size = 1;
wr_cmd.data[0] = (uint8_t)~bmWR_INTRDY;
if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK){
fclose(fw);
g_free(buf);
return SR_ERR;
}
wr_cmd.header.dest = DSL_CTL_BULK_WR;
wr_cmd.header.size = 3;
wr_cmd.data[0] = (uint8_t)filesize;
wr_cmd.data[1] = (uint8_t)(filesize >> 8);
wr_cmd.data[2] = (uint8_t)(filesize >> 16);
if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK) {
sr_err("Configure FPGA error: send command fpga_config failed.");
fclose(fw);
g_free(buf);
return SR_ERR;
}
// step5: send config data
chunksize = fread(buf, 1, filesize, fw);
if (chunksize == EOF){
sr_err("dsl_fpga_config(), f-read returns EOF.");
fclose(fw);
g_free(buf);
return SR_ERR;
}
if (chunksize == 0){
fclose(fw);
g_free(buf);
return SR_ERR;
}
ret = libusb_bulk_transfer(hdl, 2 | LIBUSB_ENDPOINT_OUT,
buf, chunksize,
&transferred, 1000);
fclose(fw);
g_free(buf);
fw = NULL;
buf = NULL;
if (ret < 0) {
sr_err("Unable to configure FPGA of dsl device: %s.",
libusb_error_name(ret));
return SR_ERR;
} else if (transferred != chunksize) {
sr_err("Configure FPGA error: expacted transfer size %d; actually %d.",
chunksize, transferred);
return SR_ERR;
}
// step6: assert INTRDY high (indicate data end)
wr_cmd.header.dest = DSL_CTL_INTRDY;
wr_cmd.header.size = 1;
wr_cmd.data[0] = bmWR_INTRDY;
if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK)
return SR_ERR;
// step7: check GPIF_DONE
rd_cmd.header.dest = DSL_CTL_HW_STATUS;
rd_cmd.header.size = 1;
rd_cmd_data = 0;
rd_cmd.data = &rd_cmd_data;
while ((ret = command_ctl_rd(hdl, rd_cmd)) == SR_OK) {
if (rd_cmd_data & bmGPIF_DONE) {
break;
}
}
// step8: assert INTRDY low
wr_cmd.header.dest = DSL_CTL_INTRDY;
wr_cmd.header.size = 1;
wr_cmd.data[0] = (uint8_t)~bmWR_INTRDY;
if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK)
return SR_ERR;
// step9: check FPGA_DONE bit
rd_cmd.header.dest = DSL_CTL_HW_STATUS;
rd_cmd.header.size = 1;
rd_cmd_data = 0;
rd_cmd.data = &rd_cmd_data;
while ((ret = command_ctl_rd(hdl, rd_cmd)) == SR_OK) {
if (rd_cmd_data & bmFPGA_DONE) {
// step10: turn on GREEN led
wr_cmd.header.dest = DSL_CTL_LED;
wr_cmd.data[0] = bmLED_GREEN;
if ((ret = command_ctl_wr(hdl, wr_cmd)) == SR_OK)
break;
}
}
// step10: recover GPIF to be wordwide
wr_cmd.header.dest = DSL_CTL_WORDWIDE;
wr_cmd.header.size = 1;
wr_cmd.data[0] = bmWR_WORDWIDE;
if ((ret = command_ctl_wr(hdl, wr_cmd)) != SR_OK) {
sr_err("Sent DSL_CTL_WORDWIDE command failed.");
return SR_ERR;
}
sr_info("FPGA configure done: %d bytes.", chunksize);
return SR_OK;
}
SR_PRIV int dsl_config_get(int id, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel *ch,
const struct sr_channel_group *cg)
{
struct DSL_context *devc = sdi->priv;
struct sr_usb_dev_inst *usb;
char str[128];
(void)cg;
switch (id) {
case SR_CONF_LANGUAGE:
if (!sdi)
return SR_ERR;
*data = g_variant_new_int16(devc->language);
break;
case SR_CONF_CONN:
if (!sdi || !sdi->conn)
return SR_ERR_ARG;
usb = sdi->conn;
if (usb->address == 255)
/* Device still needs to re-enumerate after firmware
* upload, so we don't know its (future) address. */
return SR_ERR;
snprintf(str, 128, "%d.%d", usb->bus, usb->address);
*data = g_variant_new_string(str);
break;
case SR_CONF_USB_SPEED:
if (!sdi)
return SR_ERR;
*data = g_variant_new_int32(devc->profile->usb_speed);
break;
case SR_CONF_USB30_SUPPORT:
if (!sdi)
return SR_ERR;
*data = g_variant_new_boolean((devc->profile->dev_caps.feature_caps & CAPS_FEATURE_USB30) != 0);
break;
case SR_CONF_LIMIT_SAMPLES:
if (!sdi)
return SR_ERR;
*data = g_variant_new_uint64(devc->limit_samples);
break;
case SR_CONF_SAMPLERATE:
if (!sdi)
return SR_ERR;
*data = g_variant_new_uint64(devc->cur_samplerate);
break;
case SR_CONF_RLE_SUPPORT:
if (!sdi)
return SR_ERR;
if ((devc->test_mode != SR_TEST_NONE))
*data = g_variant_new_boolean(FALSE);
else
*data = g_variant_new_boolean(devc->rle_support);
break;
case SR_CONF_CLOCK_TYPE:
if (!sdi)
return SR_ERR;
*data = g_variant_new_boolean(devc->clock_type);
break;
case SR_CONF_CLOCK_EDGE:
if (!sdi)
return SR_ERR;
*data = g_variant_new_boolean(devc->clock_edge);
break;
case SR_CONF_INSTANT:
if (!sdi)
return SR_ERR;
*data = g_variant_new_boolean(devc->instant);
break;
case SR_CONF_PROBE_VDIV:
if (!ch)
return SR_ERR;
*data = g_variant_new_uint64(ch->vdiv);
break;
case SR_CONF_PROBE_FACTOR:
if (!ch)
return SR_ERR;
*data = g_variant_new_uint64(ch->vfactor);
break;
case SR_CONF_PROBE_OFFSET:
if (!ch)
return SR_ERR;
*data = g_variant_new_uint16(ch->offset);
break;
case SR_CONF_PROBE_HW_OFFSET:
if (!ch)
return SR_ERR;
*data = g_variant_new_uint16(ch->hw_offset);
break;
case SR_CONF_TIMEBASE:
if (!sdi)
return SR_ERR;
*data = g_variant_new_uint64(devc->timebase);
break;
case SR_CONF_MAX_TIMEBASE:
if (!sdi)
return SR_ERR;
*data = g_variant_new_uint64(min(MAX_TIMEBASE,
SR_SEC(1) *
devc->profile->dev_caps.dso_depth /
channel_modes[devc->ch_mode].num /
channel_modes[devc->ch_mode].min_samplerate /
DS_CONF_DSO_HDIVS));
break;
case SR_CONF_MIN_TIMEBASE:
if (!sdi)
return SR_ERR;
*data = g_variant_new_uint64(SR_SEC(1) / channel_modes[devc->ch_mode].hw_max_samplerate);
break;
case SR_CONF_PROBE_COUPLING:
if (!ch)
return SR_ERR;
*data = g_variant_new_byte(ch->coupling);
break;
case SR_CONF_PROBE_EN:
if (!ch)
return SR_ERR;
*data = g_variant_new_boolean(ch->enabled);
break;
case SR_CONF_TRIGGER_SLOPE:
if (!sdi)
return SR_ERR;
*data = g_variant_new_byte(devc->trigger_slope);
break;
case SR_CONF_TRIGGER_SOURCE:
if (!sdi)
return SR_ERR;
*data = g_variant_new_byte(devc->trigger_source&0x0f);
break;
case SR_CONF_TRIGGER_CHANNEL:
if (!sdi)
return SR_ERR;
*data = g_variant_new_byte(devc->trigger_source>>4);
break;
case SR_CONF_TRIGGER_VALUE:
if (!ch)
return SR_ERR;
*data = g_variant_new_byte(ch->trig_value);
break;
case SR_CONF_HORIZ_TRIGGERPOS:
if (!sdi)
return SR_ERR;
if (sdi->mode == DSO) {
*data = g_variant_new_byte(devc->trigger_hrate);
} else {
*data = g_variant_new_byte(devc->trigger_hpos);
}
break;
case SR_CONF_TRIGGER_HOLDOFF:
if (!sdi)
return SR_ERR;
*data = g_variant_new_uint64(devc->trigger_holdoff);
break;
case SR_CONF_TRIGGER_MARGIN:
if (!sdi)
return SR_ERR;
*data = g_variant_new_byte(devc->trigger_margin);
break;
case SR_CONF_HAVE_ZERO:
if (!sdi)
return SR_ERR;
*data = g_variant_new_boolean((devc->profile->dev_caps.feature_caps & CAPS_FEATURE_ZERO) != 0);
break;
case SR_CONF_ZERO:
if (!sdi)
return SR_ERR;
if (sdi->mode == DSO)
*data = g_variant_new_boolean(devc->zero);
else
*data = g_variant_new_boolean(FALSE);
break;
case SR_CONF_ZERO_COMB_FGAIN:
if (!sdi)
return SR_ERR;
*data = g_variant_new_boolean(devc->zero_comb_fgain);
break;
case SR_CONF_ROLL:
if (!sdi)
return SR_ERR;
*data = g_variant_new_boolean(devc->roll);
break;
case SR_CONF_UNIT_BITS:
if (!sdi)
return SR_ERR;
*data = g_variant_new_byte(channel_modes[devc->ch_mode].unit_bits);
break;
case SR_CONF_REF_MIN:
if (!sdi)
return SR_ERR;
*data = g_variant_new_uint32(devc->profile->dev_caps.ref_min);
break;
case SR_CONF_REF_MAX:
if (!sdi)
return SR_ERR;
*data = g_variant_new_uint32(devc->profile->dev_caps.ref_max);
break;
case SR_CONF_PROBE_MAP_DEFAULT:
if (!sdi || !ch)
return SR_ERR;
*data = g_variant_new_boolean(ch->map_default);
break;
case SR_CONF_PROBE_MAP_UNIT:
if (!sdi || !ch)
return SR_ERR;
*data = g_variant_new_string(ch->map_unit);
break;
case SR_CONF_PROBE_MAP_MIN:
if (!sdi || !ch)
return SR_ERR;
*data = g_variant_new_double(ch->map_min);
break;
case SR_CONF_PROBE_MAP_MAX:
if (!sdi || !ch)
return SR_ERR;
*data = g_variant_new_double(ch->map_max);
break;
case SR_CONF_ACTUAL_SAMPLES:
if (!sdi)
return SR_ERR;
*data = g_variant_new_uint64(devc->actual_samples);
break;
case SR_CONF_BANDWIDTH:
if (!sdi)
return SR_ERR;
*data = g_variant_new_boolean((devc->profile->dev_caps.feature_caps & CAPS_FEATURE_20M) != 0);
break;
case SR_CONF_LA_CH32:
if (!sdi)
return SR_ERR;
*data = g_variant_new_boolean((devc->profile->dev_caps.feature_caps & CAPS_FEATURE_LA_CH32) != 0);
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
SR_PRIV int dsl_config_set(int id, GVariant *data, struct sr_dev_inst *sdi,
struct sr_channel *ch,
struct sr_channel_group *cg )
{
(void)cg;
struct DSL_context *devc = sdi->priv;
int ret = SR_OK;
if (id == SR_CONF_LANGUAGE) {
devc->language = g_variant_get_int16(data);
} else if (id == SR_CONF_ZERO_COMB) {
devc->zero_comb = g_variant_get_boolean(data);
} else if (id == SR_CONF_PROBE_MAP_DEFAULT) {
ch->map_default = g_variant_get_boolean(data);
if (ch->map_default) {
ch->map_unit = probeMapUnits[0];
ch->map_min = -(ch->vdiv * ch->vfactor * DS_CONF_DSO_VDIVS / 2000.0);
ch->map_max = ch->vdiv * ch->vfactor * DS_CONF_DSO_VDIVS / 2000.0;
}
} else if (id == SR_CONF_PROBE_MAP_UNIT) {
if (ch->map_default)
ch->map_unit = probeMapUnits[0];
else
ch->map_unit = g_variant_get_string(data, NULL);
} else if (id == SR_CONF_PROBE_MAP_MIN) {
if (ch->map_default)
ch->map_min = -(ch->vdiv * ch->vfactor * DS_CONF_DSO_VDIVS / 2000.0);
else
ch->map_min = g_variant_get_double(data);
} else if (id == SR_CONF_PROBE_MAP_MAX) {
if (ch->map_default)
ch->map_max = ch->vdiv * ch->vfactor * DS_CONF_DSO_VDIVS / 2000.0;
else
ch->map_max = g_variant_get_double(data);
} else {
ret = SR_ERR_NA;
}
return ret;
}
SR_PRIV int dsl_config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct DSL_context *devc;
GVariant *gvar;
GVariantBuilder gvb;
int i;
(void)cg;
devc = sdi->priv;
switch (key) {
case SR_CONF_SAMPLERATE:
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
// gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates,
// ARRAY_SIZE(samplerates), sizeof(uint64_t));
gvar = g_variant_new_from_data(G_VARIANT_TYPE("at"),
devc->profile->dev_caps.samplerates + devc->samplerates_min_index,
(devc->samplerates_max_index - devc->samplerates_min_index + 1) * sizeof(uint64_t), TRUE, NULL, NULL);
g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_PROBE_CONFIGS:
*data = g_variant_new_from_data(G_VARIANT_TYPE("ai"),
probeOptions, ARRAY_SIZE(probeOptions)*sizeof(int32_t), TRUE, NULL, NULL);
break;
case SR_CONF_PROBE_SESSIONS:
*data = g_variant_new_from_data(G_VARIANT_TYPE("ai"),
probeSessions, ARRAY_SIZE(probeSessions)*sizeof(int32_t), TRUE, NULL, NULL);
break;
case SR_CONF_PROBE_VDIV:
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
for (i = 0; devc->profile->dev_caps.vdivs[i]; i++);
gvar = g_variant_new_from_data(G_VARIANT_TYPE("at"),
devc->profile->dev_caps.vdivs, i*sizeof(uint64_t), TRUE, NULL, NULL);
g_variant_builder_add(&gvb, "{sv}", "vdivs", gvar);
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_PROBE_COUPLING:
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
gvar = g_variant_new_from_data(G_VARIANT_TYPE("ay"),
probeCoupling, ARRAY_SIZE(probeCoupling)*sizeof(uint8_t), TRUE, NULL, NULL);
g_variant_builder_add(&gvb, "{sv}", "coupling", gvar);
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_PROBE_MAP_UNIT:
*data = g_variant_new_strv(probeMapUnits, ARRAY_SIZE(probeMapUnits));
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
SR_PRIV int dsl_dev_open(struct sr_dev_driver *di, struct sr_dev_inst *sdi, gboolean *fpga_done)
{
struct sr_usb_dev_inst *usb;
struct DSL_context *devc;
int ret;
uint8_t hw_info;
struct ctl_rd_cmd rd_cmd;
int fdError = 0;
devc = sdi->priv;
usb = sdi->conn;
/*
* If the firmware was recently uploaded, no dev_open operation should be called.
* Just wait for renumerate -> detach -> attach
*/
ret = SR_ERR;
if (devc->fw_updated > 0) {
return SR_ERR;
} else {
sr_info("%s: Firmware upload was not needed.", __func__);
ret = hw_dev_open(di, sdi);
}
if (ret != SR_OK) {
sr_err("%s: Unable to open device.", __func__);
return SR_ERR;
}
ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
if (ret != 0) {
switch(ret) {
case LIBUSB_ERROR_BUSY:
sr_err("%s: Unable to claim USB interface. Another "
"program or driver has already claimed it.", __func__);
break;
case LIBUSB_ERROR_NO_DEVICE:
sr_err("%s: Device has been disconnected.", __func__);
break;
case LIBUSB_ERROR_NOT_FOUND:
{
sr_err("%s: Unable to claim interface, try again: LIBUSB_ERROR_NOT_FOUND.", __func__);
ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
fdError = 1;
}
break;
default:
sr_err("%s: Unable to claim interface, try again: %s.",
__func__, libusb_error_name(ret));
break;
}
if (ret != 0 && fdError == 1){
sr_err("%s: Unable to claim interface, the second time: %s.",
__func__, libusb_error_name(ret));
}
if (ret != 0){
return SR_ERR;
}
}
rd_cmd.header.dest = DSL_CTL_HW_STATUS;
rd_cmd.header.size = 1;
hw_info = 0;
rd_cmd.data = &hw_info;
if ((ret = command_ctl_rd(usb->devhdl, rd_cmd)) != SR_OK) {
sr_err("Failed to get hardware infos.");
return SR_ERR;
}
*fpga_done = (hw_info & bmFPGA_DONE) != 0;
if (sdi->status == SR_ST_ACTIVE) {
if (!(*fpga_done)) {
char *fpga_bit;
char *res_path = sr_get_firmware_res_path();
if (!(fpga_bit = g_try_malloc(strlen(res_path)+strlen(devc->profile->fpga_bit33)+1))) {
sr_err("fpag_bit path malloc error!");
return SR_ERR_MALLOC;
}
strcpy(fpga_bit, res_path);
switch(devc->th_level) {
case SR_TH_3V3:
strcat(fpga_bit, devc->profile->fpga_bit33);
break;
case SR_TH_5V0:
strcat(fpga_bit, devc->profile->fpga_bit50);
break;
default:
return SR_ERR;
}
ret = dsl_fpga_config(usb->devhdl, fpga_bit);
g_free(fpga_bit);
if (ret != SR_OK) {
sr_err("%s: Configure FPGA failed!", __func__);
return SR_ERR;
}
} else {
ret = dsl_wr_reg(sdi, CTR0_ADDR, bmNONE); // dessert clear
/* Check HDL version */
ret = dsl_hdl_version(sdi, &hw_info);
if ((ret != SR_OK) || (hw_info != DSL_HDL_VERSION)) {
sr_err("%s: HDL verison incompatible!", __func__);
sdi->status = SR_ST_INCOMPATIBLE;
return SR_ERR;
}
}
}
return SR_OK;
}
SR_PRIV int dsl_dev_close(struct sr_dev_inst *sdi)
{
struct sr_usb_dev_inst *usb;
usb = sdi->conn;
if (usb->devhdl == NULL)
return SR_ERR;
sr_info("%s: Closing device %d on %d.%d interface %d.",
sdi->driver->name, sdi->index, usb->bus, usb->address, USB_INTERFACE);
libusb_release_interface(usb->devhdl, USB_INTERFACE);
libusb_close(usb->devhdl);
usb->devhdl = NULL;
sdi->status = SR_ST_INACTIVE;
return SR_OK;
}
SR_PRIV int dsl_dev_acquisition_stop(const struct sr_dev_inst *sdi, void *cb_data)
{
(void)cb_data;
struct DSL_context *devc;
struct sr_usb_dev_inst *usb;
int ret;
struct ctl_wr_cmd wr_cmd;
devc = sdi->priv;
usb = sdi->conn;
if (!devc->abort) {
devc->abort = TRUE;
dsl_wr_reg(sdi, CTR0_ADDR, bmFORCE_RDY);
} else if (devc->status == DSL_FINISH) {
/* Stop GPIF acquisition */
wr_cmd.header.dest = DSL_CTL_STOP;
wr_cmd.header.size = 0;
if ((ret = command_ctl_wr(usb->devhdl, wr_cmd)) != SR_OK)
sr_err("%s: Sent acquisition stop command failed!", __func__);
else
sr_info("%s: Sent acquisition stop command!", __func__);
}
return SR_OK;
}
SR_PRIV int dsl_dev_status_get(const struct sr_dev_inst *sdi, struct sr_status *status, gboolean prg)
{
int ret = SR_ERR;
if (sdi) {
struct DSL_context *devc;
devc = sdi->priv;
if (prg || devc->mstatus_valid) {
*status = devc->mstatus;
ret = SR_OK;
}
}
return ret;
}
static unsigned int get_single_buffer_time(const struct DSL_context *devc)
{
if (devc->profile->usb_speed == LIBUSB_SPEED_SUPER)
return 10;
else
return 20;
}
static unsigned int get_total_buffer_time(const struct DSL_context *devc)
{
if (devc->profile->usb_speed == LIBUSB_SPEED_SUPER)
return 40;
else
return 100;
}
static unsigned int to_bytes_per_ms(struct DSL_context *devc)
{
struct sr_dev_inst *sdi = devc->cb_data;
if (sdi->mode == LOGIC) {
return ceil(devc->cur_samplerate / 1000.0 * dsl_en_ch_num(sdi) / 8);
} else {
if (devc->cur_samplerate > SR_MHZ(100))
return SR_MHZ(100) / 1000.0 * dsl_en_ch_num(sdi);
else
return ceil(max(devc->cur_samplerate, channel_modes[devc->ch_mode].hw_min_samplerate) / 1000.0 * dsl_en_ch_num(sdi));
}
}
SR_PRIV int dsl_header_size(const struct DSL_context *devc)
{
int size;
if (devc->profile->dev_caps.feature_caps & CAPS_FEATURE_USB30)
size = SR_KB(1);
else
size = SR_B(512);
return size;
}
static size_t get_buffer_size(const struct sr_dev_inst *sdi)
{
size_t s;
struct DSL_context *devc;
devc = sdi->priv;
/*
* The buffer should be large enough to hold 10ms of data and
* a multiple of 512.
*/
if (sdi->mode == DSO) {
s = (devc->instant) ? devc->profile->dev_caps.dso_depth : devc->actual_samples * dsl_en_ch_num(sdi) + dsl_header_size(devc);
} else {
s = (devc->stream) ? get_single_buffer_time(devc) * to_bytes_per_ms(devc) : 1024*1024;
}
if (devc->profile->usb_speed == LIBUSB_SPEED_SUPER)
return (s + 1023ULL) & ~1023ULL;
else
return (s + 511ULL) & ~511ULL;
}
static unsigned int get_number_of_transfers(const struct sr_dev_inst *sdi)
{
unsigned int n;
struct DSL_context *devc;
devc = sdi->priv;
#ifndef _WIN32
/* Total buffer size should be able to hold about 100ms of data. */
n = (devc->stream) ? ceil(get_total_buffer_time(devc) * 1.0f * to_bytes_per_ms(devc) / get_buffer_size(sdi)) : 1;
#else
n = (devc->stream) ? ceil(get_total_buffer_time(devc) * 1.0f * to_bytes_per_ms(devc) / get_buffer_size(sdi)) :
(devc->profile->usb_speed == LIBUSB_SPEED_SUPER) ? 16 : 4;
#endif
if (n > NUM_SIMUL_TRANSFERS)
return NUM_SIMUL_TRANSFERS;
return n;
}
SR_PRIV unsigned int dsl_get_timeout(const struct sr_dev_inst *sdi)
{
size_t total_size;
unsigned int timeout;
struct DSL_context *devc;
devc = sdi->priv;
total_size = get_buffer_size(sdi) * get_number_of_transfers(sdi);
timeout = total_size / to_bytes_per_ms(devc);
if (devc->stream)
return timeout + timeout / 4; /* Leave a headroom of 25% percent. */
else
return 20;
}
static void finish_acquisition(struct DSL_context *devc)
{
struct sr_datafeed_packet packet;
sr_info("%s: send SR_DF_END packet", __func__);
/* Terminate session. */
packet.type = SR_DF_END;
packet.status = SR_PKT_OK;
sr_session_send(devc->cb_data, &packet);
if (devc->num_transfers != 0) {
devc->num_transfers = 0;
g_free(devc->transfers);
}
devc->status = DSL_FINISH;
}
static void free_transfer(struct libusb_transfer *transfer)
{
struct DSL_context *devc;
unsigned int i;
devc = transfer->user_data;
g_free(transfer->buffer);
transfer->buffer = NULL;
libusb_free_transfer(transfer);
for (i = 0; i < devc->num_transfers; i++) {
if (devc->transfers[i] == transfer) {
devc->transfers[i] = NULL;
break;
}
}
devc->submitted_transfers--;
if (devc->submitted_transfers == 0)
finish_acquisition(devc);
}
static void resubmit_transfer(struct libusb_transfer *transfer)
{
int ret;
if ((ret = libusb_submit_transfer(transfer)) == LIBUSB_SUCCESS)
return;
free_transfer(transfer);
/* TODO: Stop session? */
sr_err("%s: %s", __func__, libusb_error_name(ret));
}
static void get_measure(const struct sr_dev_inst *sdi, uint8_t *buf, uint32_t offset)
{
uint64_t u64_tmp;
struct DSL_context *devc = sdi->priv;
GSList *l;
devc->mstatus.pkt_id = *((const uint16_t*)buf + offset);
devc->mstatus.vlen = *((const uint32_t*)buf + offset/2 + 2/2) & 0x0fffffff;
devc->mstatus.stream_mode = (*((const uint32_t*)buf + offset/2 + 2/2) & 0x80000000) != 0;
devc->mstatus.measure_valid = *((const uint32_t*)buf + offset/2 + 2/2) & 0x40000000;
devc->mstatus.sample_divider = *((const uint32_t*)buf + offset/2 + 4/2) & 0x00ffffff;
devc->mstatus.sample_divider_tog = (*((const uint32_t*)buf + offset/2 + 4/2) & 0x80000000) != 0;
devc->mstatus.trig_flag = (*((const uint32_t*)buf + offset/2 + 4/2) & 0x40000000) != 0;
devc->mstatus.trig_ch = (*((const uint8_t*)buf + offset*2 + 5*2+1) & 0x38) >> 3;
devc->mstatus.trig_offset = *((const uint8_t*)buf + offset*2 + 5*2+1) & 0x07;
devc->mstatus.ch0_max = *((const uint8_t*)buf + offset*2 + 33*2);
devc->mstatus.ch0_min = *((const uint8_t*)buf + offset*2 + 33*2+1);
devc->mstatus.ch0_cyc_cnt = *((const uint32_t*)buf + offset/2 + 34/2);
devc->mstatus.ch0_cyc_tlen = *((const uint32_t*)buf + offset/2 + 36/2);
devc->mstatus.ch0_cyc_plen = *((const uint32_t*)buf + offset/2 + 38/2);
devc->mstatus.ch0_cyc_llen = *((const uint32_t*)buf + offset/2 + 40/2);
devc->mstatus.ch0_level_valid = (*((const uint32_t*)buf + offset/2 + 42/2) & 0x00008000) != 0;
devc->mstatus.ch0_plevel = (*((const uint32_t*)buf + offset/2 + 42/2) & 0x00004000) != 0;
devc->mstatus.ch0_high_level = *((const uint8_t*)buf + offset*2 + 43*2);
devc->mstatus.ch0_low_level = *((const uint8_t*)buf + offset*2 + 43*2+1);
devc->mstatus.ch0_cyc_rlen = *((const uint32_t*)buf + offset/2 + 44/2);
devc->mstatus.ch0_cyc_flen = *((const uint32_t*)buf + offset/2 + 46/2);
devc->mstatus.ch0_acc_square = *((const uint64_t*)buf + offset/4 + 48/4) & 0x0000FFFFFFFFFFFF;
devc->mstatus.ch0_acc_mean = *((const uint32_t*)buf + offset/2 + 52/2);
devc->mstatus.ch0_acc_mean_p1 = *((const uint32_t*)buf + offset/2 + 54/2);
devc->mstatus.ch0_acc_mean_p2 = *((const uint32_t*)buf + offset/2 + 56/2);
devc->mstatus.ch0_acc_mean_p3 = *((const uint32_t*)buf + offset/2 + 58/2);
devc->mstatus.ch1_max = *((const uint8_t*)buf + offset*2 + 65*2);
devc->mstatus.ch1_min = *((const uint8_t*)buf + offset*2 + 65*2+1);
devc->mstatus.ch1_cyc_cnt = *((const uint32_t*)buf + offset/2 + 66/2);
devc->mstatus.ch1_cyc_tlen = *((const uint32_t*)buf + offset/2 + 68/2);
devc->mstatus.ch1_cyc_plen = *((const uint32_t*)buf + offset/2 + 70/2);
devc->mstatus.ch1_cyc_llen = *((const uint32_t*)buf + offset/2 + 72/2);
devc->mstatus.ch1_level_valid = (*((const uint32_t*)buf + offset/2 + 74/2) & 0x00008000) != 0;
devc->mstatus.ch1_plevel = (*((const uint32_t*)buf + offset/2 + 74/2) & 0x00004000) != 0;
devc->mstatus.ch1_high_level = *((const uint8_t*)buf + offset*2 + 75*2);
devc->mstatus.ch1_low_level = *((const uint8_t*)buf + offset*2 + 75*2+1);
devc->mstatus.ch1_cyc_rlen = *((const uint32_t*)buf + offset/2 + 76/2);
devc->mstatus.ch1_cyc_flen = *((const uint32_t*)buf + offset/2 + 78/2);
devc->mstatus.ch1_acc_square = *((const uint64_t*)buf + offset/4 + 80/4) & 0x0000FFFFFFFFFFFF;
devc->mstatus.ch1_acc_mean = *((const uint32_t*)buf + offset/2 + 84/2);
devc->mstatus.ch1_acc_mean_p1 = *((const uint32_t*)buf + offset/2 + 86/2);
devc->mstatus.ch1_acc_mean_p2 = *((const uint32_t*)buf + offset/2 + 88/2);
devc->mstatus.ch1_acc_mean_p3 = *((const uint32_t*)buf + offset/2 + 90/2);
if (!devc->zero_branch) {
devc->mstatus.ch0_acc_mean += devc->mstatus.ch0_acc_mean_p1;
devc->mstatus.ch0_acc_mean += devc->mstatus.ch0_acc_mean_p2;
devc->mstatus.ch0_acc_mean += devc->mstatus.ch0_acc_mean_p3;
devc->mstatus.ch1_acc_mean += devc->mstatus.ch1_acc_mean_p1;
devc->mstatus.ch1_acc_mean += devc->mstatus.ch1_acc_mean_p2;
devc->mstatus.ch1_acc_mean += devc->mstatus.ch1_acc_mean_p3;
if (1 == dsl_en_ch_num(sdi)) {
u64_tmp = devc->mstatus.ch0_acc_square + devc->mstatus.ch1_acc_square;
devc->mstatus.ch0_acc_square = u64_tmp;
devc->mstatus.ch1_acc_square = u64_tmp;
u64_tmp = devc->mstatus.ch0_acc_mean + devc->mstatus.ch1_acc_mean;
devc->mstatus.ch0_acc_mean = u64_tmp;
devc->mstatus.ch1_acc_mean = u64_tmp;
}
}
devc->mstatus_valid = FALSE;
const uint32_t divider = devc->zero ? 0x1 : (uint32_t)ceil(channel_modes[devc->ch_mode].max_samplerate * 1.0 / devc->cur_samplerate / dsl_en_ch_num(sdi));
if (devc->instant) {
devc->mstatus_valid = (devc->mstatus.pkt_id == DSO_PKTID);
} else if (devc->mstatus.pkt_id == DSO_PKTID &&
devc->mstatus.sample_divider == divider &&
devc->mstatus.vlen != 0) {
devc->mstatus_valid = TRUE;
}
if (devc->mstatus_valid) {
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
probe->hw_offset = *((const uint8_t*)buf + offset*2 + (51 + 32*probe->index)*2);
}
}
}
static void receive_transfer(struct libusb_transfer *transfer)
{
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
struct sr_datafeed_dso dso;
struct sr_datafeed_analog analog;
uint64_t cur_sample_count = 0;
uint8_t *cur_buf = transfer->buffer;
struct DSL_context *devc = transfer->user_data;
struct sr_dev_inst *sdi = devc->cb_data;
if (devc->status == DSL_START)
devc->status = DSL_DATA;
if (devc->abort)
devc->status = DSL_STOP;
sr_info("%llu: receive_transfer(): status %d; timeout %d; received %d bytes.",
g_get_monotonic_time(), transfer->status, transfer->timeout, transfer->actual_length);
switch (transfer->status) {
case LIBUSB_TRANSFER_COMPLETED:
case LIBUSB_TRANSFER_TIMED_OUT: /* We may have received some data though. */
break;
default:
devc->status = DSL_ERROR;
break;
}
packet.status = SR_PKT_OK;
if (devc->status == DSL_DATA &&
transfer->actual_length != 0) {
/* Send the incoming transfer to the session bus. */
// check packet type
if (sdi->mode == LOGIC) {
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
cur_sample_count = transfer->actual_length * 8 / dsl_en_ch_num(sdi) ;
logic.length = transfer->actual_length;
logic.format = LA_CROSS_DATA;
logic.data_error = 0;
logic.data = cur_buf;
} else if (sdi->mode == DSO) {
if (!devc->instant) {
const uint32_t offset = devc->actual_samples / (channel_modes[devc->ch_mode].num/dsl_en_ch_num(sdi));
get_measure(sdi, cur_buf, offset);
} else {
devc->mstatus.vlen = get_buffer_size(sdi) / channel_modes[devc->ch_mode].num;
devc->mstatus.trig_offset = 0;
devc->mstatus.sample_divider_tog = FALSE;
devc->mstatus_valid = TRUE;
}
if (devc->mstatus_valid) {
devc->roll = (devc->mstatus.stream_mode != 0);
packet.type = SR_DF_DSO;
packet.payload = &dso;
dso.probes = sdi->channels;
cur_sample_count = min(channel_modes[devc->ch_mode].num * devc->mstatus.vlen / dsl_en_ch_num(sdi), devc->limit_samples);
dso.num_samples = cur_sample_count;
dso.mq = SR_MQ_VOLTAGE;
dso.unit = SR_UNIT_VOLT;
dso.mqflags = SR_MQFLAG_AC;
dso.samplerate_tog = (devc->mstatus.sample_divider_tog != 0);
dso.trig_flag = (devc->mstatus.trig_flag != 0);
dso.trig_ch = devc->mstatus.trig_ch;
dso.data = cur_buf + (devc->zero ? 0 : 2*devc->mstatus.trig_offset);
} else {
packet.type = SR_DF_DSO;
packet.status = SR_PKT_DATA_ERROR;
}
} else if (sdi->mode == ANALOG) {
packet.type = SR_DF_ANALOG;
packet.payload = &analog;
analog.probes = sdi->channels;
cur_sample_count = transfer->actual_length / (((channel_modes[devc->ch_mode].unit_bits + 7) / 8) * g_slist_length(analog.probes));
analog.num_samples = cur_sample_count;
analog.unit_bits = channel_modes[devc->ch_mode].unit_bits;;
analog.unit_pitch = devc->unit_pitch;
analog.mq = SR_MQ_VOLTAGE;
analog.unit = SR_UNIT_VOLT;
analog.mqflags = SR_MQFLAG_AC;
analog.data = cur_buf;
}
if ((devc->limit_samples && devc->num_bytes < devc->actual_bytes) ||
sdi->mode != LOGIC ) {
const uint64_t remain_length= devc->actual_bytes - devc->num_bytes;
logic.length = min(logic.length, remain_length);
/* send data to session bus */
if (packet.status == SR_PKT_OK)
sr_session_send(sdi, &packet);
}
devc->num_samples += cur_sample_count;
devc->num_bytes += logic.length;
if (sdi->mode == LOGIC &&
devc->limit_samples &&
devc->num_bytes >= devc->actual_bytes) {
devc->status = DSL_STOP;
} else if ((sdi->mode == DSO && devc->instant) &&
devc->limit_samples &&
devc->num_samples >= devc->actual_samples) {
int over_bytes = (devc->num_samples - devc->actual_samples) * dsl_en_ch_num(sdi);
if (over_bytes >= devc->instant_tail_bytes) {
const uint32_t offset = (transfer->actual_length - over_bytes) / 2;
get_measure(sdi, cur_buf, offset);
devc->status = DSL_STOP;
} else {
}
}
}
if (devc->status == DSL_DATA)
resubmit_transfer(transfer);
else
free_transfer(transfer);
devc->trf_completed = 1;
}
static void receive_header(struct libusb_transfer *transfer)
{
struct DSL_context *devc;
struct sr_datafeed_packet packet;
struct ds_trigger_pos *trigger_pos;
const struct sr_dev_inst *sdi;
uint64_t remain_cnt;
packet.status = SR_PKT_OK;
devc = transfer->user_data;
sdi = devc->cb_data;
trigger_pos = (struct ds_trigger_pos *)transfer->buffer;
if (devc->status != DSL_ABORT)
devc->status = DSL_ERROR;
if (!devc->abort && transfer->status == LIBUSB_TRANSFER_COMPLETED &&
trigger_pos->check_id == TRIG_CHECKID) {
sr_info("%llu: receive_trigger_pos(): status %d; timeout %d; received %d bytes.",
g_get_monotonic_time(), transfer->status, transfer->timeout, transfer->actual_length);
remain_cnt = trigger_pos->remain_cnt_h;
remain_cnt = (remain_cnt << 32) + trigger_pos->remain_cnt_l;
if (transfer->actual_length == dsl_header_size(devc)) {
if (sdi->mode != LOGIC ||
devc->stream ||
remain_cnt < devc->limit_samples) {
if (sdi->mode == LOGIC && (!devc->stream || (devc->status == DSL_ABORT))) {
devc->actual_samples = (devc->limit_samples - remain_cnt) & ~SAMPLES_ALIGN;
devc->actual_bytes = devc->actual_samples / DSLOGIC_ATOMIC_SAMPLES * dsl_en_ch_num(sdi) * DSLOGIC_ATOMIC_SIZE;
devc->actual_samples = devc->actual_bytes / dsl_en_ch_num(sdi) * 8;
}
packet.type = SR_DF_TRIGGER;
packet.payload = trigger_pos;
sr_session_send(sdi, &packet);
devc->status = DSL_DATA;
}
}
} else if (!devc->abort) {
sr_err("%s: trigger packet data error.", __func__);
packet.type = SR_DF_TRIGGER;
packet.payload = trigger_pos;
packet.status = SR_PKT_DATA_ERROR;
sr_session_send(sdi, &packet);
}
free_transfer(transfer);
}
SR_PRIV int dsl_start_transfers(const struct sr_dev_inst *sdi)
{
struct DSL_context *devc;
struct sr_usb_dev_inst *usb;
struct libusb_transfer *transfer;
unsigned int i, num_transfers;
int ret;
unsigned char *buf;
size_t size;
struct ds_trigger_pos *trigger_pos;
devc = sdi->priv;
usb = sdi->conn;
num_transfers = get_number_of_transfers(sdi);
size = get_buffer_size(sdi);
/* trigger packet transfer */
if (!(trigger_pos = g_try_malloc0(dsl_header_size(devc)))) {
sr_err("%s: USB trigger_pos buffer malloc failed.", __func__);
return SR_ERR_MALLOC;
}
devc->transfers = g_try_malloc0(sizeof(*devc->transfers) * (num_transfers + 1));
if (!devc->transfers) {
sr_err("%s: USB transfer malloc failed.", __func__);
return SR_ERR_MALLOC;
}
transfer = libusb_alloc_transfer(0);
libusb_fill_bulk_transfer(transfer, usb->devhdl,
6 | LIBUSB_ENDPOINT_IN, (unsigned char *)trigger_pos, dsl_header_size(devc),
(libusb_transfer_cb_fn)receive_header, devc, 0);
if ((ret = libusb_submit_transfer(transfer)) != 0) {
sr_err("%s: Failed to submit trigger_pos transfer: %s.",
__func__, libusb_error_name(ret));
libusb_free_transfer(transfer);
g_free(trigger_pos);
devc->status = DSL_ERROR;
return SR_ERR;
} else {
devc->num_transfers++;
devc->transfers[0] = transfer;
devc->submitted_transfers++;
}
/* data packet transfer */
for (i = 1; i <= num_transfers; i++) {
if (!(buf = g_try_malloc(size))) {
sr_err("%s: USB transfer buffer malloc failed.", __func__);
return SR_ERR_MALLOC;
}
transfer = libusb_alloc_transfer(0);
libusb_fill_bulk_transfer(transfer, usb->devhdl,
6 | LIBUSB_ENDPOINT_IN, buf, size,
(libusb_transfer_cb_fn)receive_transfer, devc, 0);
if ((ret = libusb_submit_transfer(transfer)) != 0) {
sr_err("%s: Failed to submit transfer: %s.",
__func__, libusb_error_name(ret));
libusb_free_transfer(transfer);
g_free(buf);
devc->status = DSL_ERROR;
devc->abort = TRUE;
return SR_ERR;
}
devc->transfers[i] = transfer;
devc->submitted_transfers++;
devc->num_transfers++;
}
return SR_OK;
}