2022-10-21 11:10:28 +08:00

158 lines
5.5 KiB
Python

##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2015 Jeremy Swanson <jeremy@rakocontrols.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
class SamplerateError(Exception):
pass
class Decoder(srd.Decoder):
api_version = 3
id = 'dsi'
name = 'DSI'
longname = 'Digital Serial Interface'
desc = 'Digital Serial Interface (DSI) lighting protocol.'
license = 'gplv2+'
inputs = ['logic']
outputs = []
tags = ['Embedded/industrial', 'Lighting']
channels = (
{'id': 'dsi', 'name': 'DSI', 'desc': 'DSI data line', 'idn':'dec_dsi_chan_dsi'},
)
options = (
{'id': 'polarity', 'desc': 'Polarity', 'default': 'active-high',
'values': ('active-low', 'active-high'), 'idn':'dec_dsi_opt_polarity'},
)
annotations = (
('bit', 'Bit'),
('startbit', 'Start bit'),
('level', 'Dimmer level'),
('raw', 'Raw data'),
)
annotation_rows = (
('bits', 'Bits', (0,)),
('raw', 'Raw data', (3,)),
('fields', 'Fields', (1, 2)),
)
def __init__(self):
self.reset()
def reset(self):
self.samplerate = None
self.samplenum = None
self.edges, self.bits, self.ss_es_bits = [], [], []
self.state = 'IDLE'
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
self.old_dsi = 1 if self.options['polarity'] == 'active-low' else 0
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
# One bit: 1666.7us (one half low, one half high).
# This is how many samples are in 1TE.
self.halfbit = int((self.samplerate * 0.0016667) / 2.0)
def putb(self, bit1, bit2, data):
ss, es = self.ss_es_bits[bit1][0], self.ss_es_bits[bit2][1]
self.put(ss, es, self.out_ann, data)
def handle_bits(self, length):
a, c, f, g, b = 0, 0, 0, 0, self.bits
# Individual raw bits.
for i in range(length):
if i == 0:
ss = max(0, self.bits[0][0])
else:
ss = self.ss_es_bits[i - 1][1]
es = self.bits[i][0] + (self.halfbit * 2)
self.ss_es_bits.append([ss, es])
self.putb(i, i, [0, ['%d' % self.bits[i][1]]])
# Bits[0:0]: Startbit
s = ['Startbit: %d' % b[0][1], 'ST: %d' % b[0][1], 'ST', 'S', 'S']
self.putb(0, 0, [1, s])
self.putb(0, 0, [3, s])
# Bits[1:8]
for i in range(8):
f |= (b[1 + i][1] << (7 - i))
g = f / 2.55
if length == 9: # BACKWARD Frame
s = ['Data: %02X' % f, 'Dat: %02X' % f,
'Dat: %02X' % f, 'D: %02X' % f, 'D']
self.putb(1, 8, [3, s])
s = ['Level: %d%%' % g, 'Lev: %d%%' % g,
'Lev: %d%%' % g, 'L: %d' % g, 'D']
self.putb(1, 8, [2, s])
return
def reset_decoder_state(self):
self.edges, self.bits, self.ss_es_bits = [], [], []
self.state = 'IDLE'
def decode(self):
if not self.samplerate:
raise SamplerateError('Cannot decode without samplerate.')
bit = 0
while True:
(self.dsi,) = self.wait()
if self.options['polarity'] == 'active-high':
self.dsi ^= 1 # Invert.
# State machine.
if self.state == 'IDLE':
# Wait for any edge (rising or falling).
if self.old_dsi == self.dsi:
continue
# Add in the first half of the start bit.
self.edges.append(self.samplenum - int(self.halfbit))
self.edges.append(self.samplenum)
# Start bit is 0->1.
self.phase0 = self.dsi ^ 1
self.state = 'PHASE1'
self.old_dsi = self.dsi
# Get the next sample point.
self.old_dsi = self.dsi
continue
if self.old_dsi != self.dsi:
self.edges.append(self.samplenum)
elif self.samplenum == (self.edges[-1] + int(self.halfbit * 1.5)):
self.edges.append(self.samplenum - int(self.halfbit * 0.5))
else:
continue
bit = self.old_dsi
if self.state == 'PHASE0':
self.phase0 = bit
self.state = 'PHASE1'
elif self.state == 'PHASE1':
if (bit == 1) and (self.phase0 == 1): # Stop bit.
if len(self.bits) == 17 or len(self.bits) == 9:
# Forward or Backward.
self.handle_bits(len(self.bits))
self.reset_decoder_state() # Reset upon errors.
continue
else:
self.bits.append([self.edges[-3], bit])
self.state = 'PHASE0'
self.old_dsi = self.dsi