2020-05-09 11:03:52 +08:00

227 lines
7.8 KiB
Python

###
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2020 DreamSourceLab <support@dreamsourcelab.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
from collections import namedtuple
Data = namedtuple('Data', ['ss', 'es', 'val'])
# Key: (CPOL, CPHA). Value: SPI mode.
# Clock polarity (CPOL) = 0/1: Clock is low/high when inactive.
# Clock phase (CPHA) = 0/1: Data is valid on the leading/trailing clock edge.
spi_mode = {
(0, 0): 0, # Mode 0
(0, 1): 1, # Mode 1
(1, 0): 2, # Mode 2
(1, 1): 3, # Mode 3
}
class ChannelError(Exception):
pass
class Decoder(srd.Decoder):
api_version = 3
id = 'qspi'
name = 'QSPI'
longname = 'Quad Serial Peripheral Interface'
desc = 'Full-duplex, synchronous, serial bus.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['spi']
tags = ['Embedded/industrial']
channels = (
{'id': 'clk', 'type': 0, 'name': 'CLK', 'desc': 'Clock'},
{'id': 'io0', 'type': 107, 'name': 'IO0', 'desc': 'Data i/o 0'},
)
optional_channels = (
{'id': 'io1', 'type': 107, 'name': 'IO1', 'desc': 'Data i/o 1'},
{'id': 'io2', 'type': 107, 'name': 'IO2', 'desc': 'Data i/o 2'},
{'id': 'io3', 'type': 107, 'name': 'IO3', 'desc': 'Data i/o 3'},
{'id': 'cs', 'type': -1, 'name': 'CS#', 'desc': 'Chip-select'},
)
options = (
{'id': 'cs_polarity', 'desc': 'CS# polarity', 'default': 'active-low',
'values': ('active-low', 'active-high')},
{'id': 'cpol', 'desc': 'Clock polarity (CPOL)', 'default': 0,
'values': (0, 1)},
{'id': 'cpha', 'desc': 'Clock phase (CPHA)', 'default': 0,
'values': (0, 1)},
{'id': 'bitorder', 'desc': 'Bit order',
'default': 'msb-first', 'values': ('msb-first', 'lsb-first')},
{'id': 'wordsize', 'desc': 'Word size', 'default': 8},
)
annotations = (
('106', 'data', 'data'),
)
annotation_rows = (
('data', 'data', (0,)),
)
def __init__(self):
self.reset()
def reset(self):
self.samplerate = None
self.bitcount = 0
self.data = 0
self.bits = []
self.ss_block = -1
self.samplenum = -1
self.ss_transfer = -1
self.cs_was_deasserted = False
self.have_cs = self.have_io1 = self.have_io3 = None
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
self.bw = (self.options['wordsize'] + 7) // 8
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
def putw(self, data):
self.put(self.ss_block, self.samplenum, self.out_ann, data)
def putdata(self):
# Pass bits and then data to the next PD up the stack.
ss, es = self.bits[-1][1], self.bits[0][2]
# Dataword annotations.
self.put(ss, es, self.out_ann, [0, ['%02X' % self.data]])
def reset_decoder_state(self):
self.data = 0
self.bits = []
self.bitcount = 0
def cs_asserted(self, cs):
active_low = (self.options['cs_polarity'] == 'active-low')
return (cs == 0) if active_low else (cs == 1)
def handle_bit(self, datapins, clk, cs):
# If this is the first bit of a dataword, save its sample number.
if self.bitcount == 0:
self.ss_block = self.samplenum
self.cs_was_deasserted = \
not self.cs_asserted(cs) if self.have_cs else False
bo = self.options['bitorder']
ws = self.options['wordsize']
if self.have_io3:
nibws = ws >> 2
elif self.have_io1:
nibws = ws >> 1
else:
nibws = ws
# Receive bit into our shift register.
if self.have_io3:
for i in range(4):
if bo == 'msb-first':
self.data |= datapins[i] << (ws - 1 - self.bitcount*4 - i)
else:
self.data |= datapins[3-i] << (self.bitcount*4 + i)
elif self.have_io1:
for i in range(2):
if bo == 'msb-first':
self.data |= datapins[i+2] << (ws - 1 - self.bitcount*2 - i)
else:
self.data |= datapins[3-i] << (self.bitcount*2 + i)
else:
if bo == 'msb-first':
self.data |= datapins[3] << (ws - 1 - self.bitcount)
else:
self.data |= datapins[3] << self.bitcount
# Guesstimate the endsample for this bit (can be overridden below).
es = self.samplenum
if self.bitcount > 0:
es += self.samplenum - self.bits[0][1]
self.bits.insert(0, [datapins[3], self.samplenum, es])
if self.bitcount > 0:
self.bits[1][2] = self.samplenum
self.bitcount += 1
# Continue to receive if not enough bits were received, yet.
if self.bitcount != nibws:
return
self.putdata()
self.reset_decoder_state()
def find_clk_edge(self, datapins, clk, cs, first):
if self.have_cs and (first or (self.matched & (0b1 << self.have_cs))):
# Send all CS# pin value changes.
oldcs = None if first else 1 - cs
# Reset decoder state when CS# changes (and the CS# pin is used).
self.reset_decoder_state()
# We only care about samples if CS# is asserted.
if self.have_cs and not self.cs_asserted(cs):
return
# Ignore sample if the clock pin hasn't changed.
if first or not (self.matched & (0b1 << 0)):
return
# Found the correct clock edge, now get the SPI bit(s).
self.handle_bit(datapins, clk, cs)
def decode(self):
# The CLK & IO0 input is mandatory. Other signals are (individually)
# optional. Tell stacked decoders when we don't have a CS# signal.
if not self.has_channel(0):
raise ChannelError('CLK pin required.')
self.have_io1 = self.has_channel(2)
self.have_io3 = self.has_channel(3) & self.has_channel(4)
self.have_cs = self.has_channel(5)
# We want all CLK changes. We want all CS changes if CS is used.
# Map 'have_cs' from boolean to an integer index. This simplifies
# evaluation in other locations.
# Sample data on rising/falling clock edge (depends on mode).
mode = spi_mode[self.options['cpol'], self.options['cpha']]
if mode == 0 or mode == 3: # Sample on rising clock edge
wait_cond = [{0: 'r'}]
else: # Sample on falling clock edge
wait_cond = [{0: 'f'}]
if self.have_cs:
self.have_cs = len(wait_cond)
wait_cond.append({5: 'e'})
# "Pixel compatibility" with the v2 implementation. Grab and
# process the very first sample before checking for edges. The
# previous implementation did this by seeding old values with
# None, which led to an immediate "change" in comparison.
(clk, d0, d1, d2, d3, cs) = self.wait({})
d = (d3, d2, d1, d0);
self.find_clk_edge(d, clk, cs, True)
while True:
(clk, d0, d1, d2, d3, cs) = self.wait(wait_cond)
d = (d3, d2, d1, d0);
self.find_clk_edge(d, clk, cs, False)#