2022-08-15 17:23:54 +08:00

1082 lines
38 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2010 Uwe Hermann <uwe@hermann-uwe.de>
* Copyright (C) 2011 Olivier Fauchon <olivier@aixmarseille.com>
* Copyright (C) 2012 Alexandru Gagniuc <mr.nuke.me@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "demo.h"
#include <math.h>
#include <errno.h>
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <inttypes.h>
#include <unistd.h>
#ifdef _WIN32
#include <io.h>
#include <fcntl.h>
#define pipe(fds) _pipe(fds, 4096, _O_BINARY)
#endif
#include "../../log.h"
/* Message logging helpers with subsystem-specific prefix string. */
#undef LOG_PREFIX
#define LOG_PREFIX "demo: "
/* The size of chunks to send through the session bus. */
/* TODO: Should be configurable. */
#define BUFSIZE 512*1024
#define DSO_BUFSIZE 10*1024
/* Private, per-device-instance driver context. */
/* TODO: struct context as with the other drivers. */
/* List of struct sr_dev_inst, maintained by dev_open()/dev_close(). */
SR_PRIV struct sr_dev_driver demo_driver_info;
static struct sr_dev_driver *di = &demo_driver_info;
extern struct ds_trigger *trigger;
static int hw_dev_acquisition_stop(const struct sr_dev_inst *sdi, void *cb_data);
static int hw_init(struct sr_context *sr_ctx)
{
return std_hw_init(sr_ctx, di, LOG_PREFIX);
}
static void adjust_samplerate(struct demo_context *devc)
{
devc->samplerates_max_index = ARRAY_SIZE(samplerates) - 1;
while (samplerates[devc->samplerates_max_index] >
channel_modes[devc->ch_mode].max_samplerate)
devc->samplerates_max_index--;
devc->samplerates_min_index = 0;
while (samplerates[devc->samplerates_min_index] <
channel_modes[devc->ch_mode].min_samplerate)
devc->samplerates_min_index++;
assert(devc->samplerates_max_index >= devc->samplerates_min_index);
if (devc->cur_samplerate > samplerates[devc->samplerates_max_index])
devc->cur_samplerate = samplerates[devc->samplerates_max_index];
if (devc->cur_samplerate < samplerates[devc->samplerates_min_index])
devc->cur_samplerate = samplerates[devc->samplerates_min_index];
}
static void probe_init(struct sr_dev_inst *sdi)
{
GSList *l;
struct demo_context *devc = sdi->priv;
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
probe->bits = channel_modes[devc->ch_mode].unit_bits;
probe->vdiv = 1000;
probe->vfactor = 1;
probe->coupling = SR_AC_COUPLING;
probe->trig_value = (1 << (probe->bits - 1));
probe->hw_offset = (1 << (probe->bits - 1));
probe->offset = probe->hw_offset +
(probe->index - (channel_modes[devc->ch_mode].num - 1) /2.0) * (1 << (probe->bits - 2));
probe->map_default = TRUE;
probe->map_unit = probeMapUnits[0];
probe->map_min = -(probe->vdiv * probe->vfactor * DS_CONF_DSO_VDIVS / 2000.0);
probe->map_max = probe->vdiv * probe->vfactor * DS_CONF_DSO_VDIVS / 2000.0;
}
}
static int setup_probes(struct sr_dev_inst *sdi, int num_probes)
{
uint16_t j;
struct sr_channel *probe;
struct demo_context *devc = sdi->priv;
for (j = 0; j < num_probes; j++) {
if (!(probe = sr_channel_new(j, channel_modes[devc->ch_mode].type,
TRUE, probe_names[j])))
return SR_ERR;
sdi->channels = g_slist_append(sdi->channels, probe);
}
probe_init(sdi);
return SR_OK;
}
static GSList *hw_scan(GSList *options)
{
struct sr_dev_inst *sdi;
struct drv_context *drvc;
struct demo_context *devc;
GSList *devices;
(void)options;
drvc = di->priv;
devices = NULL;
sr_info("%s", "Scan demo device.");
if (!(devc = g_try_malloc(sizeof(struct demo_context)))) {
sr_err("Device context malloc failed.");
return NULL;
}
devc->profile = &supported_Demo[0];
devc->ch_mode = devc->profile->dev_caps.default_channelmode;
devc->cur_samplerate = channel_modes[devc->ch_mode].default_samplerate;
devc->limit_samples = channel_modes[devc->ch_mode].default_samplelimit;
devc->limit_samples_show = devc->limit_samples;
devc->limit_msec = 0;
devc->sample_generator = devc->profile->dev_caps.default_pattern;
devc->timebase = devc->profile->dev_caps.default_timebase;
devc->max_height = 0;
adjust_samplerate(devc);
sdi = sr_dev_inst_new(channel_modes[devc->ch_mode].mode, 0, SR_ST_INITIALIZING,
devc->profile->vendor,
devc->profile->model,
devc->profile->model_version);
if (!sdi) {
g_free(devc);
sr_err("Device instance creation failed.");
return NULL;
}
sdi->priv = devc;
sdi->driver = di;
sdi->dev_type = DEV_TYPE_DEMO;
devices = g_slist_append(devices, sdi);
setup_probes(sdi, channel_modes[devc->ch_mode].num);
return devices;
}
static const GSList *hw_dev_mode_list(const struct sr_dev_inst *sdi)
{
struct demo_context *devc;
GSList *l = NULL;
unsigned int i;
devc = sdi->priv;
for (i = 0; i < ARRAY_SIZE(sr_mode_list); i++) {
if (devc->profile->dev_caps.mode_caps & (1 << i))
l = g_slist_append(l, &sr_mode_list[i]);
}
return l;
}
static int hw_dev_open(struct sr_dev_inst *sdi)
{
//(void)sdi;
struct demo_context *const devc = sdi->priv;
sdi->status = SR_ST_ACTIVE;
if (pipe(devc->pipe_fds)) {
/* TODO: Better error message. */
sr_err("%s: pipe() failed", __func__);
return SR_ERR;
}
devc->channel = g_io_channel_unix_new(devc->pipe_fds[0]);
g_io_channel_set_flags(devc->channel, G_IO_FLAG_NONBLOCK, NULL);
/* Set channel encoding to binary (default is UTF-8). */
g_io_channel_set_encoding(devc->channel, NULL, NULL);
/* Make channels to unbuffered. */
g_io_channel_set_buffered(devc->channel, FALSE);
return SR_OK;
}
static int hw_dev_close(struct sr_dev_inst *sdi)
{
//(void)sdi;
struct demo_context *const devc = sdi->priv;
if (sdi->status == SR_ST_ACTIVE && devc->channel) {
g_io_channel_shutdown(devc->channel, FALSE, NULL);
g_io_channel_unref(devc->channel);
devc->channel = NULL;
}
sdi->status = SR_ST_INACTIVE;
return SR_OK;
}
static int dev_destroy(struct sr_dev_inst *sdi)
{
hw_dev_close(sdi);
sr_dev_inst_free(sdi);
}
static int hw_cleanup(void)
{
return 0;
}
static unsigned int en_ch_num(const struct sr_dev_inst *sdi)
{
GSList *l;
unsigned int channel_en_cnt = 0;
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
channel_en_cnt += probe->enabled;
}
return channel_en_cnt;
}
static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel *ch,
const struct sr_channel_group *cg)
{
(void) cg;
struct demo_context *const devc = sdi->priv;
switch (id) {
case SR_CONF_SAMPLERATE:
*data = g_variant_new_uint64(devc->cur_samplerate);
break;
case SR_CONF_LIMIT_SAMPLES:
*data = g_variant_new_uint64(devc->limit_samples_show);
break;
case SR_CONF_LIMIT_MSEC:
*data = g_variant_new_uint64(devc->limit_msec);
break;
case SR_CONF_DEVICE_MODE:
*data = g_variant_new_int16(sdi->mode);
break;
case SR_CONF_TEST:
*data = g_variant_new_boolean(FALSE);
break;
case SR_CONF_LANGUAGE:
*data = g_variant_new_int16(devc->language);
break;
case SR_CONF_INSTANT:
*data = g_variant_new_boolean(devc->instant);
break;
case SR_CONF_PATTERN_MODE:
*data = g_variant_new_string(pattern_strings[devc->sample_generator]);
break;
case SR_CONF_MAX_HEIGHT:
*data = g_variant_new_string(maxHeights[devc->max_height]);
break;
case SR_CONF_MAX_HEIGHT_VALUE:
*data = g_variant_new_byte(devc->max_height);
break;
case SR_CONF_PROBE_OFFSET:
*data = g_variant_new_uint16(ch->offset);
break;
case SR_CONF_PROBE_HW_OFFSET:
*data = g_variant_new_uint16(ch->hw_offset);
break;
case SR_CONF_PROBE_VDIV:
*data = g_variant_new_uint64(ch->vdiv);
break;
case SR_CONF_PROBE_FACTOR:
*data = g_variant_new_uint64(ch->vfactor);
break;
case SR_CONF_TIMEBASE:
*data = g_variant_new_uint64(devc->timebase);
break;
case SR_CONF_MAX_TIMEBASE:
if (!sdi)
return SR_ERR;
*data = g_variant_new_uint64(MAX_TIMEBASE);
break;
case SR_CONF_MIN_TIMEBASE:
if (!sdi)
return SR_ERR;
*data = g_variant_new_uint64(MIN_TIMEBASE);
break;
case SR_CONF_PROBE_COUPLING:
*data = g_variant_new_byte(ch->coupling);
break;
case SR_CONF_TRIGGER_VALUE:
*data = g_variant_new_byte(ch->trig_value);
break;
case SR_CONF_PROBE_EN:
*data = g_variant_new_boolean(ch->enabled);
break;
case SR_CONF_MAX_DSO_SAMPLERATE:
*data = g_variant_new_uint64(channel_modes[devc->ch_mode].max_samplerate);
break;
case SR_CONF_MAX_DSO_SAMPLELIMITS:
*data = g_variant_new_uint64(devc->profile->dev_caps.dso_depth);
break;
case SR_CONF_HW_DEPTH:
*data = g_variant_new_uint64(devc->profile->dev_caps.hw_depth / channel_modes[devc->ch_mode].unit_bits);
break;
case SR_CONF_UNIT_BITS:
*data = g_variant_new_byte(channel_modes[devc->ch_mode].unit_bits);
break;
case SR_CONF_PROBE_MAP_DEFAULT:
if (!sdi || !ch)
return SR_ERR;
*data = g_variant_new_boolean(ch->map_default);
break;
case SR_CONF_PROBE_MAP_UNIT:
if (!sdi || !ch)
return SR_ERR;
*data = g_variant_new_string(ch->map_unit);
break;
case SR_CONF_PROBE_MAP_MIN:
if (!sdi || !ch)
return SR_ERR;
*data = g_variant_new_double(ch->map_min);
break;
case SR_CONF_PROBE_MAP_MAX:
if (!sdi || !ch)
return SR_ERR;
*data = g_variant_new_double(ch->map_max);
break;
case SR_CONF_VLD_CH_NUM:
*data = g_variant_new_int16(channel_modes[devc->ch_mode].num);
break;
case SR_CONF_HAVE_ZERO:
if (!sdi)
return SR_ERR;
*data = g_variant_new_boolean(devc->profile->dev_caps.feature_caps & CAPS_FEATURE_ZERO);
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int config_set(int id, GVariant *data, struct sr_dev_inst *sdi,
struct sr_channel *ch,
struct sr_channel_group *cg)
{
uint16_t i;
int ret, num_probes;
const char *stropt;
uint64_t tmp_u64;
(void) cg;
struct demo_context *const devc = sdi->priv;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
if (id == SR_CONF_SAMPLERATE) {
devc->cur_samplerate = g_variant_get_uint64(data);
devc->samples_counter = 0;
devc->pre_index = 0;
sr_dbg("%s: setting samplerate to %llu", __func__,
devc->cur_samplerate);
ret = SR_OK;
}
else if (id == SR_CONF_LIMIT_SAMPLES) {
devc->limit_msec = 0;
devc->limit_samples = g_variant_get_uint64(data);
devc->limit_samples = (devc->limit_samples + 63) & ~63;
devc->limit_samples_show = devc->limit_samples;
if (sdi->mode == DSO && en_ch_num(sdi) == 1) {
devc->limit_samples /= 2;
}
sr_dbg("%s: setting limit_samples to %llu", __func__,
devc->limit_samples);
ret = SR_OK;
}
else if (id == SR_CONF_LIMIT_MSEC) {
devc->limit_msec = g_variant_get_uint64(data);
devc->limit_samples = 0;
devc->limit_samples_show = devc->limit_samples;
sr_dbg("%s: setting limit_msec to %llu", __func__,
devc->limit_msec);
ret = SR_OK;
}
else if (id == SR_CONF_DEVICE_MODE) {
sdi->mode = g_variant_get_int16(data);
ret = SR_OK;
for (i = 0; i < ARRAY_SIZE(channel_modes); i++) {
if ((int)channel_modes[i].mode == sdi->mode &&
devc->profile->dev_caps.channels & (1 << i)) {
devc->ch_mode = channel_modes[i].id;
break;
}
}
num_probes = channel_modes[devc->ch_mode].num;
devc->cur_samplerate = channel_modes[devc->ch_mode].default_samplerate;
devc->limit_samples = channel_modes[devc->ch_mode].default_samplelimit;
devc->limit_samples_show = devc->limit_samples;
devc->timebase = devc->profile->dev_caps.default_timebase;
sr_dev_probes_free(sdi);
setup_probes(sdi, num_probes);
adjust_samplerate(devc);
sr_dbg("%s: setting mode to %d", __func__, sdi->mode);
}
else if (id == SR_CONF_PATTERN_MODE) {
stropt = g_variant_get_string(data, NULL);
ret = SR_OK;
if (!strcmp(stropt, pattern_strings[PATTERN_SINE])) {
devc->sample_generator = PATTERN_SINE;
} else if (!strcmp(stropt, pattern_strings[PATTERN_SQUARE])) {
devc->sample_generator = PATTERN_SQUARE;
} else if (!strcmp(stropt, pattern_strings[PATTERN_TRIANGLE])) {
devc->sample_generator = PATTERN_TRIANGLE;
} else if (!strcmp(stropt, pattern_strings[PATTERN_SAWTOOTH])) {
devc->sample_generator = PATTERN_SAWTOOTH;
} else if (!strcmp(stropt, pattern_strings[PATTERN_RANDOM])) {
devc->sample_generator = PATTERN_RANDOM;
} else {
ret = SR_ERR;
}
sr_dbg("%s: setting pattern to %d",
__func__, devc->sample_generator);
}
else if (id == SR_CONF_MAX_HEIGHT) {
stropt = g_variant_get_string(data, NULL);
ret = SR_OK;
for (i = 0; i < ARRAY_SIZE(maxHeights); i++) {
if (!strcmp(stropt, maxHeights[i])) {
devc->max_height = i;
break;
}
}
sr_dbg("%s: setting Signal Max Height to %d",
__func__, devc->max_height);
}
else if (id == SR_CONF_INSTANT) {
devc->instant = g_variant_get_boolean(data);
sr_dbg("%s: setting INSTANT mode to %d", __func__,
devc->instant);
ret = SR_OK;
}
else if (id == SR_CONF_HORIZ_TRIGGERPOS) {
ret = SR_OK;
}
else if (id == SR_CONF_TRIGGER_HOLDOFF) {
ret = SR_OK;
}
else if (id == SR_CONF_TRIGGER_MARGIN) {
ret = SR_OK;
}
else if (id == SR_CONF_PROBE_EN) {
ch->enabled = g_variant_get_boolean(data);
if (en_ch_num(sdi) != 0) {
devc->limit_samples_show = devc->profile->dev_caps.dso_depth / en_ch_num(sdi);
}
sr_dbg("%s: setting ENABLE of channel %d to %d", __func__,
ch->index, ch->enabled);
ret = SR_OK;
}
else if (id == SR_CONF_PROBE_VDIV) {
tmp_u64 = g_variant_get_uint64(data);
ch->vdiv = tmp_u64;
sr_dbg("%s: setting VDIV of channel %d to %llu", __func__,
ch->index, ch->vdiv);
ret = SR_OK;
}
else if (id == SR_CONF_PROBE_FACTOR) {
ch->vfactor = g_variant_get_uint64(data);
sr_dbg("%s: setting FACTOR of channel %d to %llu", __func__,
ch->index, ch->vfactor);
ret = SR_OK;
}
else if (id == SR_CONF_PROBE_OFFSET) {
ch->offset = g_variant_get_uint16(data);
sr_dbg("%s: setting OFFSET of channel %d to %d", __func__,
ch->index, ch->offset);
ret = SR_OK;
}
else if (id == SR_CONF_TIMEBASE) {
devc->timebase = g_variant_get_uint64(data);
sr_dbg("%s: setting TIMEBASE to %llu", __func__,
devc->timebase);
ret = SR_OK;
}
else if (id == SR_CONF_PROBE_COUPLING) {
ch->coupling = g_variant_get_byte(data);
sr_dbg("%s: setting AC COUPLING of channel %d to %d", __func__,
ch->index, ch->coupling);
ret = SR_OK;
}
else if (id == SR_CONF_TRIGGER_SOURCE) {
devc->trigger_source = g_variant_get_byte(data);
sr_dbg("%s: setting Trigger Source to %d",
__func__, devc->trigger_source);
ret = SR_OK;
}
else if (id == SR_CONF_TRIGGER_SLOPE) {
devc->trigger_slope = g_variant_get_byte(data);
sr_dbg("%s: setting Trigger Slope to %d",
__func__, devc->trigger_slope);
ret = SR_OK;
}
else if (id == SR_CONF_TRIGGER_VALUE) {
ch->trig_value = g_variant_get_byte(data);
sr_dbg("%s: setting channel %d Trigger Value to %d",
__func__, ch->index, ch->trig_value);
ret = SR_OK;
}
else if (id == SR_CONF_PROBE_MAP_DEFAULT) {
ch->map_default = g_variant_get_boolean(data);
if (ch->map_default) {
ch->map_unit = probeMapUnits[0];
ch->map_min = -(ch->vdiv * ch->vfactor * DS_CONF_DSO_VDIVS / 2000.0);
ch->map_max = ch->vdiv * ch->vfactor * DS_CONF_DSO_VDIVS / 2000.0;
}
ret = SR_OK;
}
else if (id == SR_CONF_PROBE_MAP_UNIT) {
if (ch->map_default)
ch->map_unit = probeMapUnits[0];
else
ch->map_unit = g_variant_get_string(data, NULL);
ret = SR_OK;
}
else if (id == SR_CONF_PROBE_MAP_MIN) {
if (ch->map_default)
ch->map_min = -(ch->vdiv * ch->vfactor * DS_CONF_DSO_VDIVS / 2000.0);
else
ch->map_min = g_variant_get_double(data);
ret = SR_OK;
}
else if (id == SR_CONF_PROBE_MAP_MAX) {
if (ch->map_default)
ch->map_max = ch->vdiv * ch->vfactor * DS_CONF_DSO_VDIVS / 2000.0;
else
ch->map_max = g_variant_get_double(data);
ret = SR_OK;
}
else if (id == SR_CONF_LANGUAGE) {
devc->language = g_variant_get_int16(data);
ret = SR_OK;
}
else {
ret = SR_ERR_NA;
}
return ret;
}
static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct demo_context *devc;
GVariant *gvar;
GVariantBuilder gvb;
int i;
(void)cg;
devc = sdi->priv;
switch (key) {
case SR_CONF_DEVICE_OPTIONS:
// *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
// hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t));
*data = g_variant_new_from_data(G_VARIANT_TYPE("ai"),
hwoptions, ARRAY_SIZE(hwoptions)*sizeof(int32_t), TRUE, NULL, NULL);
break;
case SR_CONF_DEVICE_SESSIONS:
*data = g_variant_new_from_data(G_VARIANT_TYPE("ai"),
sessions, ARRAY_SIZE(sessions)*sizeof(int32_t), TRUE, NULL, NULL);
break;
case SR_CONF_SAMPLERATE:
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
gvar = g_variant_new_from_data(G_VARIANT_TYPE("at"),
samplerates + devc->samplerates_min_index,
(devc->samplerates_max_index - devc->samplerates_min_index + 1) * sizeof(uint64_t), TRUE, NULL, NULL);
g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_PATTERN_MODE:
*data = g_variant_new_strv(pattern_strings, ARRAY_SIZE(pattern_strings));
break;
case SR_CONF_MAX_HEIGHT:
*data = g_variant_new_strv(maxHeights, ARRAY_SIZE(maxHeights));
break;
case SR_CONF_PROBE_CONFIGS:
*data = g_variant_new_from_data(G_VARIANT_TYPE("ai"),
probeOptions, ARRAY_SIZE(probeOptions)*sizeof(int32_t), TRUE, NULL, NULL);
break;
case SR_CONF_PROBE_SESSIONS:
*data = g_variant_new_from_data(G_VARIANT_TYPE("ai"),
probeSessions, ARRAY_SIZE(probeSessions)*sizeof(int32_t), TRUE, NULL, NULL);
break;
case SR_CONF_PROBE_VDIV:
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
for (i = 0; devc->profile->dev_caps.vdivs[i]; i++);
gvar = g_variant_new_from_data(G_VARIANT_TYPE("at"),
devc->profile->dev_caps.vdivs, i*sizeof(uint64_t), TRUE, NULL, NULL);
g_variant_builder_add(&gvb, "{sv}", "vdivs", gvar);
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_PROBE_COUPLING:
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
gvar = g_variant_new_from_data(G_VARIANT_TYPE("ay"),
probeCoupling, ARRAY_SIZE(probeCoupling)*sizeof(uint8_t), TRUE, NULL, NULL);
g_variant_builder_add(&gvb, "{sv}", "coupling", gvar);
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_PROBE_MAP_UNIT:
*data = g_variant_new_strv(probeMapUnits, ARRAY_SIZE(probeMapUnits));
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static void samples_generator(uint16_t *buf, uint64_t size,
const struct sr_dev_inst *sdi,
struct demo_context *devc)
{
uint64_t i, pre0_i, pre1_i;
GSList *l;
struct sr_channel *probe;
unsigned int start_rand;
double span = 1;
const uint64_t len = ARRAY_SIZE(sinx) - 1;
const int *pre_buf;
uint16_t tmp_u16 = 0;
unsigned int ch_num = en_ch_num(sdi) ? en_ch_num(sdi) : 1;
switch (devc->sample_generator) {
case PATTERN_SINE: /* Sine */
pre_buf = sinx;
break;
case PATTERN_SQUARE:
pre_buf = sqrx;
break;
case PATTERN_TRIANGLE:
pre_buf = trix;
break;
case PATTERN_SAWTOOTH:
pre_buf = sawx;
break;
case PATTERN_RANDOM:
pre_buf = ranx;
break;
default:
pre_buf = sinx;
break;
}
if (sdi->mode == LOGIC) {
for (i = 0; i < size; i++) {
//index = (i/10/g_slist_length(sdi->channels)+start_rand)%len;
//*(buf + i) = (uint16_t)(((const_dc+pre_buf[index]) << 8) + (const_dc+pre_buf[index]));
tmp_u16 = 0;
if (i < ch_num*4)
*(buf + i) = tmp_u16;
else if (i % 4 == 0) {
start_rand = rand() % (ch_num * 4);
if (start_rand == (i/4 % ch_num))
tmp_u16 = 0xffff;
*(buf + i) = tmp_u16 ? ~*(buf + i - ch_num*4) : *(buf + i - ch_num*4);
} else {
*(buf + i) = *(buf + i - 1);
}
}
} else {
if (sdi->mode == DSO) {
if (ch_num == 1)
span = 2 * channel_modes[devc->ch_mode].max_samplerate / devc->cur_samplerate;
else
span = channel_modes[devc->ch_mode].max_samplerate / devc->cur_samplerate;
} else if (sdi->mode == ANALOG) {
span = len * 20.0 / devc->limit_samples;
}
if (devc->pre_index == 0) {
devc->mstatus.ch0_max = 0;
devc->mstatus.ch0_min = 255;
devc->mstatus.ch1_max = 0;
devc->mstatus.ch1_min = 255;
devc->mstatus.ch0_cyc_tlen = 0;
devc->mstatus.ch0_cyc_cnt = 1;
devc->mstatus.ch1_cyc_tlen = 0;
devc->mstatus.ch1_cyc_cnt = 1;
devc->mstatus.ch0_level_valid = TRUE;
devc->mstatus.ch0_plevel = TRUE;
devc->mstatus.ch1_level_valid = TRUE;
devc->mstatus.ch1_plevel = TRUE;
}
if (sdi->mode == DSO)
memset(buf, 0, size*sizeof(uint16_t));
else if (sdi->mode == ANALOG)
memset(buf, 0, size*sizeof(uint16_t));
for (l = sdi->channels; l; l = l->next) {
start_rand = devc->pre_index * span;
probe = (struct sr_channel *)l->data;
pre0_i = devc->pre_index;
pre1_i = devc->pre_index;
for (i = 0; i < size; i++) {
if (probe->coupling == SR_DC_COUPLING) {
*(buf + i) += (uint8_t)(probe->hw_offset + (1000.0/probe->vdiv) * (pre_buf[(uint64_t)(i*span+start_rand)%len] - const_dc)) << (probe->index * 8);
} else if (probe->coupling == SR_AC_COUPLING) {
*(buf + i) += (uint8_t)(probe->hw_offset + (1000.0/probe->vdiv) * pre_buf[(uint64_t)(i*span+start_rand)%len]) << (probe->index * 8);
} else {
*(buf + i) += probe->hw_offset << (probe->index * 8);
}
if (probe->index == 0) {
devc->mstatus.ch0_max = MAX(devc->mstatus.ch0_max, (*(buf + i) & 0x00ff));
devc->mstatus.ch0_min = MIN(devc->mstatus.ch0_min, (*(buf + i) & 0x00ff));
if (pre_buf[(uint64_t)(i*span+start_rand)%len] < 0 &&
pre_buf[(uint64_t)((i-1)*span+start_rand)%len] > 0) {
devc->mstatus.ch0_cyc_tlen = 2*(i - pre0_i)*pow(10, 8)/channel_modes[devc->ch_mode].max_samplerate;
devc->mstatus.ch0_cyc_cnt++;
pre0_i = i;
}
} else {
devc->mstatus.ch1_max = MAX(devc->mstatus.ch1_max, ((*(buf + i) & 0xff00) >> 8));
devc->mstatus.ch1_min = MIN(devc->mstatus.ch1_min, ((*(buf + i) & 0xff00) >> 8));
if (pre_buf[(uint64_t)(i*span+start_rand)%len] < 0 &&
pre_buf[(uint64_t)((i-1)*span+start_rand)%len] > 0) {
devc->mstatus.ch1_cyc_tlen = 2*(i - pre1_i)*pow(10, 8)/channel_modes[devc->ch_mode].max_samplerate;
devc->mstatus.ch1_cyc_cnt++;
pre1_i = i;
}
}
}
}
for (l = sdi->channels; l; l = l->next) {
probe = (struct sr_channel *)l->data;
if (!probe->enabled) {
devc->mstatus.ch1_max = MAX(devc->mstatus.ch0_max, devc->mstatus.ch1_max);
devc->mstatus.ch1_min = MIN(devc->mstatus.ch0_min, devc->mstatus.ch1_min);
devc->mstatus.ch0_max = MAX(devc->mstatus.ch0_max, devc->mstatus.ch1_max);
devc->mstatus.ch0_min = MIN(devc->mstatus.ch0_min, devc->mstatus.ch1_min);
break;
}
}
devc->mstatus.ch0_cyc_tlen *= devc->mstatus.ch0_cyc_cnt;
devc->mstatus.ch1_cyc_tlen *= devc->mstatus.ch1_cyc_cnt;
devc->mstatus.ch0_high_level = devc->mstatus.ch0_max;
devc->mstatus.ch0_low_level = devc->mstatus.ch0_min;
devc->mstatus.ch1_high_level = devc->mstatus.ch1_max;
devc->mstatus.ch1_low_level = devc->mstatus.ch1_min;
devc->mstatus.ch0_cyc_llen = 0;
devc->mstatus.ch1_cyc_llen = 0;
devc->mstatus.ch0_cyc_plen = devc->mstatus.ch0_cyc_tlen / 2;
devc->mstatus.ch1_cyc_plen = devc->mstatus.ch1_cyc_tlen / 2;
devc->mstatus.ch0_cyc_rlen = devc->mstatus.ch0_cyc_tlen / 4;
devc->mstatus.ch0_cyc_flen = devc->mstatus.ch0_cyc_tlen / 4;
devc->mstatus.ch1_cyc_rlen = devc->mstatus.ch1_cyc_tlen / 4;
devc->mstatus.ch1_cyc_flen = devc->mstatus.ch1_cyc_tlen / 4;
for (l = sdi->channels; l; l = l->next) {
probe = (struct sr_channel *)l->data;
if (probe->index == 0) {
devc->mstatus.ch0_acc_mean = (probe->coupling == SR_AC_COUPLING) ? probe->hw_offset * devc->limit_samples_show :
(devc->mstatus.ch0_max + devc->mstatus.ch0_min) / 2.0 * devc->limit_samples_show;
devc->mstatus.ch0_acc_square = (probe->coupling == SR_AC_COUPLING) ? pow((devc->mstatus.ch0_max - probe->hw_offset) * 0.707, 2) * devc->limit_samples_show :
pow((devc->mstatus.ch0_max - devc->mstatus.ch0_min) * 0.707, 2) * devc->limit_samples_show;
} else {
devc->mstatus.ch1_acc_mean = (probe->coupling == SR_AC_COUPLING) ? probe->hw_offset * devc->limit_samples_show :
(devc->mstatus.ch1_max + devc->mstatus.ch1_min) / 2.0 * devc->limit_samples_show;
devc->mstatus.ch1_acc_square = (probe->coupling == SR_AC_COUPLING) ? pow((devc->mstatus.ch1_max - probe->hw_offset) * 0.707, 2) * devc->limit_samples_show :
pow((devc->mstatus.ch1_max - devc->mstatus.ch1_min) * 0.707, 2) * devc->limit_samples_show;
}
}
devc->mstatus.measure_valid = TRUE;
}
}
/* Callback handling data */
static int receive_data(int fd, int revents, const struct sr_dev_inst *sdi)
{
struct demo_context *devc = sdi->priv;
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
struct sr_datafeed_dso dso;
struct sr_datafeed_analog analog;
double samples_elaspsed;
uint64_t samples_to_send = 0, sending_now;
int64_t time, elapsed;
static uint16_t last_sample = 0;
uint16_t cur_sample;
uint64_t i;
(void)fd;
(void)revents;
packet.status = SR_PKT_OK;
/* How many "virtual" samples should we have collected by now? */
time = g_get_monotonic_time();
elapsed = time - devc->starttime;
devc->starttime = time;
//expected_samplenum = ceil(elapsed / 1000000.0 * devc->cur_samplerate);
/* Of those, how many do we still have to send? */
samples_elaspsed = elapsed / 1000000.0 * devc->cur_samplerate;
if (devc->limit_samples) {
if (sdi->mode == DSO && !devc->instant) {
samples_to_send = ceil(samples_elaspsed);
} else if (sdi->mode == ANALOG) {
samples_to_send = ceil(samples_elaspsed);
} else {
samples_to_send = ceil(samples_elaspsed);
samples_to_send += devc->samples_not_sent;
if (samples_to_send < 64) {
devc->samples_not_sent = samples_to_send;
return TRUE;
} else
devc->samples_not_sent = samples_to_send & 63;
samples_to_send = samples_to_send & ~63;
samples_to_send = MIN(samples_to_send,
devc->limit_samples - devc->samples_counter);
}
}
if (samples_to_send > 0 && !devc->stop) {
sending_now = MIN(samples_to_send, (sdi->mode == DSO ) ? DSO_BUFSIZE : BUFSIZE);
if (sdi->mode == DSO && !devc->instant) {
if (en_ch_num(sdi) == 1) {
devc->samples_counter += sending_now / 2;
devc->samples_counter = min(devc->samples_counter, devc->limit_samples_show / 2);
} else {
devc->samples_counter += sending_now;
devc->samples_counter = min(devc->samples_counter, devc->limit_samples_show);
}
} else {
devc->samples_counter += sending_now;
}
if (sdi->mode == ANALOG)
samples_generator(devc->buf, sending_now*2, sdi, devc);
else if (sdi->mode == DSO)
samples_generator(devc->buf, devc->samples_counter, sdi, devc);
else
samples_generator(devc->buf, sending_now, sdi, devc);
if (devc->trigger_stage != 0) {
for (i = 0; i < sending_now; i++) {
if (devc->trigger_edge == 0) {
if ((*(devc->buf + i) | devc->trigger_mask) ==
(devc->trigger_value | devc->trigger_mask)) {
devc->trigger_stage = 0;
break;
}
} else {
cur_sample = *(devc->buf + i);
if (((last_sample & devc->trigger_edge) ==
(~devc->trigger_value & devc->trigger_edge)) &&
((cur_sample | devc->trigger_mask) ==
(devc->trigger_value | devc->trigger_mask)) &&
((cur_sample & devc->trigger_edge) ==
(devc->trigger_value & devc->trigger_edge))) {
devc->trigger_stage = 0;
break;
}
last_sample = cur_sample;
}
}
if (devc->trigger_stage == 0) {
struct ds_trigger_pos demo_trigger_pos;
demo_trigger_pos.real_pos = i;
packet.type = SR_DF_TRIGGER;
packet.payload = &demo_trigger_pos;
ds_data_forward(sdi, &packet);
}
}
if (devc->trigger_stage == 0){
//samples_to_send -= sending_now;
if (sdi->mode == LOGIC) {
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = sending_now * (channel_modes[devc->ch_mode].num >> 3);
logic.format = LA_CROSS_DATA;
logic.data = devc->buf;
} else if (sdi->mode == DSO) {
packet.type = SR_DF_DSO;
packet.payload = &dso;
dso.probes = sdi->channels;
if (devc->instant)
dso.num_samples = sending_now;
else
dso.num_samples = devc->samples_counter;
if (en_ch_num(sdi) == 1)
dso.num_samples *= 2;
dso.mq = SR_MQ_VOLTAGE;
dso.unit = SR_UNIT_VOLT;
dso.mqflags = SR_MQFLAG_AC;
dso.data = devc->buf;
}else {
packet.type = SR_DF_ANALOG;
packet.payload = &analog;
analog.probes = sdi->channels;
analog.num_samples = sending_now;
analog.unit_bits = channel_modes[devc->ch_mode].unit_bits;;
analog.mq = SR_MQ_VOLTAGE;
analog.unit = SR_UNIT_VOLT;
analog.mqflags = SR_MQFLAG_AC;
analog.data = devc->buf;
}
if (sdi->mode == DSO && !devc->instant) {
if ((uint64_t)dso.num_samples < devc->limit_samples_show)
devc->pre_index = 0;
else
devc->pre_index += sending_now;
} else if (sdi->mode == ANALOG) {
devc->pre_index += sending_now;
}
ds_data_forward(sdi, &packet);
devc->mstatus.trig_hit = (devc->trigger_stage == 0);
devc->mstatus.captured_cnt0 = devc->samples_counter;
devc->mstatus.captured_cnt1 = devc->samples_counter >> 8;
devc->mstatus.captured_cnt2 = devc->samples_counter >> 16;
devc->mstatus.captured_cnt3 = devc->samples_counter >> 32;
}
}
if ((sdi->mode == LOGIC || devc->instant) && devc->limit_samples &&
devc->samples_counter >= devc->limit_samples) {
sr_dbg("Requested number of samples reached.");
hw_dev_acquisition_stop(sdi, NULL);
return TRUE;
}
return TRUE;
}
static int hw_dev_acquisition_start(struct sr_dev_inst *sdi,
void *cb_data)
{
struct demo_context *const devc = sdi->priv;
(void)cb_data;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
//devc->cb_data = cb_data;
devc->samples_counter = 0;
devc->pre_index = 0;
devc->mstatus.captured_cnt0 = 0;
devc->mstatus.captured_cnt1 = 0;
devc->mstatus.captured_cnt2 = 0;
devc->mstatus.captured_cnt3 = 0;
devc->stop = FALSE;
devc->samples_not_sent = 0;
devc->trigger_stage = 0;
/*
* Setting two channels connected by a pipe is a remnant from when the
* demo driver generated data in a thread, and collected and sent the
* data in the main program loop.
* They are kept here because it provides a convenient way of setting
* up a timeout-based polling mechanism.
*/
sr_session_source_add_channel(devc->channel, G_IO_IN | G_IO_ERR,
50, receive_data, sdi);
/* Send header packet to the session bus. */
//std_session_send_df_header(cb_data, LOG_PREFIX);
std_session_send_df_header(sdi, LOG_PREFIX);
if (!(devc->buf = g_try_malloc(((sdi->mode == DSO ) ? DSO_BUFSIZE : (sdi->mode == ANALOG ) ? 2*BUFSIZE : BUFSIZE)*sizeof(uint16_t)))) {
sr_err("buf for receive_data malloc failed.");
return FALSE;
}
/* We use this timestamp to decide how many more samples to send. */
devc->starttime = g_get_monotonic_time();
return SR_OK;
}
static int hw_dev_acquisition_stop(const struct sr_dev_inst *sdi, void *cb_data)
{
(void)cb_data;
struct demo_context *const devc = sdi->priv;
struct sr_datafeed_packet packet;
if (devc->stop)
return SR_OK;
sr_dbg("Stopping acquisition.");
devc->stop = TRUE;
sr_session_source_remove_channel(devc->channel);
g_free(devc->buf);
/* Send last packet. */
packet.type = SR_DF_END;
packet.status = SR_PKT_OK;
ds_data_forward(sdi, &packet);
return SR_OK;
}
static int hw_dev_status_get(const struct sr_dev_inst *sdi, struct sr_status *status, gboolean prg)
{
(void)prg;
if (sdi) {
struct demo_context *const devc = sdi->priv;
*status = devc->mstatus;
return SR_OK;
} else {
return SR_ERR;
}
}
SR_PRIV struct sr_dev_driver demo_driver_info = {
.name = "virtual-demo",
.longname = "Demo driver and pattern generator",
.api_version = 1,
.driver_type = DRIVER_TYPE_DEMO,
.init = hw_init,
.cleanup = hw_cleanup,
.scan = hw_scan,
.dev_mode_list = hw_dev_mode_list,
.config_get = config_get,
.config_set = config_set,
.config_list = config_list,
.dev_open = hw_dev_open,
.dev_close = hw_dev_close,
.dev_destroy = dev_destroy,
.dev_status_get = hw_dev_status_get,
.dev_acquisition_start = hw_dev_acquisition_start,
.dev_acquisition_stop = hw_dev_acquisition_stop,
.priv = NULL,
};