2022-01-27 19:23:31 -08:00

265 lines
9.4 KiB
Python

##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2012-2014 Uwe Hermann <uwe@hermann-uwe.de>
## Copyright (C) 2013 Matt Ranostay <mranostay@gmail.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import re
import sigrokdecode as srd
from common.srdhelper import bcd2int
days_of_week = (
'Sunday', 'Monday', 'Tuesday', 'Wednesday',
'Thursday', 'Friday', 'Saturday',
)
regs = (
'Seconds', 'Minutes', 'Hours', 'Day', 'Date', 'Month', 'Year',
'Control', 'RAM',
)
bits = (
'Clock halt', 'Seconds', 'Reserved', 'Minutes', '12/24 hours', 'AM/PM',
'Hours', 'Day', 'Date', 'Month', 'Year', 'OUT', 'SQWE', 'RS', 'RAM',
)
rates = {
0b00: '1Hz',
0b01: '4096Hz',
0b10: '8192Hz',
0b11: '32768Hz',
}
DS1307_I2C_ADDRESS = 0x68
def regs_and_bits():
l = [('reg-' + r.lower(), r + ' register') for r in regs]
l += [('bit-' + re.sub('\/| ', '-', b).lower(), b + ' bit') for b in bits]
return tuple(l)
class Decoder(srd.Decoder):
api_version = 3
id = 'ds1307'
name = 'DS1307'
longname = 'Dallas DS1307'
desc = 'Dallas DS1307 realtime clock module protocol.'
license = 'gplv2+'
inputs = ['i2c']
outputs = []
tags = ['Clock/timing', 'IC']
annotations = regs_and_bits() + (
('read-datetime', 'Read date/time'),
('write-datetime', 'Write date/time'),
('reg-read', 'Register read'),
('reg-write', 'Register write'),
('warnings', 'Warnings'),
)
annotation_rows = (
('bits', 'Bits', tuple(range(9, 24))),
('regs', 'Registers', tuple(range(9))),
('date-time', 'Date/time', (24, 25, 26, 27)),
('warnings', 'Warnings', (28,)),
)
def __init__(self):
self.reset()
def reset(self):
self.state = 'IDLE'
self.hours = -1
self.minutes = -1
self.seconds = -1
self.days = -1
self.date = -1
self.months = -1
self.years = -1
self.bits = []
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
def putx(self, data):
self.put(self.ss, self.es, self.out_ann, data)
def putd(self, bit1, bit2, data):
self.put(self.bits[bit1][1], self.bits[bit2][2], self.out_ann, data)
def putr(self, bit):
self.put(self.bits[bit][1], self.bits[bit][2], self.out_ann,
[11, ['Reserved bit', 'Reserved', 'Rsvd', 'R']])
def handle_reg_0x00(self, b): # Seconds (0-59) / Clock halt bit
self.putd(7, 0, [0, ['Seconds', 'Sec', 'S']])
ch = 1 if (b & (1 << 7)) else 0
self.putd(7, 7, [9, ['Clock halt: %d' % ch, 'Clk hlt: %d' % ch,
'CH: %d' % ch, 'CH']])
s = self.seconds = bcd2int(b & 0x7f)
self.putd(6, 0, [10, ['Second: %d' % s, 'Sec: %d' % s, 'S: %d' % s, 'S']])
def handle_reg_0x01(self, b): # Minutes (0-59)
self.putd(7, 0, [1, ['Minutes', 'Min', 'M']])
self.putr(7)
m = self.minutes = bcd2int(b & 0x7f)
self.putd(6, 0, [12, ['Minute: %d' % m, 'Min: %d' % m, 'M: %d' % m, 'M']])
def handle_reg_0x02(self, b): # Hours (1-12+AM/PM or 0-23)
self.putd(7, 0, [2, ['Hours', 'H']])
self.putr(7)
ampm_mode = True if (b & (1 << 6)) else False
if ampm_mode:
self.putd(6, 6, [13, ['12-hour mode', '12h mode', '12h']])
a = 'PM' if (b & (1 << 5)) else 'AM'
self.putd(5, 5, [14, [a, a[0]]])
h = self.hours = bcd2int(b & 0x1f)
self.putd(4, 0, [15, ['Hour: %d' % h, 'H: %d' % h, 'H']])
else:
self.putd(6, 6, [13, ['24-hour mode', '24h mode', '24h']])
h = self.hours = bcd2int(b & 0x3f)
self.putd(5, 0, [15, ['Hour: %d' % h, 'H: %d' % h, 'H']])
def handle_reg_0x03(self, b): # Day / day of week (1-7)
self.putd(7, 0, [3, ['Day of week', 'Day', 'D']])
for i in (7, 6, 5, 4, 3):
self.putr(i)
w = self.days = bcd2int(b & 0x07)
ws = days_of_week[self.days - 1]
self.putd(2, 0, [16, ['Weekday: %s' % ws, 'WD: %s' % ws, 'WD', 'W']])
def handle_reg_0x04(self, b): # Date (1-31)
self.putd(7, 0, [4, ['Date', 'D']])
for i in (7, 6):
self.putr(i)
d = self.date = bcd2int(b & 0x3f)
self.putd(5, 0, [17, ['Date: %d' % d, 'D: %d' % d, 'D']])
def handle_reg_0x05(self, b): # Month (1-12)
self.putd(7, 0, [5, ['Month', 'Mon', 'M']])
for i in (7, 6, 5):
self.putr(i)
m = self.months = bcd2int(b & 0x1f)
self.putd(4, 0, [18, ['Month: %d' % m, 'Mon: %d' % m, 'M: %d' % m, 'M']])
def handle_reg_0x06(self, b): # Year (0-99)
self.putd(7, 0, [6, ['Year', 'Y']])
y = self.years = bcd2int(b & 0xff)
self.years += 2000
self.putd(7, 0, [19, ['Year: %d' % y, 'Y: %d' % y, 'Y']])
def handle_reg_0x07(self, b): # Control Register
self.putd(7, 0, [7, ['Control', 'Ctrl', 'C']])
for i in (6, 5, 3, 2):
self.putr(i)
o = 1 if (b & (1 << 7)) else 0
s = 1 if (b & (1 << 4)) else 0
s2 = 'en' if (b & (1 << 4)) else 'dis'
r = rates[b & 0x03]
self.putd(7, 7, [20, ['Output control: %d' % o,
'OUT: %d' % o, 'O: %d' % o, 'O']])
self.putd(4, 4, [21, ['Square wave output: %sabled' % s2,
'SQWE: %sabled' % s2, 'SQWE: %d' % s, 'S: %d' % s, 'S']])
self.putd(1, 0, [22, ['Square wave output rate: %s' % r,
'Square wave rate: %s' % r, 'SQW rate: %s' % r, 'Rate: %s' % r,
'RS: %s' % s, 'RS', 'R']])
def handle_reg_0x3f(self, b): # RAM (bytes 0x08-0x3f)
self.putd(7, 0, [8, ['RAM', 'R']])
self.putd(7, 0, [23, ['SRAM: 0x%02X' % b, '0x%02X' % b]])
def output_datetime(self, cls, rw):
# TODO: Handle read/write of only parts of these items.
d = '%s, %02d.%02d.%4d %02d:%02d:%02d' % (
days_of_week[self.days - 1], self.date, self.months,
self.years, self.hours, self.minutes, self.seconds)
self.put(self.ss_block, self.es, self.out_ann,
[cls, ['%s date/time: %s' % (rw, d)]])
def handle_reg(self, b):
r = self.reg if self.reg < 8 else 0x3f
fn = getattr(self, 'handle_reg_0x%02x' % r)
fn(b)
# Honor address auto-increment feature of the DS1307. When the
# address reaches 0x3f, it will wrap around to address 0.
self.reg += 1
if self.reg > 0x3f:
self.reg = 0
def is_correct_chip(self, addr):
if addr == DS1307_I2C_ADDRESS:
return True
self.put(self.ss_block, self.es, self.out_ann,
[28, ['Ignoring non-DS1307 data (slave 0x%02X)' % addr]])
return False
def decode(self, ss, es, data):
cmd, databyte = data
# Collect the 'BITS' packet, then return. The next packet is
# guaranteed to belong to these bits we just stored.
if cmd == 'BITS':
self.bits = databyte
return
# Store the start/end samples of this I²C packet.
self.ss, self.es = ss, es
# State machine.
if self.state == 'IDLE':
# Wait for an I²C START condition.
if cmd != 'START':
return
self.state = 'GET SLAVE ADDR'
self.ss_block = ss
elif self.state == 'GET SLAVE ADDR':
# Wait for an address write operation.
if cmd != 'ADDRESS WRITE':
return
if not self.is_correct_chip(databyte):
self.state = 'IDLE'
return
self.state = 'GET REG ADDR'
elif self.state == 'GET REG ADDR':
# Wait for a data write (master selects the slave register).
if cmd != 'DATA WRITE':
return
self.reg = databyte
self.state = 'WRITE RTC REGS'
elif self.state == 'WRITE RTC REGS':
# If we see a Repeated Start here, it's an RTC read.
if cmd == 'START REPEAT':
self.state = 'READ RTC REGS'
return
# Otherwise: Get data bytes until a STOP condition occurs.
if cmd == 'DATA WRITE':
self.handle_reg(databyte)
elif cmd == 'STOP':
self.output_datetime(25, 'Written')
self.state = 'IDLE'
elif self.state == 'READ RTC REGS':
# Wait for an address read operation.
if cmd != 'ADDRESS READ':
return
if not self.is_correct_chip(databyte):
self.state = 'IDLE'
return
self.state = 'READ RTC REGS2'
elif self.state == 'READ RTC REGS2':
if cmd == 'DATA READ':
self.handle_reg(databyte)
elif cmd == 'STOP':
self.output_datetime(24, 'Read')
self.state = 'IDLE'