2022-10-21 11:10:28 +08:00

168 lines
6.3 KiB
Python

##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2018 Steve R <steversig@virginmedia.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
bitvals = ('0', '1', 'f', 'U')
def decode_bit(edges):
# Datasheet says long pulse is 3 times short pulse.
lmin = 2 # long min multiplier
lmax = 5 # long max multiplier
eqmin = 0.5 # equal min multiplier
eqmax = 1.5 # equal max multiplier
if ( # 0 -___-___
(edges[1] >= edges[0] * lmin and edges[1] <= edges[0] * lmax) and
(edges[2] >= edges[0] * eqmin and edges[2] <= edges[0] * eqmax) and
(edges[3] >= edges[0] * lmin and edges[3] <= edges[0] * lmax)):
return '0'
elif ( # 1 ---_---_
(edges[0] >= edges[1] * lmin and edges[0] <= edges[1] * lmax) and
(edges[0] >= edges[2] * eqmin and edges[0] <= edges[2] * eqmax) and
(edges[0] >= edges[3] * lmin and edges[0] <= edges[3] * lmax)):
return '1'
elif ( # float ---_-___
(edges[1] >= edges[0] * lmin and edges[1] <= edges[0] * lmax) and
(edges[2] >= edges[0] * lmin and edges[2] <= edges[0]* lmax) and
(edges[3] >= edges[0] * eqmin and edges[3] <= edges[0] * eqmax)):
return 'f'
else:
return 'U'
def pinlabels(bit_count):
if bit_count <= 6:
return 'A%i' % (bit_count - 1)
else:
return 'A%i/D%i' % (bit_count - 1, 12 - bit_count)
def decode_model(model, bits):
if model == 'maplin_l95ar':
address = 'Addr' # Address pins A0 to A5
for i in range(0, 6):
address += ' %i:' % (i + 1) + ('on' if bits[i][0] == '0' else 'off')
button = 'Button'
# Button pins A6/D5 to A11/D0
if bits[6][0] == '0' and bits[11][0] == '0':
button += ' A ON/OFF'
elif bits[7][0] == '0' and bits[11][0] == '0':
button += ' B ON/OFF'
elif bits[9][0] == '0' and bits[11][0] == '0':
button += ' C ON/OFF'
elif bits[8][0] == '0' and bits[11][0] == '0':
button += ' D ON/OFF'
else:
button += ' Unknown'
return ['%s' % address, bits[0][1], bits[5][2], \
'%s' % button, bits[6][1], bits[11][2]]
class Decoder(srd.Decoder):
api_version = 3
id = 'rc_encode'
name = 'RC encode'
longname = 'Remote control encoder'
desc = 'PT2262/HX2262/SC5262 remote control encoder protocol.'
license = 'gplv2+'
inputs = ['logic']
outputs = []
tags = ['IC', 'IR']
channels = (
{'id': 'data', 'name': 'Data', 'desc': 'Data line', 'idn':'dec_rc_encode_chan_data'},
)
annotations = (
('bit-0', 'Bit 0'),
('bit-1', 'Bit 1'),
('bit-f', 'Bit f'),
('bit-U', 'Bit U'),
('bit-sync', 'Bit sync'),
('pin', 'Pin'),
('code-word-addr', 'Code word address'),
('code-word-data', 'Code word data'),
)
annotation_rows = (
('bits', 'Bits', (0, 1, 2, 3, 4)),
('pins', 'Pins', (5,)),
('code-words', 'Code words', (6, 7)),
)
options = (
{'id': 'remote', 'desc': 'Remote', 'default': 'none',
'values': ('none', 'maplin_l95ar')},
)
def __init__(self):
self.reset()
def reset(self):
self.samplenumber_last = None
self.pulses = []
self.bits = []
self.labels = []
self.bit_count = 0
self.ss = None
self.es = None
self.state = 'IDLE'
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
self.model = self.options['remote']
def putx(self, data):
self.put(self.ss, self.es, self.out_ann, data)
def decode(self):
while True:
self.wait({0: 'e'})
self.state = 'DECODING'
if not self.samplenumber_last: # Set counters to start of signal.
self.samplenumber_last = self.samplenum
self.ss = self.samplenum
continue
if self.bit_count < 12: # Decode A0 to A11.
self.bit_count += 1
for i in range(0, 4): # Get four pulses for each bit.
if i > 0:
self.wait({0: 'e'}) # Get next 3 edges.
samples = self.samplenum - self.samplenumber_last
self.pulses.append(samples) # Save the pulse width.
self.samplenumber_last = self.samplenum
self.es = self.samplenum
self.bits.append([decode_bit(self.pulses), self.ss,
self.es]) # Save states and times.
idx = bitvals.index(decode_bit(self.pulses))
self.putx([idx, [decode_bit(self.pulses)]]) # Write decoded bit.
self.putx([5, [pinlabels(self.bit_count)]]) # Write pin labels.
self.pulses = []
self.ss = self.samplenum
else:
if self.model != 'none':
self.labels = decode_model(self.model, self.bits)
self.put(self.labels[1], self.labels[2], self.out_ann,
[6, [self.labels[0]]]) # Write model decode.
self.put(self.labels[4], self.labels[5], self.out_ann,
[7, [self.labels[3]]]) # Write model decode.
samples = self.samplenum - self.samplenumber_last
self.wait({'skip': 8 * samples}) # Wait for end of sync bit.
self.es = self.samplenum
self.putx([4, ['Sync']]) # Write sync label.
self.reset() # Reset and wait for next set of pulses.
self.state = 'DECODE_TIMEOUT'
if not self.state == 'DECODE_TIMEOUT':
self.samplenumber_last = self.samplenum