2022-10-21 11:10:28 +08:00

584 lines
27 KiB
Python

##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2015-2020 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
from common.srdhelper import SrdIntEnum, SrdStrEnum
from common.sdcard import (cmd_names, acmd_names, accepted_voltages, sd_status)
responses = '1 1b 2 3 6 7'.split()
token_fields = 'START TRANSMISSION CMD ARG CRC END'.split()
reg_card_status = 'OUT_OF_RANGE ADDRESS_ERROR BLOCK_LEN_ERROR ERASE_SEQ_ERROR \
ERASE_PARAM WP_VIOLATION CARD_IS_LOCKED LOCK_UNLOCK_FAILED COM_CRC_ERROR \
ILLEGAL_COMMAND CARD_ECC_FAILED CC_ERROR ERROR RSVD_DEFERRED_RESPONSE \
CSD_OVERWRITE WP_ERASE_SKIP CARD_ECC_DISABLED ERASE_RESET CURRENT_STATE \
READY_FOR_DATA RSVD FX_EVENT APP_CMD RSVD_SDIO AKE_SEQ_ERROR RSVD_APP_CMD \
RSVD_TESTMODE'.split()
reg_cid = 'MID OID PNM PRV PSN RSVD MDT CRC ONE'.split()
reg_csd = 'CSD_STRUCTURE RSVD TAAC NSAC TRAN_SPEED CCC READ_BL_LEN \
READ_BL_PARTIAL WRITE_BLK_MISALIGN READ_BLK_MISALIGN DSR_IMP C_SIZE \
VDD_R_CURR_MIN VDD_R_CURR_MAX VDD_W_CURR_MIN VDD_W_CURR_MAX C_SIZE_MULT \
ERASE_BLK_EN SECTOR_SIZE WP_GRP_SIZE WP_GRP_ENABLE R2W_FACTOR \
WRITE_BL_LEN WRITE_BL_PARTIAL FILE_FORMAT_GRP COPY PERM_WRITE_PROTECT \
TMP_WRITE_PROTECT FILE_FORMAT CRC ONE'.split()
Pin = SrdIntEnum.from_str('Pin', 'CMD CLK DAT0 DAT1 DAT2 DAT3')
a = ['CMD%d' % i for i in range(64)] + ['ACMD%d' % i for i in range(64)] + \
['RESPONSE_R' + r.upper() for r in responses] + \
['R_STATUS_' + r for r in reg_card_status] + \
['R_CID_' + r for r in reg_cid] + \
['R_CSD_' + r for r in reg_csd] + \
['BIT_' + r for r in ('0', '1')] + \
['F_' + f for f in token_fields] + \
['DECODED_BIT', 'DECODED_F']
Ann = SrdIntEnum.from_list('Ann', a)
s = ['GET_COMMAND_TOKEN', 'HANDLE_CMD999'] + \
['HANDLE_CMD%d' % i for i in range(64)] + \
['HANDLE_ACMD%d' % i for i in range(64)] + \
['GET_RESPONSE_R%s' % r.upper() for r in responses]
St = SrdStrEnum.from_list('St', s)
class Bit:
def __init__(self, s, e, b):
self.ss, self.es, self.bit = s, e ,b
class Decoder(srd.Decoder):
api_version = 3
id = 'sdcard_sd'
name = 'SD card (SD mode)'
longname = 'Secure Digital card (SD mode)'
desc = 'Secure Digital card (SD mode) low-level protocol.'
license = 'gplv2+'
inputs = ['logic']
outputs = []
tags = ['Memory']
channels = (
{'id': 'cmd', 'name': 'CMD', 'desc': 'Command', 'idn':'dec_sdcard_sd_chan_cmd'},
{'id': 'clk', 'name': 'CLK', 'desc': 'Clock', 'idn':'dec_sdcard_sd_chan_clk'},
)
optional_channels = (
{'id': 'dat0', 'name': 'DAT0', 'desc': 'Data pin 0', 'idn':'dec_sdcard_sd_opt_chan_dat0'},
{'id': 'dat1', 'name': 'DAT1', 'desc': 'Data pin 1', 'idn':'dec_sdcard_sd_opt_chan_dat1'},
{'id': 'dat2', 'name': 'DAT2', 'desc': 'Data pin 2', 'idn':'dec_sdcard_sd_opt_chan_dat2'},
{'id': 'dat3', 'name': 'DAT3', 'desc': 'Data pin 3', 'idn':'dec_sdcard_sd_opt_chan_dat3'},
)
annotations = \
tuple(('cmd%d' % i, 'CMD%d' % i) for i in range(64)) + \
tuple(('acmd%d' % i, 'ACMD%d' % i) for i in range(64)) + \
tuple(('response_r%s' % r, 'R%s' % r) for r in responses) + \
tuple(('reg_status_' + r.lower(), 'Status: ' + r) for r in reg_card_status) + \
tuple(('reg_cid_' + r.lower(), 'CID: ' + r) for r in reg_cid) + \
tuple(('reg_csd_' + r.lower(), 'CSD: ' + r) for r in reg_csd) + \
tuple(('bit_' + r, 'Bit ' + r) for r in ('0', '1')) + \
tuple(('field-' + r.lower(), r) for r in token_fields) + \
( \
('decoded-bit', 'Decoded bit'),
('decoded-field', 'Decoded field'),
)
annotation_rows = (
('raw-bits', 'Raw bits', Ann.prefixes('BIT_')),
('decoded-bits', 'Decoded bits', (Ann.DECODED_BIT,) + Ann.prefixes('R_')),
('decoded-fields', 'Decoded fields', (Ann.DECODED_F,)),
('fields', 'Fields', Ann.prefixes('F_')),
('commands', 'Commands', Ann.prefixes('CMD ACMD RESPONSE_')),
)
def __init__(self):
self.reset()
def reset(self):
self.state = St.GET_COMMAND_TOKEN
self.token = []
self.is_acmd = False # Indicates CMD vs. ACMD
self.cmd = None
self.last_cmd = None
self.arg = None
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
def putt(self, data):
self.put(self.token[0].ss, self.token[47].es, self.out_ann, data)
def putf(self, s, e, data):
self.put(self.token[s].ss, self.token[e].es, self.out_ann, data)
def puta(self, s, e, data):
self.put(self.token[47 - 8 - e].ss, self.token[47 - 8 - s].es,
self.out_ann, data)
def putc(self, desc):
cmd = Ann.ACMD0 + self.cmd if self.is_acmd else self.cmd
self.last_cmd = cmd
self.putt([cmd, ['%s: %s' % (self.cmd_str, desc), self.cmd_str,
self.cmd_str.split(' ')[0]]])
def putr(self, r):
self.putt([r, ['Response: %s' % r.name.split('_')[1]]])
def cmd_name(self, cmd):
c = acmd_names if self.is_acmd else cmd_names
return c.get(cmd, 'Unknown')
def get_token_bits(self, cmd_pin, n):
# Get a bit, return True if we already got 'n' bits, False otherwise.
self.token.append(Bit(self.samplenum, self.samplenum, cmd_pin))
if len(self.token) > 0:
self.token[len(self.token) - 2].es = self.samplenum
if len(self.token) < n:
return False
self.token[n - 1].es += self.token[n - 1].ss - self.token[n - 2].ss
return True
def is_from_host(self):
# CMD[46:46]: Transmission bit (1 == host), (0 == card)
return self.token[1].bit == 1
def is_from_card(self):
# CMD[46:46]: Transmission bit (1 == host), (0 == card)
return self.token[1].bit == 0
def handle_common_token_fields(self):
s = self.token
# Annotations for each individual bit.
for bit in range(len(self.token)):
self.putf(bit, bit, [Ann.BIT_0 + s[bit].bit, ['%d' % s[bit].bit]])
# CMD[47:47]: Start bit (always 0)
self.putf(0, 0, [Ann.F_START, ['Start bit', 'Start', 'S']])
# CMD[46:46]: Transmission bit (1 == host)
t = 'host' if s[1].bit == 1 else 'card'
self.putf(1, 1, [Ann.F_TRANSMISSION, ['Transmission: ' + t, 'T: ' + t, 'T']])
# CMD[45:40]: Command index (BCD; valid: 0-63)
self.cmd = int('0b' + ''.join([str(s[i].bit) for i in range(2, 8)]), 2)
c = '%s (%d)' % (self.cmd_name(self.cmd), self.cmd)
self.putf(2, 7, [Ann.F_CMD, ['Command: ' + c, 'Cmd: ' + c,
'CMD%d' % self.cmd, 'Cmd', 'C']])
# CMD[39:08]: Argument
self.arg = int('0b' + ''.join([str(s[i].bit) for i in range(8, 40)]), 2)
self.putf(8, 39, [Ann.F_ARG, ['Argument: 0x%08x' % self.arg, 'Arg', 'A']])
# CMD[07:01]: CRC7
self.crc = int('0b' + ''.join([str(s[i].bit) for i in range(40, 47)]), 2)
self.putf(40, 46, [Ann.F_CRC, ['CRC: 0x%x' % self.crc, 'CRC', 'C']])
# CMD[00:00]: End bit (always 1)
self.putf(47, 47, [Ann.F_END, ['End bit', 'End', 'E']])
def get_command_token(self, cmd_pin):
# Command tokens (48 bits) are sent serially (MSB-first) by the host
# (over the CMD line), either to one SD card or to multiple ones.
#
# Format:
# - Bits[47:47]: Start bit (always 0)
# - Bits[46:46]: Transmission bit (1 == host)
# - Bits[45:40]: Command index (BCD; valid: 0-63)
# - Bits[39:08]: Argument
# - Bits[07:01]: CRC7
# - Bits[00:00]: End bit (always 1)
if not self.get_token_bits(cmd_pin, 48):
return
if not self.is_from_host():
# Bad state due to a decoding mistake or a protocol error,
# drop the current token to try to recover from this situation.
self.token, self.state = [], St.GET_COMMAND_TOKEN
return
self.handle_cmd()
def handle_cmd(self):
self.handle_common_token_fields()
# Handle command.
s = 'ACMD' if self.is_acmd else 'CMD'
self.cmd_str = '%s%d (%s)' % (s, self.cmd, self.cmd_name(self.cmd))
if hasattr(self, 'handle_%s%d' % (s.lower(), self.cmd)):
self.state = St['HANDLE_CMD%d' % self.cmd]
else:
self.state = St.HANDLE_CMD999
self.putc('%s%d' % (s, self.cmd))
def handle_cmd0(self):
# CMD0 (GO_IDLE_STATE) -> no response
self.puta(0, 31, [Ann.DECODED_F, ['Stuff bits', 'Stuff', 'SB', 'S']])
self.putc('Reset all SD cards')
self.token, self.state = [], St.GET_COMMAND_TOKEN
def handle_cmd2(self):
# CMD2 (ALL_SEND_CID) -> R2
self.puta(0, 31, [Ann.DECODED_F, ['Stuff bits', 'Stuff', 'SB', 'S']])
self.putc('Ask card for CID number')
self.token, self.state = [], St.GET_RESPONSE_R2
def handle_cmd3(self):
# CMD3 (SEND_RELATIVE_ADDR) -> R6
self.puta(0, 31, [Ann.DECODED_F, ['Stuff bits', 'Stuff', 'SB', 'S']])
self.putc('Ask card for new relative card address (RCA)')
self.token, self.state = [], St.GET_RESPONSE_R6
def handle_cmd6(self):
# CMD6 (SWITCH_FUNC) -> R1
self.putc('Switch/check card function')
self.token, self.state = [], St.GET_RESPONSE_R1
def handle_cmd7(self):
# CMD7 (SELECT/DESELECT_CARD) -> R1b
self.putc('Select / deselect card')
self.token, self.state = [], St.GET_RESPONSE_R6
def handle_cmd8(self):
# CMD8 (SEND_IF_COND) -> R7
self.puta(12, 31, [Ann.DECODED_F, ['Reserved', 'Res', 'R']])
self.puta(8, 11, [Ann.DECODED_F, ['Supply voltage', 'Voltage', 'VHS', 'V']])
self.puta(0, 7, [Ann.DECODED_F, ['Check pattern', 'Check pat', 'Check', 'C']])
self.putc('Send interface condition to card')
self.token, self.state = [], St.GET_RESPONSE_R7
# TODO: Handle case when card doesn't reply with R7 (no reply at all).
def handle_cmd9(self):
# CMD9 (SEND_CSD) -> R2
self.puta(16, 31, [Ann.DECODED_F, ['RCA', 'R']])
self.puta(0, 15, [Ann.DECODED_F, ['Stuff bits', 'Stuff', 'SB', 'S']])
self.putc('Send card-specific data (CSD)')
self.token, self.state = [], St.GET_RESPONSE_R2
def handle_cmd10(self):
# CMD10 (SEND_CID) -> R2
self.puta(16, 31, [Ann.DECODED_F, ['RCA', 'R']])
self.puta(0, 15, [Ann.DECODED_F, ['Stuff bits', 'Stuff', 'SB', 'S']])
self.putc('Send card identification data (CID)')
self.token, self.state = [], St.GET_RESPONSE_R2
def handle_cmd13(self):
# CMD13 (SEND_STATUS) -> R1
self.puta(16, 31, [Ann.DECODED_F, ['RCA', 'R']])
self.puta(0, 15, [Ann.DECODED_F, ['Stuff bits', 'Stuff', 'SB', 'S']])
self.putc('Send card status register')
self.token, self.state = [], St.GET_RESPONSE_R1
def handle_cmd16(self):
# CMD16 (SET_BLOCKLEN) -> R1
self.puta(0, 31, [Ann.DECODED_F, ['Block length', 'Blocklen', 'BL', 'B']])
self.putc('Set the block length to %d bytes' % self.arg)
self.token, self.state = [], St.GET_RESPONSE_R1
def handle_cmd55(self):
# CMD55 (APP_CMD) -> R1
self.puta(16, 31, [Ann.DECODED_F, ['RCA', 'R']])
self.puta(0, 15, [Ann.DECODED_F, ['Stuff bits', 'Stuff', 'SB', 'S']])
self.putc('Next command is an application-specific command')
self.is_acmd = True
self.token, self.state = [], St.GET_RESPONSE_R1
def handle_acmd6(self):
# ACMD6 (SET_BUS_WIDTH) -> R1
self.putc('Read SD config register (SCR)')
self.token, self.state = [], St.GET_RESPONSE_R1
def handle_acmd13(self):
# ACMD13 (SD_STATUS) -> R1
self.puta(0, 31, [Ann.DECODED_F, ['Stuff bits', 'Stuff', 'SB', 'S']])
self.putc('Set SD status')
self.token, self.state = [], St.GET_RESPONSE_R1
def handle_acmd41(self):
# ACMD41 (SD_SEND_OP_COND) -> R3
self.puta(0, 23, [Ann.DECODED_F,
['VDD voltage window', 'VDD volt', 'VDD', 'V']])
self.puta(24, 24, [Ann.DECODED_F, ['S18R']])
self.puta(25, 27, [Ann.DECODED_F, ['Reserved', 'Res', 'R']])
self.puta(28, 28, [Ann.DECODED_F, ['XPC']])
self.puta(29, 29, [Ann.DECODED_F,
['Reserved for eSD', 'Reserved', 'Res', 'R']])
self.puta(30, 30, [Ann.DECODED_F,
['Host capacity support info', 'Host capacity', 'HCS', 'H']])
self.puta(31, 31, [Ann.DECODED_F, ['Reserved', 'Res', 'R']])
self.putc('Send HCS info and activate the card init process')
self.token, self.state = [], St.GET_RESPONSE_R3
def handle_acmd51(self):
# ACMD51 (SEND_SCR) -> R1
self.putc('Read SD config register (SCR)')
self.token, self.state = [], St.GET_RESPONSE_R1
def handle_cmd999(self):
self.token, self.state = [], St.GET_RESPONSE_R1
def handle_acmd999(self):
self.token, self.state = [], St.GET_RESPONSE_R1
def handle_reg_status(self):
self.putf(8, 8, [Ann.R_STATUS_OUT_OF_RANGE, ['OUT_OF_RANGE']])
self.putf(9, 9, [Ann.R_STATUS_ADDRESS_ERROR, ['ADDRESS_ERROR']])
self.putf(10, 10, [Ann.R_STATUS_BLOCK_LEN_ERROR, ['BLOCK_LEN_ERROR']])
self.putf(11, 11, [Ann.R_STATUS_ERASE_SEQ_ERROR, ['ERASE_SEQ_ERROR']])
self.putf(12, 12, [Ann.R_STATUS_ERASE_PARAM, ['ERASE_PARAM']])
self.putf(13, 13, [Ann.R_STATUS_WP_VIOLATION, ['WP_VIOLATION']])
self.putf(14, 14, [Ann.R_STATUS_CARD_IS_LOCKED, ['CARD_IS_LOCKED']])
self.putf(15, 15, [Ann.R_STATUS_LOCK_UNLOCK_FAILED, ['LOCK_UNLOCK_FAILED']])
self.putf(16, 16, [Ann.R_STATUS_COM_CRC_ERROR, ['COM_CRC_ERROR']])
self.putf(17, 17, [Ann.R_STATUS_ILLEGAL_COMMAND, ['ILLEGAL_COMMAND']])
self.putf(18, 18, [Ann.R_STATUS_CARD_ECC_FAILED, ['CARD_ECC_FAILED']])
self.putf(19, 19, [Ann.R_STATUS_CC_ERROR, ['CC_ERROR']])
self.putf(20, 20, [Ann.R_STATUS_ERROR, ['ERROR']])
self.putf(21, 21, [Ann.R_STATUS_RSVD, ['Reserved', 'RSVD', 'R']])
self.putf(22, 22, [Ann.R_STATUS_RSVD_DEFERRED_RESPONSE, ['Reserved for DEFERRED_RESPONSE', 'RSVD_DEFERRED_RESPONSE']])
self.putf(23, 23, [Ann.R_STATUS_CSD_OVERWRITE, ['CSD_OVERWRITE']])
self.putf(24, 24, [Ann.R_STATUS_WP_ERASE_SKIP, ['WP_ERASE_SKIP']])
self.putf(25, 25, [Ann.R_STATUS_CARD_ECC_DISABLED, ['CARD_ECC_DISABLED']])
self.putf(26, 26, [Ann.R_STATUS_ERASE_RESET, ['ERASE_RESET']])
self.putf(27, 30, [Ann.R_STATUS_CURRENT_STATE, ['CURRENT_STATE']])
self.putf(31, 31, [Ann.R_STATUS_READY_FOR_DATA, ['READY_FOR_DATA']])
self.putf(32, 32, [Ann.R_STATUS_RSVD, ['RSVD']])
self.putf(33, 33, [Ann.R_STATUS_FX_EVENT, ['FX_EVENT']])
self.putf(34, 34, [Ann.R_STATUS_APP_CMD, ['APP_CMD']])
self.putf(35, 35, [Ann.R_STATUS_RSVD_SDIO, ['Reserved for SDIO card', 'RSVD_SDIO']])
self.putf(36, 36, [Ann.R_STATUS_AKE_SEQ_ERROR, ['AKE_SEQ_ERROR']])
self.putf(37, 37, [Ann.R_STATUS_RSVD_APP_CMD, ['Reserved for application specific commands', 'RSVD_APP_CMD']])
self.putf(38, 39, [Ann.R_STATUS_RSVD_TESTMODE, ['Reserved for manufacturer test mode', 'RSVD_TESTMODE']])
def handle_reg_cid(self):
self.putf(8, 15, [Ann.R_CID_MID, ['Manufacturer ID', 'MID']])
self.putf(16, 31, [Ann.R_CID_OID, ['OEM/application ID', 'OID']])
self.putf(32, 71, [Ann.R_CID_PNM, ['Product name', 'PNM']])
self.putf(72, 79, [Ann.R_CID_PRV, ['Product revision', 'PRV']])
self.putf(80, 111, [Ann.R_CID_PSN, ['Product serial number', 'PSN']])
self.putf(112, 115, [Ann.R_CID_RSVD, ['Reserved', 'RSVD', 'R']])
self.putf(116, 127, [Ann.R_CID_MDT, ['Manufacturing date', 'MDT']])
self.putf(128, 134, [Ann.R_CID_CRC, ['CRC7 checksum', 'CRC']])
self.putf(135, 135, [Ann.R_CID_ONE, ['Always 1', '1']])
def handle_reg_csd(self):
self.putf(8, 9, [Ann.R_CSD_CSD_STRUCTURE, ['CSD structure', 'CSD_STRUCTURE']])
self.putf(10, 15, [Ann.R_CSD_RSVD, ['Reserved', 'RSVD', 'R']])
self.putf(16, 23, [Ann.R_CSD_TAAC, ['Data read access-time - 1', 'TAAC']])
self.putf(24, 31, [Ann.R_CSD_NSAC, ['Data read access-time - 2 in CLK cycles (NSAC * 100)', 'NSAC']])
self.putf(32, 39, [Ann.R_CSD_TRAN_SPEED, ['Max. data transfer rate', 'TRAN_SPEED']])
self.putf(40, 51, [Ann.R_CSD_CCC, ['Card command classes', 'CCC']])
self.putf(52, 55, [Ann.R_CSD_READ_BL_LEN, ['Max. read data block length', 'READ_BL_LEN']])
self.putf(56, 56, [Ann.R_CSD_READ_BL_PARTIAL, ['Partial blocks for read allowed', 'READ_BL_PARTIAL']])
self.putf(57, 57, [Ann.R_CSD_WRITE_BLK_MISALIGN, ['Write block misalignment', 'WRITE_BLK_MISALIGN']])
self.putf(58, 58, [Ann.R_CSD_READ_BLK_MISALIGN, ['Read block misalignment', 'READ_BLK_MISALIGN']])
self.putf(59, 59, [Ann.R_CSD_DSR_IMP, ['DSR implemented', 'DSR_IMP']])
self.putf(60, 61, [Ann.R_CSD_RSVD, ['Reserved', 'RSVD', 'R']])
self.putf(62, 73, [Ann.R_CSD_C_SIZE, ['Device size', 'C_SIZE']])
self.putf(74, 76, [Ann.R_CSD_VDD_R_CURR_MIN, ['Max. read current @VDD min', 'VDD_R_CURR_MIN']])
self.putf(77, 79, [Ann.R_CSD_VDD_R_CURR_MAX, ['Max. read current @VDD max', 'VDD_R_CURR_MAX']])
self.putf(80, 82, [Ann.R_CSD_VDD_W_CURR_MIN, ['Max. write current @VDD min', 'VDD_W_CURR_MIN']])
self.putf(83, 85, [Ann.R_CSD_VDD_W_CURR_MAX, ['Max. write current @VDD max', 'VDD_W_CURR_MAX']])
self.putf(86, 88, [Ann.R_CSD_C_SIZE_MULT, ['Device size multiplier', 'C_SIZE_MULT']])
self.putf(89, 89, [Ann.R_CSD_ERASE_BLK_EN, ['Erase single block enable', 'ERASE_BLK_EN']])
self.putf(90, 96, [Ann.R_CSD_SECTOR_SIZE, ['Erase sector size', 'SECTOR_SIZE']])
self.putf(97, 103, [Ann.R_CSD_WP_GRP_SIZE, ['Write protect group size', 'WP_GRP_SIZE']])
self.putf(104, 104, [Ann.R_CSD_WP_GRP_ENABLE, ['Write protect group enable', 'WP_GRP_ENABLE']])
self.putf(105, 106, [Ann.R_CSD_RSVD, ['Reserved', 'RSVD', 'R']])
self.putf(107, 109, [Ann.R_CSD_R2W_FACTOR, ['Write speed factor', 'R2W_FACTOR']])
self.putf(110, 113, [Ann.R_CSD_WRITE_BL_LEN, ['Max. write data block length', 'WRITE_BL_LEN']])
self.putf(114, 114, [Ann.R_CSD_WRITE_BL_PARTIAL, ['Partial blocks for write allowed', 'WRITE_BL_PARTIAL']])
self.putf(115, 119, [Ann.R_CSD_RSVD, ['Reserved', 'RSVD']])
self.putf(120, 120, [Ann.R_CSD_FILE_FORMAT_GRP, ['File format group', 'FILE_FORMAT_GRP']])
self.putf(121, 121, [Ann.R_CSD_COPY, ['Copy flag', 'COPY']])
self.putf(122, 122, [Ann.R_CSD_PERM_WRITE_PROTECT, ['Permanent write protection', 'PERM_WRITE_PROTECT']])
self.putf(123, 123, [Ann.R_CSD_TMP_WRITE_PROTECT, ['Temporary write protection', 'TMP_WRITE_PROTECT']])
self.putf(124, 125, [Ann.R_CSD_FILE_FORMAT, ['File format', 'FILE_FORMAT']])
self.putf(126, 127, [Ann.R_CSD_RSVD, ['Reserved', 'RSVD', 'R']])
self.putf(128, 134, [Ann.R_CSD_CRC, ['CRC', 'CRC', 'C']])
self.putf(135, 135, [Ann.R_CSD_ONE, ['Always 1', '1']])
# Response tokens can have one of four formats (depends on content).
# They can have a total length of 48 or 136 bits.
# They're sent serially (MSB-first) by the card that the host
# addressed previously, or (synchronously) by all connected cards.
def handle_response_r1(self, cmd_pin):
# R1: Normal response command
# - Bits[47:47]: Start bit (always 0)
# - Bits[46:46]: Transmission bit (0 == card)
# - Bits[45:40]: Command index (BCD; valid: 0-63)
# - Bits[39:08]: Card status
# - Bits[07:01]: CRC7
# - Bits[00:00]: End bit (always 1)
if not self.get_token_bits(cmd_pin, 48):
return
assert(self.is_from_card())
self.handle_common_token_fields()
self.putr(Ann.RESPONSE_R1)
self.puta(0, 31, [Ann.DECODED_F, ['Card status', 'Status', 'S']])
self.handle_reg_status()
self.token, self.state = [], St.GET_COMMAND_TOKEN
def handle_response_r1b(self, cmd_pin):
# R1b: Same as R1 with an optional busy signal (on the data line)
if not self.get_token_bits(cmd_pin, 48):
return
assert(self.is_from_card())
self.handle_common_token_fields()
self.puta(0, 31, [Ann.DECODED_F, ['Card status', 'Status', 'S']])
self.putr(Ann.RESPONSE_R1B)
self.token, self.state = [], St.GET_COMMAND_TOKEN
def handle_response_r2(self, cmd_pin):
# R2: CID/CSD register
# - Bits[135:135]: Start bit (always 0)
# - Bits[134:134]: Transmission bit (0 == card)
# - Bits[133:128]: Reserved (always 0b111111)
# - Bits[127:001]: CID or CSD register including internal CRC7
# - Bits[000:000]: End bit (always 1)
if not self.get_token_bits(cmd_pin, 136):
return
assert(self.is_from_card())
# Annotations for each individual bit.
for bit in range(len(self.token)):
self.putf(bit, bit, [Ann.BIT_0 + self.token[bit].bit, ['%d' % self.token[bit].bit]])
self.putf(0, 0, [Ann.F_START, ['Start bit', 'Start', 'S']])
t = 'host' if self.token[1].bit == 1 else 'card'
self.putf(1, 1, [Ann.F_TRANSMISSION, ['Transmission: ' + t, 'T: ' + t, 'T']])
self.putf(2, 7, [Ann.F_CMD, ['Reserved', 'Res', 'R']])
self.putf(8, 134, [Ann.F_ARG, ['Argument', 'Arg', 'A']])
self.putf(135, 135, [Ann.F_END, ['End bit', 'End', 'E']])
self.putf(8, 134, [Ann.DECODED_F, ['CID/CSD register', 'CID/CSD', 'C']])
self.putf(0, 135, [Ann.RESPONSE_R2, ['Response: R2']])
if self.last_cmd in (Ann.CMD2, Ann.CMD10):
self.handle_reg_cid()
if self.last_cmd == Ann.CMD9:
self.handle_reg_csd()
self.token, self.state = [], St.GET_COMMAND_TOKEN
def handle_response_r3(self, cmd_pin):
# R3: OCR register
# - Bits[47:47]: Start bit (always 0)
# - Bits[46:46]: Transmission bit (0 == card)
# - Bits[45:40]: Reserved (always 0b111111)
# - Bits[39:08]: OCR register
# - Bits[07:01]: Reserved (always 0b111111)
# - Bits[00:00]: End bit (always 1)
if not self.get_token_bits(cmd_pin, 48):
return
assert(self.is_from_card())
self.putr(Ann.RESPONSE_R3)
# Annotations for each individual bit.
for bit in range(len(self.token)):
self.putf(bit, bit, [Ann.BIT_0 + self.token[bit].bit, ['%d' % self.token[bit].bit]])
self.putf(0, 0, [Ann.F_START, ['Start bit', 'Start', 'S']])
t = 'host' if self.token[1].bit == 1 else 'card'
self.putf(1, 1, [Ann.F_TRANSMISSION, ['Transmission: ' + t, 'T: ' + t, 'T']])
self.putf(2, 7, [Ann.F_CMD, ['Reserved', 'Res', 'R']])
self.putf(8, 39, [Ann.F_ARG, ['Argument', 'Arg', 'A']])
self.putf(40, 46, [Ann.F_CRC, ['Reserved', 'Res', 'R']])
self.putf(47, 47, [Ann.F_END, ['End bit', 'End', 'E']])
self.puta(0, 31, [Ann.DECODED_F, ['OCR register', 'OCR reg', 'OCR', 'O']])
self.token, self.state = [], St.GET_COMMAND_TOKEN
def handle_response_r6(self, cmd_pin):
# R6: Published RCA response
# - Bits[47:47]: Start bit (always 0)
# - Bits[46:46]: Transmission bit (0 == card)
# - Bits[45:40]: Command index (always 0b000011)
# - Bits[39:24]: Argument[31:16]: New published RCA of the card
# - Bits[23:08]: Argument[15:0]: Card status bits
# - Bits[07:01]: CRC7
# - Bits[00:00]: End bit (always 1)
if not self.get_token_bits(cmd_pin, 48):
return
assert(self.is_from_card())
self.handle_common_token_fields()
self.puta(0, 15, [Ann.DECODED_F, ['Card status bits', 'Status', 'S']])
self.puta(16, 31, [Ann.DECODED_F, ['Relative card address', 'RCA', 'R']])
self.putr(Ann.RESPONSE_R6)
self.token, self.state = [], St.GET_COMMAND_TOKEN
def handle_response_r7(self, cmd_pin):
# R7: Card interface condition
# - Bits[47:47]: Start bit (always 0)
# - Bits[46:46]: Transmission bit (0 == card)
# - Bits[45:40]: Command index (always 0b001000)
# - Bits[39:20]: Reserved bits (all-zero)
# - Bits[19:16]: Voltage accepted
# - Bits[15:08]: Echo-back of check pattern
# - Bits[07:01]: CRC7
# - Bits[00:00]: End bit (always 1)
if not self.get_token_bits(cmd_pin, 48):
return
assert(self.is_from_card())
self.handle_common_token_fields()
self.putr(Ann.RESPONSE_R7)
# Arg[31:12]: Reserved bits (all-zero)
self.puta(12, 31, [Ann.DECODED_F, ['Reserved', 'Res', 'R']])
# Arg[11:08]: Voltage accepted
v = ''.join(str(i.bit) for i in self.token[28:32])
av = accepted_voltages.get(int('0b' + v, 2), 'Unknown')
self.puta(8, 11, [Ann.DECODED_F,
['Voltage accepted: ' + av, 'Voltage', 'Volt', 'V']])
# Arg[07:00]: Echo-back of check pattern
self.puta(0, 7, [Ann.DECODED_F,
['Echo-back of check pattern', 'Echo', 'E']])
self.token, self.state = [], St.GET_COMMAND_TOKEN
def decode(self):
while True:
conds = {Pin.CLK: 'r'}
# Wait for start bit (CMD = 0).
if ((self.state == St.GET_COMMAND_TOKEN or
self.state.value.startswith('GET_RESPONSE')) and
(len(self.token) == 0)):
conds.update({Pin.CMD: 'l'})
# Wait for a rising CLK edge.
(cmd_pin, clk, dat0, dat1, dat2, dat3) = self.wait(conds)
# State machine.
if self.state == St.GET_COMMAND_TOKEN:
self.get_command_token(cmd_pin)
elif self.state.value.startswith('HANDLE_CMD'):
# Call the respective handler method for the command.
a, cmdstr = 'a' if self.is_acmd else '', self.state.value[10:].lower()
handle_cmd = getattr(self, 'handle_%scmd%s' % (a, cmdstr))
handle_cmd()
# Leave ACMD mode again after the first command after CMD55.
if self.is_acmd and cmdstr not in ('55', '63'):
self.is_acmd = False
elif self.state.value.startswith('GET_RESPONSE'):
# Call the respective handler method for the response.
s = 'handle_response_%s' % self.state.value[13:].lower()
handle_response = getattr(self, s)
# AssertionError can be raised when the token we are trying
# to handle as a response is in fact a command.
# (Transmission bit is 1). Just re-handle the token as command.
try:
handle_response(cmd_pin)
except AssertionError:
self.handle_cmd()