2016-07-20 08:59:39 +08:00

205 lines
7.6 KiB
Python
Executable File

##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2014 Sebastien Bourdelin <sebastien.bourdelin@savoirfairelinux.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
import sigrokdecode as srd
# Helper dictionary for edge detection.
edge_detector = {
'rising': lambda x, y: bool(not x and y),
'falling': lambda x, y: bool(x and not y),
'both': lambda x, y: bool(x ^ y),
}
class SamplerateError(Exception):
pass
class Decoder(srd.Decoder):
api_version = 2
id = 'jitter'
name = 'Jitter'
longname = 'Timing jitter calculation'
desc = 'Retrieves the timing jitter between two digital signals.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['jitter']
channels = (
{'id': 'clk', 'name': 'Clock', 'desc': 'Clock reference channel'},
{'id': 'sig', 'name': 'Resulting signal', 'desc': 'Resulting signal controlled by the clock'},
)
options = (
{'id': 'clk_polarity', 'desc': 'Clock edge polarity',
'default': 'rising', 'values': ('rising', 'falling', 'both')},
{'id': 'sig_polarity', 'desc': 'Resulting signal edge polarity',
'default': 'rising', 'values': ('rising', 'falling', 'both')},
)
annotations = (
('jitter', 'Jitter value'),
('clk_missed', 'Clock missed'),
('sig_missed', 'Signal missed'),
)
annotation_rows = (
('jitter', 'Jitter values', (0,)),
('clk_missed', 'Clock missed', (1,)),
('sig_missed', 'Signal missed', (2,)),
)
binary = (
('ascii-float', 'Jitter values as newline-separated ASCII floats'),
)
def __init__(self):
self.state = 'CLK'
self.samplerate = None
self.oldpin = None
self.oldclk = self.oldsig = None
self.clk_start = None
self.sig_start = None
self.clk_missed = 0
self.sig_missed = 0
def start(self):
self.clk_edge = edge_detector[self.options['clk_polarity']]
self.sig_edge = edge_detector[self.options['sig_polarity']]
self.out_ann = self.register(srd.OUTPUT_ANN)
self.out_binary = self.register(srd.OUTPUT_BINARY)
self.out_clk_missed = self.register(srd.OUTPUT_META,
meta=(int, 'Clock missed', 'Clock transition missed'))
self.out_sig_missed = self.register(srd.OUTPUT_META,
meta=(int, 'Signal missed', 'Resulting signal transition missed'))
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
# Helper function for jitter time annotations.
def putx(self, delta):
# Adjust granularity.
if delta == 0 or delta >= 1:
delta_s = '%.1fs' % (delta)
elif delta <= 1e-12:
delta_s = '%.1ffs' % (delta * 1e15)
elif delta <= 1e-9:
delta_s = '%.1fps' % (delta * 1e12)
elif delta <= 1e-6:
delta_s = '%.1fns' % (delta * 1e9)
elif delta <= 1e-3:
delta_s = '%.1fμs' % (delta * 1e6)
else:
delta_s = '%.1fms' % (delta * 1e3)
self.put(self.clk_start, self.sig_start, self.out_ann, [0, [delta_s]])
# Helper function for ASCII float jitter values (one value per line).
def putb(self, delta):
if delta is None:
return
# Format the delta to an ASCII float value terminated by a newline.
x = str(delta) + '\n'
#self.put(self.clk_start, self.sig_start, self.out_binary,
# [0, x.encode('UTF-8')])
# Helper function for missed clock and signal annotations.
def putm(self, data):
self.put(self.samplenum, self.samplenum, self.out_ann, data)
def handle_clk(self, clk, sig):
if self.clk_start == self.samplenum:
# Clock transition already treated.
# We have done everything we can with this sample.
return True
if self.clk_edge(self.oldclk, clk):
# Clock edge found.
# We note the sample and move to the next state.
self.clk_start = self.samplenum
self.state = 'SIG'
return False
else:
if self.sig_start is not None \
and self.sig_start != self.samplenum \
and self.sig_edge(self.oldsig, sig):
# If any transition in the resulting signal
# occurs while we are waiting for a clock,
# we increase the missed signal counter.
self.sig_missed += 1
self.put(self.samplenum, self.samplenum, self.out_sig_missed, self.sig_missed)
self.putm([2, ['Missed signal', 'MS']])
# No clock edge found, we have done everything we
# can with this sample.
return True
def handle_sig(self, clk, sig):
if self.sig_start == self.samplenum:
# Signal transition already treated.
# We have done everything we can with this sample.
return True
if self.sig_edge(self.oldsig, sig):
# Signal edge found.
# We note the sample, calculate the jitter
# and move to the next state.
self.sig_start = self.samplenum
self.state = 'CLK'
# Calculate and report the timing jitter.
delta = (self.sig_start - self.clk_start) / self.samplerate
self.putx(delta)
self.putb(delta)
return False
else:
if self.clk_start != self.samplenum \
and self.clk_edge(self.oldclk, clk):
# If any transition in the clock signal
# occurs while we are waiting for a resulting
# signal, we increase the missed clock counter.
self.clk_missed += 1
self.put(self.samplenum, self.samplenum, self.out_clk_missed, self.clk_missed)
self.putm([1, ['Missed clock', 'MC']])
# No resulting signal edge found, we have done
# everything we can with this sample.
return True
def decode(self, ss, es, data):
if not self.samplerate:
raise SamplerateError('Cannot decode without samplerate.')
for (self.samplenum, pins) in data:
data.itercnt += 1
# We are only interested in transitions.
if self.oldpin == pins:
continue
self.oldpin, (clk, sig) = pins, pins
if self.oldclk is None and self.oldsig is None:
self.oldclk, self.oldsig = clk, sig
# State machine:
# For each sample we can move 2 steps forward in the state machine.
while True:
# Clock state has the lead.
if self.state == 'CLK':
if self.handle_clk(clk, sig):
break
if self.state == 'SIG':
if self.handle_sig(clk, sig):
break
# Save current CLK/SIG values for the next round.
self.oldclk, self.oldsig = clk, sig