mirror of
https://github.com/DreamSourceLab/DSView.git
synced 2025-01-13 13:32:53 +08:00
433 lines
16 KiB
Python
Executable File
433 lines
16 KiB
Python
Executable File
##
|
|
## This file is part of the libsigrokdecode project.
|
|
##
|
|
## Copyright (C) 2011-2014 Uwe Hermann <uwe@hermann-uwe.de>
|
|
## Copyright (C) 2019 DreamSourceLab <support@dreamsourcelab.com>
|
|
##
|
|
## This program is free software; you can redistribute it and/or modify
|
|
## it under the terms of the GNU General Public License as published by
|
|
## the Free Software Foundation; either version 2 of the License, or
|
|
## (at your option) any later version.
|
|
##
|
|
## This program is distributed in the hope that it will be useful,
|
|
## but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
## GNU General Public License for more details.
|
|
##
|
|
## You should have received a copy of the GNU General Public License
|
|
## along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
##
|
|
|
|
import sigrokdecode as srd
|
|
from common.srdhelper import bitpack
|
|
from math import floor, ceil
|
|
|
|
'''
|
|
OUTPUT_PYTHON format:
|
|
|
|
Packet:
|
|
[<ptype>, <rxtx>, <pdata>]
|
|
|
|
This is the list of <ptype>s and their respective <pdata> values:
|
|
- 'STARTBIT': The data is the (integer) value of the start bit (0/1).
|
|
- 'DATA': This is always a tuple containing two items:
|
|
- 1st item: the (integer) value of the UART data. Valid values
|
|
range from 0 to 511 (as the data can be up to 9 bits in size).
|
|
- 2nd item: the list of individual data bits and their ss/es numbers.
|
|
- 'PARITYBIT': The data is the (integer) value of the parity bit (0/1).
|
|
- 'STOPBIT': The data is the (integer) value of the stop bit (0 or 1).
|
|
- 'INVALID STARTBIT': The data is the (integer) value of the start bit (0/1).
|
|
- 'INVALID STOPBIT': The data is the (integer) value of the stop bit (0/1).
|
|
- 'PARITY ERROR': The data is a tuple with two entries. The first one is
|
|
the expected parity value, the second is the actual parity value.
|
|
- 'BREAK': The data is always 0.
|
|
- 'FRAME': The data is always a tuple containing two items: The (integer)
|
|
value of the UART data, and a boolean which reflects the validity of the
|
|
UART frame.
|
|
|
|
'''
|
|
|
|
# Given a parity type to check (odd, even, zero, one), the value of the
|
|
# parity bit, the value of the data, and the length of the data (5-9 bits,
|
|
# usually 8 bits) return True if the parity is correct, False otherwise.
|
|
# 'none' is _not_ allowed as value for 'parity_type'.
|
|
def parity_ok(parity_type, parity_bit, data, num_data_bits):
|
|
|
|
# Handle easy cases first (parity bit is always 1 or 0).
|
|
if parity_type == 'zero':
|
|
return parity_bit == 0
|
|
elif parity_type == 'one':
|
|
return parity_bit == 1
|
|
|
|
# Count number of 1 (high) bits in the data (and the parity bit itself!).
|
|
ones = bin(data).count('1') + parity_bit
|
|
|
|
# Check for odd/even parity.
|
|
if parity_type == 'odd':
|
|
return (ones % 2) == 1
|
|
elif parity_type == 'even':
|
|
return (ones % 2) == 0
|
|
|
|
class SamplerateError(Exception):
|
|
pass
|
|
|
|
class ChannelError(Exception):
|
|
pass
|
|
|
|
class Decoder(srd.Decoder):
|
|
api_version = 3
|
|
id = '1:uart'
|
|
name = '1:UART'
|
|
longname = 'Universal Asynchronous Receiver/Transmitter'
|
|
desc = 'Asynchronous, serial bus.'
|
|
license = 'gplv2+'
|
|
inputs = ['logic']
|
|
outputs = ['uart']
|
|
tags = ['Embedded/industrial']
|
|
channels = (
|
|
{'id': 'rxtx', 'type': 209, 'name': 'RX/TX', 'desc': 'UART transceive line'},
|
|
)
|
|
options = (
|
|
{'id': 'baudrate', 'desc': 'Baud rate', 'default': 115200},
|
|
{'id': 'num_data_bits', 'desc': 'Data bits', 'default': 8,
|
|
'values': (5, 6, 7, 8, 9)},
|
|
{'id': 'parity_type', 'desc': 'Parity type', 'default': 'none',
|
|
'values': ('none', 'odd', 'even', 'zero', 'one')},
|
|
{'id': 'parity_check', 'desc': 'Check parity?', 'default': 'yes',
|
|
'values': ('yes', 'no')},
|
|
{'id': 'num_stop_bits', 'desc': 'Stop bits', 'default': 1.0,
|
|
'values': (0.0, 0.5, 1.0, 1.5)},
|
|
{'id': 'bit_order', 'desc': 'Bit order', 'default': 'lsb-first',
|
|
'values': ('lsb-first', 'msb-first')},
|
|
{'id': 'format', 'desc': 'Data format', 'default': 'hex',
|
|
'values': ('ascii', 'dec', 'hex', 'oct', 'bin')},
|
|
{'id': 'invert', 'desc': 'Invert Signal?', 'default': 'no',
|
|
'values': ('yes', 'no')},
|
|
)
|
|
annotations = (
|
|
('108', 'data', 'data'),
|
|
('7', 'start', 'start bits'),
|
|
('6', 'parity-ok', 'parity OK bits'),
|
|
('0', 'parity-err', 'parity error bits'),
|
|
('1', 'stop', 'stop bits'),
|
|
('1000', 'warnings', 'warnings'),
|
|
('209', 'data-bits', 'data bits'),
|
|
('10', 'break', 'break'),
|
|
)
|
|
annotation_rows = (
|
|
('data', 'RX/TX', (0, 1, 2, 3, 4)),
|
|
('data-bits', 'Bits', (6,)),
|
|
('warnings', 'Warnings', (5,)),
|
|
('break', 'break', (7,)),
|
|
)
|
|
binary = (
|
|
('rxtx', 'RX/TX dump'),
|
|
)
|
|
idle_state = 'WAIT FOR START BIT'
|
|
|
|
def putx(self, data):
|
|
s, halfbit = self.startsample, self.bit_width / 2.0
|
|
self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_ann, data)
|
|
|
|
def putpx(self, data):
|
|
s, halfbit = self.startsample, self.bit_width / 2.0
|
|
self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_python, data)
|
|
|
|
def putg(self, data):
|
|
s, halfbit = self.samplenum, self.bit_width / 2.0
|
|
self.put(s - floor(halfbit), s + ceil(halfbit), self.out_ann, data)
|
|
|
|
def putp(self, data):
|
|
s, halfbit = self.samplenum, self.bit_width / 2.0
|
|
self.put(s - floor(halfbit), s + ceil(halfbit), self.out_python, data)
|
|
|
|
def putgse(self, ss, es, data):
|
|
self.put(ss, es, self.out_ann, data)
|
|
|
|
def putpse(self, ss, es, data):
|
|
self.put(ss, es, self.out_python, data)
|
|
|
|
def putbin(self, data):
|
|
s, halfbit = self.startsample, self.bit_width / 2.0
|
|
self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_binary, data)
|
|
|
|
|
|
def __init__(self):
|
|
self.reset()
|
|
|
|
def reset(self):
|
|
self.samplerate = None
|
|
self.samplenum = 0
|
|
self.frame_start = -1
|
|
self.frame_valid = None
|
|
self.startbit = -1
|
|
self.cur_data_bit = 0
|
|
self.datavalue = 0
|
|
self.paritybit = -1
|
|
self.stopbit1 = -1
|
|
self.startsample = -1
|
|
self.state = 'WAIT FOR START BIT'
|
|
self.databits = []
|
|
self.break_start = None
|
|
|
|
def start(self):
|
|
self.out_python = self.register(srd.OUTPUT_PYTHON)
|
|
self.out_binary = self.register(srd.OUTPUT_BINARY)
|
|
self.out_ann = self.register(srd.OUTPUT_ANN)
|
|
self.bw = (self.options['num_data_bits'] + 7) // 8
|
|
|
|
def metadata(self, key, value):
|
|
if key == srd.SRD_CONF_SAMPLERATE:
|
|
self.samplerate = value
|
|
# The width of one UART bit in number of samples.
|
|
self.bit_width = float(self.samplerate) / float(self.options['baudrate'])
|
|
|
|
def get_sample_point(self, bitnum):
|
|
# Determine absolute sample number of a bit slot's sample point.
|
|
# bitpos is the samplenumber which is in the middle of the
|
|
# specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit
|
|
# (if used) or the first stop bit, and so on).
|
|
# The samples within bit are 0, 1, ..., (bit_width - 1), therefore
|
|
# index of the middle sample within bit window is (bit_width - 1) / 2.
|
|
bitpos = self.frame_start + (self.bit_width - 1) / 2.0
|
|
bitpos += bitnum * self.bit_width
|
|
return bitpos
|
|
|
|
def wait_for_start_bit(self, signal):
|
|
# Save the sample number where the start bit begins.
|
|
self.frame_start = self.samplenum
|
|
self.frame_valid = True
|
|
|
|
self.state = 'GET START BIT'
|
|
|
|
def get_start_bit(self, signal):
|
|
self.startbit = signal
|
|
|
|
# The startbit must be 0. If not, we report an error and wait
|
|
# for the next start bit (assuming this one was spurious).
|
|
if self.startbit != 0:
|
|
self.putp(['INVALID STARTBIT', 0, self.startbit])
|
|
self.putg([5, ['Frame error', 'Frame err', 'FE']])
|
|
self.frame_valid = False
|
|
es = self.samplenum + ceil(self.bit_width / 2.0)
|
|
self.putpse(self.frame_start, es, ['FRAME', 0,
|
|
(self.datavalue[rxtx], self.frame_valid[rxtx])])
|
|
self.state = 'WAIT FOR START BIT'
|
|
return
|
|
|
|
self.cur_data_bit = 0
|
|
self.datavalue = 0
|
|
self.startsample = -1
|
|
|
|
self.putp(['STARTBIT', 0, self.startbit])
|
|
self.putg([1, ['Start bit', 'Start', 'S']])
|
|
|
|
self.state = 'GET DATA BITS'
|
|
|
|
def get_data_bits(self, signal):
|
|
# Save the sample number of the middle of the first data bit.
|
|
if self.startsample == -1:
|
|
self.startsample = self.samplenum
|
|
|
|
self.putg([6, ['%d' % signal]])
|
|
|
|
# Store individual data bits and their start/end samplenumbers.
|
|
s, halfbit = self.samplenum, int(self.bit_width / 2)
|
|
self.databits.append([signal, s - halfbit, s + halfbit])
|
|
|
|
# Return here, unless we already received all data bits.
|
|
self.cur_data_bit += 1
|
|
if self.cur_data_bit < self.options['num_data_bits']:
|
|
return
|
|
|
|
# Convert accumulated data bits to a data value.
|
|
bits = [b[0] for b in self.databits]
|
|
if self.options['bit_order'] == 'msb-first':
|
|
bits.reverse()
|
|
self.datavalue = bitpack(bits)
|
|
self.putpx(['DATA', 0, (self.datavalue, self.databits)])
|
|
|
|
b = self.datavalue
|
|
formatted = self.format_value(b)
|
|
if formatted is not None:
|
|
self.putx([0, [formatted]])
|
|
|
|
bdata = b.to_bytes(self.bw, byteorder='big')
|
|
self.putbin([0, bdata])
|
|
self.putbin([1, bdata])
|
|
|
|
self.databits = []
|
|
|
|
# Advance to either reception of the parity bit, or reception of
|
|
# the STOP bits if parity is not applicable.
|
|
self.state = 'GET PARITY BIT'
|
|
if self.options['parity_type'] == 'none':
|
|
self.state = 'GET STOP BITS'
|
|
|
|
def format_value(self, v):
|
|
# Format value 'v' according to configured options.
|
|
# Reflects the user selected kind of representation, as well as
|
|
# the number of data bits in the UART frames.
|
|
|
|
fmt, bits = self.options['format'], self.options['num_data_bits']
|
|
|
|
# Assume "is printable" for values from 32 to including 126,
|
|
# below 32 is "control" and thus not printable, above 127 is
|
|
# "not ASCII" in its strict sense, 127 (DEL) is not printable,
|
|
# fall back to hex representation for non-printables.
|
|
if fmt == 'ascii':
|
|
if v in range(32, 126 + 1):
|
|
return chr(v)
|
|
hexfmt = "[{:02X}]" if bits <= 8 else "[{:03X}]"
|
|
return hexfmt.format(v)
|
|
|
|
# Mere number to text conversion without prefix and padding
|
|
# for the "decimal" output format.
|
|
if fmt == 'dec':
|
|
return "{:d}".format(v)
|
|
|
|
# Padding with leading zeroes for hex/oct/bin formats, but
|
|
# without a prefix for density -- since the format is user
|
|
# specified, there is no ambiguity.
|
|
if fmt == 'hex':
|
|
digits = (bits + 4 - 1) // 4
|
|
fmtchar = "X"
|
|
elif fmt == 'oct':
|
|
digits = (bits + 3 - 1) // 3
|
|
fmtchar = "o"
|
|
elif fmt == 'bin':
|
|
digits = bits
|
|
fmtchar = "b"
|
|
else:
|
|
fmtchar = None
|
|
if fmtchar is not None:
|
|
fmt = "{{:0{:d}{:s}}}".format(digits, fmtchar)
|
|
return fmt.format(v)
|
|
|
|
return None
|
|
|
|
def get_parity_bit(self, signal):
|
|
self.paritybit = signal
|
|
|
|
if parity_ok(self.options['parity_type'], self.paritybit,
|
|
self.datavalue, self.options['num_data_bits']):
|
|
self.putp(['PARITYBIT', 0, self.paritybit])
|
|
self.putg([2, ['Parity bit', 'Parity', 'P']])
|
|
else:
|
|
# TODO: Return expected/actual parity values.
|
|
self.putp(['PARITY ERROR', 0, (0, 1)]) # FIXME: Dummy tuple...
|
|
self.putg([3, ['Parity error', 'Parity err', 'PE']])
|
|
self.frame_valid = False
|
|
|
|
self.state = 'GET STOP BITS'
|
|
|
|
# TODO: Currently only supports 1 stop bit.
|
|
def get_stop_bits(self, signal):
|
|
self.stopbit1 = signal
|
|
|
|
# Stop bits must be 1. If not, we report an error.
|
|
if self.stopbit1 != 1:
|
|
self.putp(['INVALID STOPBIT', 0, self.stopbit1])
|
|
self.putg([5, ['Frame error', 'Frame err', 'FE']])
|
|
self.frame_valid = False
|
|
|
|
self.putp(['STOPBIT', 0, self.stopbit1])
|
|
self.putg([2, ['Stop bit', 'Stop', 'T']])
|
|
|
|
# Pass the complete UART frame to upper layers.
|
|
es = self.samplenum + ceil(self.bit_width / 2.0)
|
|
self.putpse(self.frame_start, es, ['FRAME', 0,
|
|
(self.datavalue, self.frame_valid)])
|
|
|
|
self.state = 'WAIT FOR START BIT'
|
|
|
|
def handle_break(self):
|
|
self.putpse(self.frame_start, self.samplenum,
|
|
['BREAK', 0, 0])
|
|
self.putgse(self.frame_start, self.samplenum,
|
|
[7, ['Break condition', 'Break', 'Brk', 'B']])
|
|
self.state = 'WAIT FOR START BIT'
|
|
|
|
def get_wait_cond(self, inv):
|
|
# Return condititions that are suitable for Decoder.wait(). Those
|
|
# conditions either match the falling edge of the START bit, or
|
|
# the sample point of the next bit time.
|
|
state = self.state
|
|
if state == 'WAIT FOR START BIT':
|
|
return {0: 'r' if inv else 'f'}
|
|
if state == 'GET START BIT':
|
|
bitnum = 0
|
|
elif state == 'GET DATA BITS':
|
|
bitnum = 1 + self.cur_data_bit
|
|
elif state == 'GET PARITY BIT':
|
|
bitnum = 1 + self.options['num_data_bits']
|
|
elif state == 'GET STOP BITS':
|
|
bitnum = 1 + self.options['num_data_bits']
|
|
bitnum += 0 if self.options['parity_type'] == 'none' else 1
|
|
want_num = ceil(self.get_sample_point(bitnum))
|
|
return {'skip': want_num - self.samplenum}
|
|
|
|
def inspect_sample(self, signal, inv):
|
|
# Inspect a sample returned by .wait() for the specified UART line.
|
|
if inv:
|
|
signal = not signal
|
|
|
|
state = self.state
|
|
if state == 'WAIT FOR START BIT':
|
|
self.wait_for_start_bit(signal)
|
|
elif state == 'GET START BIT':
|
|
self.get_start_bit(signal)
|
|
elif state == 'GET DATA BITS':
|
|
self.get_data_bits(signal)
|
|
elif state == 'GET PARITY BIT':
|
|
self.get_parity_bit(signal)
|
|
elif state == 'GET STOP BITS':
|
|
self.get_stop_bits(signal)
|
|
|
|
def inspect_edge(self, signal, inv):
|
|
# Inspect edges, independently from traffic, to detect break conditions.
|
|
if inv:
|
|
signal = not signal
|
|
if not signal:
|
|
# Signal went low. Start another interval.
|
|
self.break_start = self.samplenum
|
|
return
|
|
# Signal went high. Was there an extended period with low signal?
|
|
if self.break_start is None:
|
|
return
|
|
diff = self.samplenum - self.break_start
|
|
if diff >= self.break_min_sample_count:
|
|
self.handle_break()
|
|
self.break_start = None
|
|
|
|
def decode(self):
|
|
if not self.samplerate:
|
|
raise SamplerateError('Cannot decode without samplerate.')
|
|
|
|
inv = self.options['invert'] == 'yes'
|
|
cond_data_idx = None
|
|
|
|
# Determine the number of samples for a complete frame's time span.
|
|
# A period of low signal (at least) that long is a break condition.
|
|
frame_samples = 1 # START
|
|
frame_samples += self.options['num_data_bits']
|
|
frame_samples += 0 if self.options['parity_type'] == 'none' else 1
|
|
frame_samples += self.options['num_stop_bits']
|
|
frame_samples *= self.bit_width
|
|
self.break_min_sample_count = ceil(frame_samples)
|
|
cond_edge_idx = None
|
|
|
|
while True:
|
|
conds = []
|
|
|
|
cond_data_idx = len(conds)
|
|
conds.append(self.get_wait_cond(inv))
|
|
cond_edge_idx = len(conds)
|
|
conds.append({0: 'e'})
|
|
|
|
(rxtx, ) = self.wait(conds)
|
|
if cond_data_idx is not None and (self.matched & (0b1 << cond_data_idx)):
|
|
self.inspect_sample(rxtx, inv)
|
|
if cond_edge_idx is not None and (self.matched & (0b1 << cond_edge_idx)):
|
|
self.inspect_edge(rxtx, inv)
|