2019-09-09 00:07:19 -07:00

640 lines
20 KiB
Python
Executable File

##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2015 Google, Inc
## Copyright (C) 2018 davidanger <davidanger@163.com>
## Copyright (C) 2018 Peter Hazenberg <sigrok@haas-en-berg.nl>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
import struct
import zlib # for crc32
# BMC encoding with a 600kHz datarate
UI_US = 1000000/600000.0
# Threshold to discriminate half-1 from 0 in Binary Mark Conding
THRESHOLD_US = (UI_US + 2 * UI_US) / 2
# Control Message type
CTRL_TYPES = {
0: 'reserved',
1: 'GOOD CRC',
2: 'GOTO MIN',
3: 'ACCEPT',
4: 'REJECT',
5: 'PING',
6: 'PS RDY',
7: 'GET SOURCE CAP',
8: 'GET SINK CAP',
9: 'DR SWAP',
10: 'PR SWAP',
11: 'VCONN SWAP',
12: 'WAIT',
13: 'SOFT RESET',
14: 'reserved',
15: 'reserved',
16: 'Not Supported',
17: 'Get_Source_Cap_Extended',
18: 'Get_Status',
19: 'FR_Swap',
20: 'Get_PPS_Status',
21: 'Get_Country_Codes',
}
# Data message type
DATA_TYPES = {
1: 'SOURCE CAP',
2: 'REQUEST',
3: 'BIST',
4: 'SINK CAP',
5: 'Battery_Status',
6: 'Alert',
7: 'Get_Country_Info',
15: 'VDM'
}
# 4b5b encoding of the symbols
DEC4B5B = [
0x10, # Error 00000
0x10, # Error 00001
0x10, # Error 00010
0x10, # Error 00011
0x10, # Error 00100
0x10, # Error 00101
0x13, # Sync-3 00110
0x14, # RST-1 00111
0x10, # Error 01000
0x01, # 1 = 0001 01001
0x04, # 4 = 0100 01010
0x05, # 5 = 0101 01011
0x10, # Error 01100
0x16, # EOP 01101
0x06, # 6 = 0110 01110
0x07, # 7 = 0111 01111
0x10, # Error 10000
0x12, # Sync-2 10001
0x08, # 8 = 1000 10010
0x09, # 9 = 1001 10011
0x02, # 2 = 0010 10100
0x03, # 3 = 0011 10101
0x0A, # A = 1010 10110
0x0B, # B = 1011 10111
0x11, # Sync-1 11000
0x15, # RST-2 11001
0x0C, # C = 1100 11010
0x0D, # D = 1101 11011
0x0E, # E = 1110 11100
0x0F, # F = 1111 11101
0x00, # 0 = 0000 11110
0x10, # Error 11111
]
SYM_ERR = 0x10
SYNC1 = 0x11
SYNC2 = 0x12
SYNC3 = 0x13
RST1 = 0x14
RST2 = 0x15
EOP = 0x16
SYNC_CODES = [SYNC1, SYNC2, SYNC3]
HRST_CODES = [RST1, RST1, RST1, RST2]
SOP_SEQUENCES = [
(SYNC1, SYNC1, SYNC1, SYNC2),
(SYNC1, SYNC1, SYNC3, SYNC3),
(SYNC1, SYNC3, SYNC1, SYNC3),
(SYNC1, RST2, RST2, SYNC3),
(SYNC1, RST2, SYNC3, SYNC2),
(RST1, SYNC1, RST1, SYNC3),
(RST1, RST1, RST1, RST2),
]
START_OF_PACKETS = {
SOP_SEQUENCES[0]: 'SOP',
SOP_SEQUENCES[1]: "SOP'",
SOP_SEQUENCES[2]: 'SOP"',
SOP_SEQUENCES[3]: "SOP' Debug",
SOP_SEQUENCES[4]: 'SOP" Debug',
SOP_SEQUENCES[5]: 'Cable Reset',
SOP_SEQUENCES[6]: 'Hard Reset',
}
SYM_NAME = [
['0x0', '0'],
['0x1', '1'],
['0x2', '2'],
['0x3', '3'],
['0x4', '4'],
['0x5', '5'],
['0x6', '6'],
['0x7', '7'],
['0x8', '8'],
['0x9', '9'],
['0xA', 'A'],
['0xB', 'B'],
['0xC', 'C'],
['0xD', 'D'],
['0xE', 'E'],
['0xF', 'F'],
['ERROR', 'X'],
['SYNC-1', 'S1'],
['SYNC-2', 'S2'],
['SYNC-3', 'S3'],
['RST-1', 'R1'],
['RST-2', 'R2'],
['EOP', '#'],
]
RDO_FLAGS = {
(1 << 23): 'unchunked',
(1 << 24): 'no_suspend',
(1 << 25): 'comm_cap',
(1 << 26): 'cap_mismatch',
(1 << 27): 'give_back'
}
BIST_MODES = {
0: 'Receiver',
1: 'Transmit',
2: 'Counters',
3: 'Carrier 0',
4: 'Carrier 1',
5: 'Carrier 2',
6: 'Carrier 3',
7: 'Eye',
}
VDM_CMDS = {
1: 'Disc Ident',
2: 'Disc SVID',
3: 'Disc Mode',
4: 'Enter Mode',
5: 'Exit Mode',
6: 'Attention',
# 16..31: SVID Specific Commands
# DisplayPort Commands
16: 'DP Status',
17: 'DP Configure',
}
VDM_ACK = ['REQ', 'ACK', 'NAK', 'BSY']
class SamplerateError(Exception):
pass
class Decoder(srd.Decoder):
api_version = 3
id = 'usb_power_delivery'
name = 'USB PD'
longname = 'USB Power Delivery'
desc = 'USB Power Delivery protocol.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['usb_pd']
tags = ['PC']
channels = (
{'id': 'cc1', 'name': 'CC1', 'desc': 'Configuration Channel 1'},
)
optional_channels = (
{'id': 'cc2', 'name': 'CC2', 'desc': 'Configuration Channel 2'},
)
options = (
{'id': 'fulltext', 'desc': 'Full text decoding of packets',
'default': 'no', 'values': ('yes', 'no')},
)
annotations = (
('type', 'Packet Type'),
('preamble', 'Preamble'),
('sop', 'Start of Packet'),
('header', 'Header'),
('data', 'Data'),
('crc', 'Checksum'),
('eop', 'End Of Packet'),
('sym', '4b5b symbols'),
('warnings', 'Warnings'),
('src', 'Source Message'),
('snk', 'Sink Message'),
('payload', 'Payload'),
('text', 'Plain text'),
)
annotation_rows = (
('4b5b', 'Symbols', (7,)),
('phase', 'Parts', (1, 2, 3, 4, 5, 6)),
('payload', 'Payload', (11,)),
('type', 'Type', (0, 9, 10)),
('warnings', 'Warnings', (8,)),
('text', 'Full text', (12,)),
)
binary = (
('raw-data', 'RAW binary data'),
)
stored_pdos = {}
def get_request(self, rdo):
pos = (rdo >> 28) & 7
op_ma = ((rdo >> 10) & 0x3ff) * 0.01
max_ma = (rdo & 0x3ff) * 0.01
mark = self.cap_mark[pos]
if mark == 3:
op_v = ((rdo >> 9) & 0x7ff) * 0.02
op_a = (rdo & 0x3f) * 0.05
t_settings = '%gV %gA' % (op_v, op_a)
elif mark == 2:
op_w = ((rdo >> 10) & 0x3ff) * 0.25
mp_w = (rdo & 0x3ff) * 0.25
t_settings = '%gW (operating)' % op_w
else:
op_a = ((rdo >> 10) & 0x3ff) * 0.01
max_a = (rdo & 0x3ff) * 0.01
t_settings = '%gA (operating) / %gA (max)' % (op_a, max_a)
t_flags = ''
for f in sorted(RDO_FLAGS.keys(), reverse = True):
if rdo & f:
t_flags += ' [' + RDO_FLAGS[f] + ']'
if pos in self.stored_pdos.keys():
t_pdo = '#%d: %s' % (pos, self.stored_pdos[pos])
else:
t_pdo = '#%d' % (pos)
return '(PDO %s) %s%s' % (t_pdo, t_settings, t_flags)
def get_source_sink_cap(self, pdo, idx, source):
t1 = (pdo >> 30) & 3
self.cap_mark[idx] = t1
flags = {}
if t1 == 0:
t_name = 'Fixed'
if source:
flags = {
(1 << 29): 'dual_role_power',
(1 << 28): 'suspend',
(1 << 27): 'unconstrained',
(1 << 26): 'comm_cap',
(1 << 25): 'dual_role_data',
(1 << 24): 'unchunked',
}
else: # Sink
flags = {
(1 << 29): 'dual_role_power',
(1 << 28): 'high_capability',
(1 << 27): 'unconstrained',
(1 << 26): 'comm_cap',
(1 << 25): 'dual_role_data',
(0b01 << 23): 'fr_swap default power',
(0b10 << 23): 'fr_swap 1.5 A',
(0b11 << 23): 'fr_swap 3.0 A',
}
mv = ((pdo >> 10) & 0x3ff) * 0.05
ma = ((pdo >> 0) & 0x3ff) * 0.01
p = '%gV %gA (%gW)' % (mv, ma, mv*ma)
self.stored_pdos[idx] = '%s %gV' % (t_name, mv)
elif t1 == 1:
t_name = 'Battery'
flags = {} # No flags defined for Battery PDO in PD 3.0 spec
minv = ((pdo >> 10) & 0x3ff) * 0.05
maxv = ((pdo >> 20) & 0x3ff) * 0.05
mw = ((pdo >> 0) & 0x3ff) * 0.25
p = '%g/%gV %gW' % (minv, maxv, mw)
self.stored_pdos[idx] = '%s %g/%gV' % (t_name, minv, maxv)
elif t1 == 2:
t_name = 'Variable'
flags = {} # No flags defined for Variable PDO in PD 3.0 spec
minv = ((pdo >> 10) & 0x3ff) * 0.05
maxv = ((pdo >> 20) & 0x3ff) * 0.05
ma = ((pdo >> 0) & 0x3ff) * 0.01
p = '%g/%gV %gA' % (minv, maxv, ma)
self.stored_pdos[idx] = '%s %g/%gV' % (t_name, minv, maxv)
elif t1 == 3:
t2 = (pdo >> 28) & 3
if t2 == 0:
t_name = 'Programmable|PPS'
flags = {
(1 << 29): 'power_limited',
}
minv = ((pdo >> 8) & 0xff) * 0.1
maxv = ((pdo >> 17) & 0xff) * 0.1
ma = ((pdo >> 0) & 0xff) * 0.05
p = '%g/%gV %gA' % (minv, maxv, ma)
if (pdo >> 27) & 0x1:
p += ' [limited]'
self.stored_pdos[idx] = '%s %g/%gV' % (t_name, minv, maxv)
else:
t_name = 'Reserved APDO: '+bin(t2)
p = '[raw: %s]' % (bin(pdo))
self.stored_pdos[idx] = '%s %s' % (t_name, p)
t_flags = ''
for f in sorted(flags.keys(), reverse = True):
if pdo & f:
t_flags += ' [' + flags[f] + ']'
return '[%s] %s%s' % (t_name, p, t_flags)
def get_vdm(self, idx, data):
if idx == 0: # VDM header
vid = data >> 16
struct = data & (1 << 15)
txt = 'VDM'
if struct: # Structured VDM
cmd = data & 0x1f
src = data & (1 << 5)
ack = (data >> 6) & 3
pos = (data >> 8) & 7
ver = (data >> 13) & 3
txt = VDM_ACK[ack] + ' '
txt += VDM_CMDS[cmd] if cmd in VDM_CMDS else 'cmd?'
txt += ' pos %d' % (pos) if pos else ' '
else: # Unstructured VDM
txt = 'unstruct [%04x]' % (data & 0x7fff)
txt += ' SVID:%04x' % (vid)
else: # VDM payload
txt = 'VDO:%08x' % (data)
return txt
def get_bist(self, idx, data):
mode = data >> 28
counter = data & 0xffff
mode_name = BIST_MODES[mode] if mode in BIST_MODES else 'INVALID'
if mode == 2:
mode_name = 'Counter[= %d]' % (counter)
# TODO: Check all 0 bits are 0 / emit warnings.
return 'mode %s' % (mode_name) if idx == 0 else 'invalid BRO'
def putpayload(self, s0, s1, idx):
t = self.head_type()
txt = '['+str(idx+1)+'] '
if t == 2:
txt += self.get_request(self.data[idx])
elif t == 1 or t == 4:
txt += self.get_source_sink_cap(self.data[idx], idx+1, t==1)
elif t == 15:
txt += self.get_vdm(idx, self.data[idx])
elif t == 3:
txt += self.get_bist(idx, self.data[idx])
self.putx(s0, s1, [11, [txt, txt]])
self.text += ' - ' + txt
def puthead(self):
ann_type = 9 if self.head_power_role() else 10
role = 'SRC' if self.head_power_role() else 'SNK'
if self.head_data_role() != self.head_power_role():
role += '/DFP' if self.head_data_role() else '/UFP'
t = self.head_type()
if self.head_count() == 0:
shortm = CTRL_TYPES[t]
else:
shortm = DATA_TYPES[t] if t in DATA_TYPES else 'DAT???'
longm = '(r{:d}) {:s}[{:d}]: {:s}'.format(self.head_rev(), role, self.head_id(), shortm)
self.putx(0, -1, [ann_type, [longm, shortm]])
self.text += longm
def head_id(self):
return (self.head >> 9) & 7
def head_power_role(self):
return (self.head >> 8) & 1
def head_data_role(self):
return (self.head >> 5) & 1
def head_rev(self):
return ((self.head >> 6) & 3) + 1
def head_type(self):
return self.head & 0xF
def head_count(self):
return (self.head >> 12) & 7
def putx(self, s0, s1, data):
self.put(self.edges[s0], self.edges[s1], self.out_ann, data)
def putwarn(self, longm, shortm):
self.putx(0, -1, [8, [longm, shortm]])
def compute_crc32(self):
bdata = struct.pack('<H'+'I'*len(self.data), self.head & 0xffff,
*tuple([d & 0xffffffff for d in self.data]))
return zlib.crc32(bdata)
def rec_sym(self, i, sym):
self.putx(i, i+5, [7, SYM_NAME[sym]])
def get_sym(self, i, rec=True):
v = (self.bits[i] | (self.bits[i+1] << 1) | (self.bits[i+2] << 2) |
(self.bits[i+3] << 3) | (self.bits[i+4] << 4))
sym = DEC4B5B[v]
if rec:
self.rec_sym(i, sym)
return sym
def get_short(self):
i = self.idx
# Check it's not a truncated packet.
if len(self.bits) - i <= 20:
self.putwarn('Truncated', '!')
return 0x0BAD
k = [self.get_sym(i), self.get_sym(i+5),
self.get_sym(i+10), self.get_sym(i+15)]
# TODO: Check bad symbols.
val = k[0] | (k[1] << 4) | (k[2] << 8) | (k[3] << 12)
self.idx += 20
return val
def get_word(self):
lo = self.get_short()
hi = self.get_short()
return lo | (hi << 16)
def find_corrupted_sop(self, k):
# Start of packet are valid even if they have only 3 correct symbols
# out of 4.
for seq in SOP_SEQUENCES:
if [k[i] == seq[i] for i in range(len(k))].count(True) >= 3:
return START_OF_PACKETS[seq]
return None
def scan_eop(self):
for i in range(len(self.bits) - 19):
k = (self.get_sym(i, rec=False), self.get_sym(i+5, rec=False),
self.get_sym(i+10, rec=False), self.get_sym(i+15, rec=False))
sym = START_OF_PACKETS.get(k, None)
if not sym:
sym = self.find_corrupted_sop(k)
# We have an interesting symbol sequence.
if sym:
# Annotate the preamble.
self.putx(0, i, [1, ['Preamble', '...']])
# Annotate each symbol.
self.rec_sym(i, k[0])
self.rec_sym(i+5, k[1])
self.rec_sym(i+10, k[2])
self.rec_sym(i+15, k[3])
if sym == 'Hard Reset':
self.text += 'HRST'
return -1 # Hard reset
elif sym == 'Cable Reset':
self.text += 'CRST'
return -1 # Cable reset
else:
self.putx(i, i+20, [2, [sym, 'S']])
return i+20
self.putx(0, len(self.bits), [1, ['Junk???', 'XXX']])
self.text += 'Junk???'
self.putwarn('No start of packet found', 'XXX')
return -1 # No Start Of Packet
def __init__(self):
self.reset()
def reset(self):
self.samplerate = None
self.idx = 0
self.packet_seq = 0
self.previous = 0
self.startsample = None
self.bits = []
self.edges = []
self.bad = []
self.half_one = False
self.start_one = 0
self.stored_pdos = {}
self.cap_mark = [0, 0, 0, 0, 0, 0, 0, 0]
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
# 0 is 2 UI, space larger than 1.5x 0 is definitely wrong.
self.maxbit = self.us2samples(3 * UI_US)
# Duration threshold between half 1 and 0.
self.threshold = self.us2samples(THRESHOLD_US)
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
self.out_binary = self.register(srd.OUTPUT_BINARY)
self.out_bitrate = self.register(
srd.OUTPUT_META,
meta=(int, 'Bitrate', 'Bitrate during the packet')
)
def us2samples(self, us):
return int(us * self.samplerate / 1000000)
def decode_packet(self):
self.data = []
self.idx = 0
self.text = ''
if len(self.edges) < 50:
return # Not a real PD packet
self.packet_seq += 1
tstamp = float(self.startsample) / self.samplerate
self.text += '#%-4d (%8.6fms): ' % (self.packet_seq, tstamp*1000)
self.idx = self.scan_eop()
if self.idx < 0:
# Full text trace of the issue.
self.putx(0, self.idx, [12, [self.text, '...']])
return # No real packet: ABORT.
# Packet header
self.head = self.get_short()
self.putx(self.idx-20, self.idx, [3, ['H:%04x' % (self.head), 'HD']])
self.puthead()
# Decode data payload
for i in range(self.head_count()):
self.data.append(self.get_word())
self.putx(self.idx-40, self.idx,
[4, ['[%d]%08x' % (i, self.data[i]), 'D%d' % (i)]])
self.putpayload(self.idx-40, self.idx, i)
# CRC check
self.crc = self.get_word()
ccrc = self.compute_crc32()
if self.crc != ccrc:
self.putwarn('Bad CRC %08x != %08x' % (self.crc, ccrc), 'CRC!')
self.putx(self.idx-40, self.idx, [5, ['CRC:%08x' % (self.crc), 'CRC']])
# End of Packet
if len(self.bits) >= self.idx + 5 and self.get_sym(self.idx) == EOP:
self.putx(self.idx, self.idx + 5, [6, ['EOP', 'E']])
self.idx += 5
else:
self.putwarn('No EOP', 'EOP!')
# Full text trace
if self.options['fulltext'] == 'yes':
self.putx(0, self.idx, [12, [self.text, '...']])
# Meta data for bitrate
ss, es = self.edges[0], self.edges[-1]
bitrate = self.samplerate*len(self.bits) / float(es - ss)
self.put(es, ss, self.out_bitrate, int(bitrate))
# Raw binary data (BMC decoded)
self.put(es, ss, self.out_binary, [0, bytes(self.bits)])
def decode(self):
if not self.samplerate:
raise SamplerateError('Cannot decode without samplerate.')
while True:
self.wait([{0: 'e'}, {1: 'e'}, {'skip': int(self.samplerate/1e3)}])
# First sample of the packet, just record the start date.
if not self.startsample:
self.startsample = self.samplenum
self.previous = self.samplenum
continue
diff = self.samplenum - self.previous
# Large idle: use it as the end of packet.
if diff > self.maxbit:
# The last edge of the packet.
self.edges.append(self.previous)
# Export the packet.
self.decode_packet()
# Reset for next packet.
self.startsample = self.samplenum
self.bits = []
self.edges = []
self.bad = []
self.half_one = False
self.start_one = 0
else: # Add the bit to the packet.
is_zero = diff > self.threshold
if is_zero and not self.half_one:
self.bits.append(0)
self.edges.append(self.previous)
elif not is_zero and self.half_one:
self.bits.append(1)
self.edges.append(self.start_one)
self.half_one = False
elif not is_zero and not self.half_one:
self.half_one = True
self.start_one = self.previous
else: # Invalid BMC sequence
self.bad.append((self.start_one, self.previous))
# TODO: Try to recover.
self.bits.append(0)
self.edges.append(self.previous)
self.half_one = False
self.previous = self.samplenum