2020-05-09 10:47:40 +08:00

276 lines
10 KiB
Python
Executable File

##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2011 Gareth McMullin <gareth@blacksphere.co.nz>
## Copyright (C) 2012-2014 Uwe Hermann <uwe@hermann-uwe.de>
## Copyright (C) 2019 DreamSourceLab <support@dreamsourcelab.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
from collections import namedtuple
Data = namedtuple('Data', ['ss', 'es', 'val'])
'''
OUTPUT_PYTHON format:
Packet:
[<ptype>, <data1>, <data2>]
<ptype>:
- 'DATA': <data1> contains the MOSI data, <data2> contains the MISO data.
The data is _usually_ 8 bits (but can also be fewer or more bits).
Both data items are Python numbers (not strings), or None if the respective
channel was not supplied.
- 'BITS': <data1>/<data2> contain a list of bit values in this MOSI/MISO data
item, and for each of those also their respective start-/endsample numbers.
- 'CS-CHANGE': <data1> is the old CS# pin value, <data2> is the new value.
Both data items are Python numbers (0/1), not strings. At the beginning of
the decoding a packet is generated with <data1> = None and <data2> being the
initial state of the CS# pin or None if the chip select pin is not supplied.
- 'TRANSFER': <data1>/<data2> contain a list of Data() namedtuples for each
byte transferred during this block of CS# asserted time. Each Data() has
fields ss, es, and val.
Examples:
['CS-CHANGE', None, 1]
['CS-CHANGE', 1, 0]
['DATA', 0xff, 0x3a]
['BITS', [[1, 80, 82], [1, 83, 84], [1, 85, 86], [1, 87, 88],
[1, 89, 90], [1, 91, 92], [1, 93, 94], [1, 95, 96]],
[[0, 80, 82], [1, 83, 84], [0, 85, 86], [1, 87, 88],
[1, 89, 90], [1, 91, 92], [0, 93, 94], [0, 95, 96]]]
['DATA', 0x65, 0x00]
['DATA', 0xa8, None]
['DATA', None, 0x55]
['CS-CHANGE', 0, 1]
['TRANSFER', [Data(ss=80, es=96, val=0xff), ...],
[Data(ss=80, es=96, val=0x3a), ...]]
'''
# Key: (CPOL, CPHA). Value: SPI mode.
# Clock polarity (CPOL) = 0/1: Clock is low/high when inactive.
# Clock phase (CPHA) = 0/1: Data is valid on the leading/trailing clock edge.
spi_mode = {
(0, 0): 0, # Mode 0
(0, 1): 1, # Mode 1
(1, 0): 2, # Mode 2
(1, 1): 3, # Mode 3
}
class ChannelError(Exception):
pass
class Decoder(srd.Decoder):
api_version = 3
id = '0:spi'
name = '0:SPI'
longname = 'Serial Peripheral Interface'
desc = 'Full-duplex, synchronous, serial bus.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['spi']
tags = ['Embedded/industrial']
channels = (
{'id': 'clk', 'type': 0, 'name': 'CLK', 'desc': 'Clock'},
)
optional_channels = (
{'id': 'miso', 'type': 107, 'name': 'MISO', 'desc': 'Master in, slave out'},
{'id': 'mosi', 'type': 109, 'name': 'MOSI', 'desc': 'Master out, slave in'},
{'id': 'cs', 'type': -1, 'name': 'CS#', 'desc': 'Chip-select'},
)
options = (
{'id': 'cs_polarity', 'desc': 'CS# polarity', 'default': 'active-low',
'values': ('active-low', 'active-high')},
{'id': 'cpol', 'desc': 'Clock polarity (CPOL)', 'default': 0,
'values': (0, 1)},
{'id': 'cpha', 'desc': 'Clock phase (CPHA)', 'default': 0,
'values': (0, 1)},
{'id': 'bitorder', 'desc': 'Bit order',
'default': 'msb-first', 'values': ('msb-first', 'lsb-first')},
{'id': 'wordsize', 'desc': 'Word size', 'default': 8,
'values': tuple(range(4,129,1))},
)
annotations = (
('106', 'miso-data', 'MISO data'),
('108', 'mosi-data', 'MOSI data'),
)
annotation_rows = (
('miso-data', 'MISO data', (0,)),
('mosi-data', 'MOSI data', (1,)),
)
def __init__(self):
self.reset()
def reset(self):
self.samplerate = None
self.bitcount = 0
self.misodata = self.mosidata = 0
self.misobits = []
self.mosibits = []
self.ss_block = -1
self.samplenum = -1
self.ss_transfer = -1
self.cs_was_deasserted = False
self.have_cs = self.have_miso = self.have_mosi = None
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
self.bw = (self.options['wordsize'] + 7) // 8
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
def putw(self, data):
self.put(self.ss_block, self.samplenum, self.out_ann, data)
def putdata(self):
# Pass MISO and MOSI bits and then data to the next PD up the stack.
so = self.misodata if self.have_miso else None
si = self.mosidata if self.have_mosi else None
if self.have_miso:
ss, es = self.misobits[-1][1], self.misobits[0][2]
if self.have_mosi:
ss, es = self.mosibits[-1][1], self.mosibits[0][2]
# Dataword annotations.
if self.have_miso:
self.put(ss, es, self.out_ann, [0, ['%02X' % self.misodata]])
if self.have_mosi:
self.put(ss, es, self.out_ann, [1, ['%02X' % self.mosidata]])
def reset_decoder_state(self):
self.misodata = 0 if self.have_miso else None
self.mosidata = 0 if self.have_mosi else None
self.misobits = [] if self.have_miso else None
self.mosibits = [] if self.have_mosi else None
self.bitcount = 0
def cs_asserted(self, cs):
active_low = (self.options['cs_polarity'] == 'active-low')
return (cs == 0) if active_low else (cs == 1)
def handle_bit(self, miso, mosi, clk, cs):
# If this is the first bit of a dataword, save its sample number.
if self.bitcount == 0:
self.ss_block = self.samplenum
self.cs_was_deasserted = \
not self.cs_asserted(cs) if self.have_cs else False
ws = self.options['wordsize']
bo = self.options['bitorder']
# Receive MISO bit into our shift register.
if self.have_miso:
if bo == 'msb-first':
self.misodata |= miso << (ws - 1 - self.bitcount)
else:
self.misodata |= miso << self.bitcount
# Receive MOSI bit into our shift register.
if self.have_mosi:
if bo == 'msb-first':
self.mosidata |= mosi << (ws - 1 - self.bitcount)
else:
self.mosidata |= mosi << self.bitcount
# Guesstimate the endsample for this bit (can be overridden below).
es = self.samplenum
if self.bitcount > 0:
if self.have_miso:
es += self.samplenum - self.misobits[0][1]
elif self.have_mosi:
es += self.samplenum - self.mosibits[0][1]
if self.have_miso:
self.misobits.insert(0, [miso, self.samplenum, es])
if self.have_mosi:
self.mosibits.insert(0, [mosi, self.samplenum, es])
if self.bitcount > 0 and self.have_miso:
self.misobits[1][2] = self.samplenum
if self.bitcount > 0 and self.have_mosi:
self.mosibits[1][2] = self.samplenum
self.bitcount += 1
# Continue to receive if not enough bits were received, yet.
if self.bitcount != ws:
return
self.putdata()
self.reset_decoder_state()
def find_clk_edge(self, miso, mosi, clk, cs, first):
if self.have_cs and (first or (self.matched & (0b1 << self.have_cs))):
# Send all CS# pin value changes.
oldcs = None if first else 1 - cs
# Reset decoder state when CS# changes (and the CS# pin is used).
self.reset_decoder_state()
# We only care about samples if CS# is asserted.
if self.have_cs and not self.cs_asserted(cs):
return
# Ignore sample if the clock pin hasn't changed.
if first or not (self.matched & (0b1 << 0)):
return
# Found the correct clock edge, now get the SPI bit(s).
self.handle_bit(miso, mosi, clk, cs)
def decode(self):
# The CLK input is mandatory. Other signals are (individually)
# optional. Yet either MISO or MOSI (or both) must be provided.
# Tell stacked decoders when we don't have a CS# signal.
if not self.has_channel(0):
raise ChannelError('CLK pin required.')
self.have_miso = self.has_channel(1)
self.have_mosi = self.has_channel(2)
if not self.have_miso and not self.have_mosi:
raise ChannelError('Either MISO or MOSI (or both) pins required.')
self.have_cs = self.has_channel(3)
# We want all CLK changes. We want all CS changes if CS is used.
# Map 'have_cs' from boolean to an integer index. This simplifies
# evaluation in other locations.
# Sample data on rising/falling clock edge (depends on mode).
mode = spi_mode[self.options['cpol'], self.options['cpha']]
if mode == 0 or mode == 3: # Sample on rising clock edge
wait_cond = [{0: 'r'}]
else: # Sample on falling clock edge
wait_cond = [{0: 'f'}]
if self.have_cs:
self.have_cs = len(wait_cond)
wait_cond.append({3: 'e'})
# "Pixel compatibility" with the v2 implementation. Grab and
# process the very first sample before checking for edges. The
# previous implementation did this by seeding old values with
# None, which led to an immediate "change" in comparison.
(clk, miso, mosi, cs) = self.wait({})
self.find_clk_edge(miso, mosi, clk, cs, True)
while True:
(clk, miso, mosi, cs) = self.wait(wait_cond)
self.find_clk_edge(miso, mosi, clk, cs, False)