2022-10-21 11:10:28 +08:00

238 lines
9.3 KiB
Python

##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2014 Gump Yang <gump.yang@gmail.com>
## Copyright (C) 2019 DreamSourceLab <support@dreamsourcelab.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
from .lists import *
class SamplerateError(Exception):
pass
class Decoder(srd.Decoder):
api_version = 3
id = 'ir_nec'
name = 'IR NEC'
longname = 'IR NEC'
desc = 'NEC infrared remote control protocol.'
license = 'gplv2+'
inputs = ['logic']
outputs = []
tags = ['IR']
channels = (
{'id': 'ir', 'name': 'IR', 'desc': 'Data line', 'idn':'dec_ir_nec_chan_ir'},
)
options = (
{'id': 'polarity', 'desc': 'Polarity', 'default': 'active-low',
'values': ('active-low', 'active-high'), 'idn':'dec_ir_nec_opt_polarity'},
{'id': 'cd_freq', 'desc': 'Carrier Frequency', 'default': 0, 'idn':'dec_ir_nec_opt_cd_freq'},
)
annotations = (
('bit', 'Bit'),
('agc-pulse', 'AGC pulse'),
('longpause', 'Long pause'),
('shortpause', 'Short pause'),
('stop-bit', 'Stop bit'),
('leader-code', 'Leader code'),
('addr', 'Address'),
('addr-inv', 'Address#'),
('cmd', 'Command'),
('cmd-inv', 'Command#'),
('repeat-code', 'Repeat code'),
('remote', 'Remote'),
('warnings', 'Warnings'),
)
annotation_rows = (
('bits', 'Bits', (0, 1, 2, 3, 4)),
('fields', 'Fields', (5, 6, 7, 8, 9, 10)),
('remote', 'Remote', (11,)),
('warnings', 'Warnings', (12,)),
)
def putx(self, data):
self.put(self.ss_start, self.samplenum, self.out_ann, data)
def putb(self, data):
self.put(self.ss_bit, self.samplenum, self.out_ann, data)
def putd(self, data):
name = self.state.title()
d = {'ADDRESS': 6, 'ADDRESS#': 7, 'COMMAND': 8, 'COMMAND#': 9}
s = {'ADDRESS': ['ADDR', 'A'], 'ADDRESS#': ['ADDR#', 'A#'],
'COMMAND': ['CMD', 'C'], 'COMMAND#': ['CMD#', 'C#']}
self.putx([d[self.state], ['%s: 0x%02X' % (name, data),
'%s: 0x%02X' % (s[self.state][0], data),
'%s: 0x%02X' % (s[self.state][1], data), s[self.state][1]]])
def putstop(self, ss):
self.put(ss, ss + self.stop, self.out_ann,
[4, ['Stop bit', 'Stop', 'St', 'S']])
def putpause(self, p):
self.put(self.ss_start, self.ss_other_edge, self.out_ann,
[1, ['AGC pulse', 'AGC', 'A']])
idx = 2 if p == 'Long' else 3
self.put(self.ss_other_edge, self.samplenum, self.out_ann,
[idx, [p + ' pause', '%s-pause' % p[0], '%sP' % p[0], 'P']])
def putremote(self):
dev = address.get(self.addr, 'Unknown device')
buttons = command.get(self.addr, None)
if buttons is None:
btn = ['Unknown', 'Unk']
else:
btn = buttons.get(self.cmd, ['Unknown', 'Unk'])
self.put(self.ss_remote, self.ss_bit + self.stop, self.out_ann,
[11, ['%s: %s' % (dev, btn[0]), '%s: %s' % (dev, btn[1]),
'%s' % btn[1]]])
def __init__(self):
self.reset()
def reset(self):
self.state = 'IDLE'
self.ss_bit = self.ss_start = self.ss_other_edge = self.ss_remote = 0
self.data = self.count = self.active = None
self.addr = self.cmd = None
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
self.active = 0 if self.options['polarity'] == 'active-low' else 1
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
self.tolerance = 0.05 # +/-5%
self.lc = int(self.samplerate * 0.0135) - 1 # 13.5ms
self.rc = int(self.samplerate * 0.01125) - 1 # 11.25ms
self.dazero = int(self.samplerate * 0.001125) - 1 # 1.125ms
self.daone = int(self.samplerate * 0.00225) - 1 # 2.25ms
self.stop = int(self.samplerate * 0.000652) - 1 # 0.652ms
def compare_with_tolerance(self, measured, base):
return (measured >= base * (1 - self.tolerance)
and measured <= base * (1 + self.tolerance))
def handle_bit(self, tick):
ret = None
if self.compare_with_tolerance(tick, self.dazero):
ret = 0
elif self.compare_with_tolerance(tick, self.daone):
ret = 1
if ret in (0, 1):
self.putb([0, ['%d' % ret]])
self.data |= (ret << self.count) # LSB-first
self.count = self.count + 1
self.ss_bit = self.samplenum
def data_ok(self):
ret, name = (self.data >> 8) & (self.data & 0xff), self.state.title()
if self.count == 8:
if self.state == 'ADDRESS':
self.addr = self.data
if self.state == 'COMMAND':
self.cmd = self.data
self.putd(self.data)
self.ss_start = self.samplenum
return True
if ret == 0:
self.putd(self.data >> 8)
else:
self.putx([12, ['%s error: 0x%04X' % (name, self.data)]])
self.data = self.count = 0
self.ss_bit = self.ss_start = self.samplenum
return ret == 0
def decode(self):
if not self.samplerate:
raise SamplerateError('Cannot decode without samplerate.')
cd_count = None
if self.options['cd_freq']:
cd_count = int(self.samplerate / self.options['cd_freq']) + 1
prev_ir = None
while True:
# Detect changes in the presence of an active input signal.
# The decoder can either be fed an already filtered RX signal
# or optionally can detect the presence of a carrier. Periods
# of inactivity (signal changes slower than the carrier freq,
# if specified) pass on the most recently sampled level. This
# approach works for filtered and unfiltered input alike, and
# only slightly extends the active phase of input signals with
# carriers included by one period of the carrier frequency.
# IR based communication protocols can cope with this slight
# inaccuracy just fine by design. Enabling carrier detection
# on already filtered signals will keep the length of their
# active period, but will shift their signal changes by one
# carrier period before they get passed to decoding logic.
if cd_count:
(cur_ir,) = self.wait([{0: 'e'}, {'skip': cd_count}])
if (self.matched & (0b1 << 0)):
cur_ir = self.active
if cur_ir == prev_ir:
continue
prev_ir = cur_ir
self.ir = cur_ir
else:
(self.ir,) = self.wait({0: 'e'})
if self.ir != self.active:
# Save the non-active edge, then wait for the next edge.
self.ss_other_edge = self.samplenum
continue
b = self.samplenum - self.ss_bit
# State machine.
if self.state == 'IDLE':
if self.compare_with_tolerance(b, self.lc):
self.putpause('Long')
self.putx([5, ['Leader code', 'Leader', 'LC', 'L']])
self.ss_remote = self.ss_start
self.data = self.count = 0
self.state = 'ADDRESS'
elif self.compare_with_tolerance(b, self.rc):
self.putpause('Short')
self.putstop(self.samplenum)
self.samplenum += self.stop
self.putx([10, ['Repeat code', 'Repeat', 'RC', 'R']])
self.data = self.count = 0
self.ss_bit = self.ss_start = self.samplenum
elif self.state == 'ADDRESS':
self.handle_bit(b)
if self.count == 8:
self.state = 'ADDRESS#' if self.data_ok() else 'IDLE'
elif self.state == 'ADDRESS#':
self.handle_bit(b)
if self.count == 16:
self.state = 'COMMAND' if self.data_ok() else 'IDLE'
elif self.state == 'COMMAND':
self.handle_bit(b)
if self.count == 8:
self.state = 'COMMAND#' if self.data_ok() else 'IDLE'
elif self.state == 'COMMAND#':
self.handle_bit(b)
if self.count == 16:
self.state = 'STOP' if self.data_ok() else 'IDLE'
elif self.state == 'STOP':
self.putstop(self.ss_bit)
self.putremote()
self.ss_bit = self.ss_start = self.samplenum
self.state = 'IDLE'