mirror of
https://github.com/DreamSourceLab/DSView.git
synced 2025-01-13 13:32:53 +08:00
129 lines
4.4 KiB
Python
Executable File
129 lines
4.4 KiB
Python
Executable File
##
|
|
## This file is part of the libsigrokdecode project.
|
|
##
|
|
## Copyright (C) 2014 Torsten Duwe <duwe@suse.de>
|
|
## Copyright (C) 2014 Sebastien Bourdelin <sebastien.bourdelin@savoirfairelinux.com>
|
|
##
|
|
## This program is free software; you can redistribute it and/or modify
|
|
## it under the terms of the GNU General Public License as published by
|
|
## the Free Software Foundation; either version 2 of the License, or
|
|
## (at your option) any later version.
|
|
##
|
|
## This program is distributed in the hope that it will be useful,
|
|
## but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
## GNU General Public License for more details.
|
|
##
|
|
## You should have received a copy of the GNU General Public License
|
|
## along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
##
|
|
|
|
import sigrokdecode as srd
|
|
from collections import deque
|
|
|
|
class SamplerateError(Exception):
|
|
pass
|
|
|
|
def normalize_time(t):
|
|
if abs(t) >= 1.0:
|
|
return '%.3f s (%.3f Hz)' % (t, (1/t))
|
|
elif abs(t) >= 0.001:
|
|
if 1/t/1000 < 1:
|
|
return '%.3f ms (%.3f Hz)' % (t * 1000.0, (1/t))
|
|
else:
|
|
return '%.3f ms (%.3f kHz)' % (t * 1000.0, (1/t)/1000)
|
|
elif abs(t) >= 0.000001:
|
|
if 1/t/1000/1000 < 1:
|
|
return '%.3f μs (%.3f kHz)' % (t * 1000.0 * 1000.0, (1/t)/1000)
|
|
else:
|
|
return '%.3f μs (%.3f MHz)' % (t * 1000.0 * 1000.0, (1/t)/1000/1000)
|
|
elif abs(t) >= 0.000000001:
|
|
if 1/t/1000/1000/1000:
|
|
return '%.3f ns (%.3f MHz)' % (t * 1000.0 * 1000.0 * 1000.0, (1/t)/1000/1000)
|
|
else:
|
|
return '%.3f ns (%.3f GHz)' % (t * 1000.0 * 1000.0 * 1000.0, (1/t)/1000/1000/1000)
|
|
else:
|
|
return '%f' % t
|
|
|
|
class Decoder(srd.Decoder):
|
|
api_version = 3
|
|
id = 'timing'
|
|
name = 'Timing'
|
|
longname = 'Timing calculation with frequency and averaging'
|
|
desc = 'Calculate time between edges.'
|
|
license = 'gplv2+'
|
|
inputs = ['logic']
|
|
outputs = []
|
|
tags = ['Clock/timing', 'Util']
|
|
channels = (
|
|
{'id': 'data', 'name': 'Data', 'desc': 'Data line'},
|
|
)
|
|
annotations = (
|
|
('time', 'Time'),
|
|
('average', 'Average'),
|
|
('delta', 'Delta'),
|
|
)
|
|
annotation_rows = (
|
|
('time', 'Time', (0,)),
|
|
('average', 'Average', (1,)),
|
|
('delta', 'Delta', (2,)),
|
|
)
|
|
options = (
|
|
{ 'id': 'avg_period', 'desc': 'Averaging period', 'default': 100 },
|
|
{ 'id': 'edge', 'desc': 'Edges to check', 'default': 'any', 'values': ('any', 'rising', 'falling') },
|
|
{ 'id': 'delta', 'desc': 'Show delta from last', 'default': 'no', 'values': ('yes', 'no') },
|
|
)
|
|
|
|
def __init__(self):
|
|
self.reset()
|
|
|
|
def reset(self):
|
|
self.samplerate = None
|
|
self.last_samplenum = None
|
|
self.last_n = deque()
|
|
self.chunks = 0
|
|
self.level_changed = False
|
|
self.last_t = None
|
|
|
|
def metadata(self, key, value):
|
|
if key == srd.SRD_CONF_SAMPLERATE:
|
|
self.samplerate = value
|
|
|
|
def start(self):
|
|
self.out_ann = self.register(srd.OUTPUT_ANN)
|
|
self.edge = self.options['edge']
|
|
|
|
def decode(self):
|
|
if not self.samplerate:
|
|
raise SamplerateError('Cannot decode without samplerate.')
|
|
while True:
|
|
if self.edge == 'rising':
|
|
self.wait({0: 'r'})
|
|
elif self.edge == 'falling':
|
|
self.wait({0: 'f'})
|
|
else:
|
|
self.wait({0: 'e'})
|
|
|
|
if not self.last_samplenum:
|
|
self.last_samplenum = self.samplenum
|
|
continue
|
|
samples = self.samplenum - self.last_samplenum
|
|
t = samples / self.samplerate
|
|
|
|
if t > 0:
|
|
self.last_n.append(t)
|
|
if len(self.last_n) > self.options['avg_period']:
|
|
self.last_n.popleft()
|
|
|
|
self.put(self.last_samplenum, self.samplenum, self.out_ann,
|
|
[0, [normalize_time(t)]])
|
|
if self.options['avg_period'] > 0:
|
|
self.put(self.last_samplenum, self.samplenum, self.out_ann,
|
|
[1, [normalize_time(sum(self.last_n) / len(self.last_n))]])
|
|
if self.last_t and self.options['delta'] == 'yes':
|
|
self.put(self.last_samplenum, self.samplenum, self.out_ann,
|
|
[2, [normalize_time(t - self.last_t)]])
|
|
|
|
self.last_t = t
|
|
self.last_samplenum = self.samplenum
|