2023-06-17 11:30:33 +08:00

342 lines
10 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2011 Uwe Hermann <uwe@hermann-uwe.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "../libsigrok-internal.h"
#include <stdlib.h>
#include <string.h>
#include <glib.h>
#include "../config.h" /* Needed for PACKAGE_STRING and others. */
#include "../log.h"
#include <stdio.h>
#undef LOG_PREFIX
#define LOG_PREFIX "csv: "
struct context {
unsigned int num_enabled_channels;
uint64_t samplerate;
uint64_t limit_samples;
char separator;
gboolean header_done;
int *channel_index;
int *channel_unit;
float *channel_scale;
uint16_t *channel_offset;
double *channel_mmin;
double *channel_mmax;
uint32_t ref_min;
uint32_t ref_max;
uint64_t mask;
uint64_t pre_data;
uint64_t index;
int type;
};
/*
* TODO:
* - Option to specify delimiter character and/or string.
* - Option to (not) print metadata as comments.
* - Option to specify the comment character(s), e.g. # or ; or C/C++-style.
* - Option to (not) print samplenumber / time as extra column.
* - Option to "compress" output (only print changed samples, VCD-like).
* - Option to print comma-separated bits, or whole bytes/words (for 8/16
* channel LAs) as ASCII/hex etc. etc.
* - Trigger support.
*/
static int init(struct sr_output *o, GHashTable *options)
{
struct context *ctx = NULL;
struct sr_channel *ch;
GSList *l;
int i;
float range;
if (!o || !o->sdi)
return SR_ERR_ARG;
ctx = malloc(sizeof(struct context));
if (ctx == NULL){
sr_err("%s,ERROR:failed to alloc memory.", __func__);
return SR_ERR;
}
memset(ctx, 0, sizeof(struct context));
o->priv = ctx;
ctx->separator = ',';
ctx->mask = 0;
ctx->index = 0;
ctx->type = g_variant_get_int16(g_hash_table_lookup(options, "type"));
/* Get the number of channels, and the unitsize. */
for (l = o->sdi->channels; l; l = l->next) {
ch = l->data;
if (ch->type != ctx->type)
continue;
if (!ch->enabled)
continue;
ctx->num_enabled_channels++;
}
ctx->channel_index = malloc(sizeof(int) * ctx->num_enabled_channels);
ctx->channel_unit = malloc(sizeof(int) * ctx->num_enabled_channels);
ctx->channel_scale = malloc(sizeof(float) * ctx->num_enabled_channels);
ctx->channel_offset = malloc(sizeof(uint16_t) * ctx->num_enabled_channels);
ctx->channel_mmax = malloc(sizeof(double) * ctx->num_enabled_channels);
ctx->channel_mmin = malloc(sizeof(double) * ctx->num_enabled_channels);
if (ctx->channel_index == NULL || ctx->channel_mmin == NULL){
sr_err("%s,ERROR:failed to alloc memory.", __func__);
return SR_ERR;
}
/* Once more to map the enabled channels. */
for (i = 0, l = o->sdi->channels; l; l = l->next) {
ch = l->data;
if (ch->type != ctx->type)
continue;
if (!ch->enabled)
continue;
ctx->channel_index[i] = ch->index;
//ctx->mask |= (1 << ch->index);
ctx->mask |= (1 << i);
range = ch->vdiv * ch->vfactor * DS_CONF_DSO_VDIVS;
ctx->channel_unit[i] = (range >= 5000000) ? 1000000 :
(range >= 5000) ? 1000 : 1;
ctx->channel_scale[i] = range / ctx->channel_unit[i];
ctx->channel_offset[i] = ch->hw_offset;
ctx->channel_mmax[i] = ch->map_max;
ctx->channel_mmin[i] = ch->map_min;
i++;
}
return SR_OK;
}
static GString *gen_header(const struct sr_output *o)
{
struct context *ctx;
struct sr_channel *ch;
GString *header;
GSList *l;
time_t t;
int num_channels, i;
ctx = o->priv;
header = g_string_sized_new(512);
/* Some metadata */
t = time(NULL);
g_string_append_printf(header, "; CSV, generated by %s on %s",
PACKAGE_STRING, ctime(&t));
/* Columns / channels */
if (ctx->type == SR_CHANNEL_LOGIC)
num_channels = g_slist_length(o->sdi->channels);
else
num_channels = ctx->num_enabled_channels;
g_string_append_printf(header, "; Channels (%d/%d)\n",
ctx->num_enabled_channels, num_channels);
char *samplerate_s = sr_samplerate_string(ctx->samplerate);
g_string_append_printf(header, "; Sample rate: %s\n", samplerate_s);
g_free(samplerate_s);
char *depth_s = sr_samplecount_string(ctx->limit_samples);
g_string_append_printf(header, "; Sample count: %s\n", depth_s);
g_free(depth_s);
if (ctx->type == SR_CHANNEL_LOGIC)
g_string_append_printf(header, "Time(s),");
for (i = 0, l = o->sdi->channels; l; l = l->next, i++) {
ch = l->data;
if (ch->type != ctx->type)
continue;
if (!ch->enabled)
continue;
if (ctx->type == SR_CHANNEL_DSO) {
char *unit_s = ctx->channel_unit[i] >= 1000000 ? "kV" :
ctx->channel_unit[i] >= 1000 ? "V" : "mV";
g_string_append_printf(header, " %s (Unit: %s),", ch->name, unit_s);
} else if (ctx->type == SR_CHANNEL_ANALOG) {
g_string_append_printf(header, " %s (Unit: %s),", ch->name, ch->map_unit);
} else {
g_string_append_printf(header, " %s,", ch->name);
}
}
if (o->sdi->channels)
/* Drop last separator. */
g_string_truncate(header, header->len - 1);
g_string_append_printf(header, "\n");
return header;
}
static int receive(const struct sr_output *o, const struct sr_datafeed_packet *packet,
GString **out)
{
const struct sr_datafeed_meta *meta;
const struct sr_datafeed_logic *logic;
const struct sr_datafeed_dso *dso;
const struct sr_datafeed_analog *analog;
const struct sr_config *src;
GSList *l;
struct context *ctx;
int idx;
uint64_t i, j;
unsigned char *p, c;
double tmpv;
*out = NULL;
if (!o || !o->sdi)
return SR_ERR_ARG;
if (!(ctx = o->priv))
return SR_ERR_ARG;
switch (packet->type) {
case SR_DF_META:
meta = packet->payload;
for (l = meta->config; l; l = l->next) {
src = l->data;
if (src->key == SR_CONF_SAMPLERATE)
ctx->samplerate = g_variant_get_uint64(src->data);
else if (src->key == SR_CONF_LIMIT_SAMPLES)
ctx->limit_samples = g_variant_get_uint64(src->data);
else if (src->key == SR_CONF_REF_MIN)
ctx->ref_min = g_variant_get_uint32(src->data);
else if (src->key == SR_CONF_REF_MAX)
ctx->ref_max = g_variant_get_uint32(src->data);
}
break;
case SR_DF_LOGIC:
logic = packet->payload;
if (!ctx->header_done) {
*out = gen_header(o);
ctx->header_done = TRUE;
} else {
*out = g_string_sized_new(512);
}
for (i = 0; i <= logic->length - logic->unitsize; i += logic->unitsize) {
ctx->index++;
if (packet->bExportOriginalData == 0){
if (ctx->index > 1 && (*(uint64_t *)(logic->data + i) & ctx->mask) == ctx->pre_data)
continue;
}
tmpv = (double)(ctx->index-1) / (double)ctx->samplerate;
g_string_append_printf(*out, "%0.15g", tmpv);
for (j = 0; j < ctx->num_enabled_channels; j++) {
idx = j;
p = logic->data + i + idx / 8;
c = *p & (1 << (idx % 8));
g_string_append_c(*out, ctx->separator);
g_string_append_c(*out, c ? '1' : '0');
}
g_string_append_printf(*out, "\n");
ctx->pre_data = (*(uint64_t *)(logic->data + i) & ctx->mask);
}
break;
case SR_DF_DSO:
dso = packet->payload;
if (!ctx->header_done) {
*out = gen_header(o);
ctx->header_done = TRUE;
} else {
*out = g_string_sized_new(512);
}
for (i = 0; i < (uint64_t)dso->num_samples; i++) {
for (j = 0; j < ctx->num_enabled_channels; j++) {
idx = ctx->channel_index[j];
p = dso->data + i * ctx->num_enabled_channels + idx * ((ctx->num_enabled_channels > 1) ? 1 : 0);
g_string_append_printf(*out, "%0.5f", (ctx->channel_offset[j] - *p) *
ctx->channel_scale[j] /
(ctx->ref_max - ctx->ref_min));
g_string_append_c(*out, ctx->separator);
}
/* Drop last separator. */
g_string_truncate(*out, (*out)->len - 1);
g_string_append_printf(*out, "\n");
}
break;
case SR_DF_ANALOG:
analog = packet->payload;
if (!ctx->header_done) {
*out = gen_header(o);
ctx->header_done = TRUE;
} else {
*out = g_string_sized_new(512);
}
for (i = 0; i < (uint64_t)analog->num_samples; i++) {
for (j = 0; j < ctx->num_enabled_channels; j++) {
idx = ctx->channel_index[j];
p = analog->data + i * ctx->num_enabled_channels + idx * ((ctx->num_enabled_channels > 1) ? 1 : 0);
g_string_append_printf(*out, "%0.5f", (ctx->channel_offset[j] - *p) *
(ctx->channel_mmax[j] - ctx->channel_mmin[j]) /
(ctx->ref_max - ctx->ref_min));
g_string_append_c(*out, ctx->separator);
}
/* Drop last separator. */
g_string_truncate(*out, (*out)->len - 1);
g_string_append_printf(*out, "\n");
}
break;
}
return SR_OK;
}
static int cleanup(struct sr_output *o)
{
struct context *ctx;
if (!o || !o->sdi)
return SR_ERR_ARG;
if (o->priv) {
ctx = o->priv;
g_free(ctx->channel_index);
g_free(o->priv);
o->priv = NULL;
}
return SR_OK;
}
SR_PRIV struct sr_output_module output_csv = {
.id = "csv",
.name = "CSV",
.desc = "Comma-separated values",
.exts = (const char*[]){"csv", NULL},
.options = NULL,
.init = init,
.receive = receive,
.cleanup = cleanup,
};