DSView/libsigrok4DSL/strutil.c
2022-07-14 13:50:40 +08:00

464 lines
12 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2010 Uwe Hermann <uwe@hermann-uwe.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libsigrok-internal.h"
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "log.h"
#undef LOG_PREFIX
#define LOG_PREFIX "strutil: "
/**
* @file
*
* Helper functions for handling or converting libsigrok-related strings.
*/
/**
* @defgroup grp_strutil String utilities
*
* Helper functions for handling or converting libsigrok-related strings.
*
* @{
*/
/**
* Convert a numeric value value to its "natural" string representation.
* in SI units
*
* E.g. a value of 3000000, with units set to "W", would be converted
* to "3 MW", 20000 to "20 kW", 31500 would become "31.5 kW".
*
* @param x The value to convert.
* @param unit The unit to append to the string, or NULL if the string
* has no units.
*
* @return A g_try_malloc()ed string representation of the samplerate value,
* or NULL upon errors. The caller is responsible to g_free() the
* memory.
*/
SR_API char *sr_si_string_u64(uint64_t x, const char *unit)
{
if (unit == NULL)
unit = "";
if ((x >= SR_GHZ(1)) && (x % SR_GHZ(1) == 0)) {
return g_strdup_printf("%llu G%s", x / SR_GHZ(1), unit);
} else if ((x >= SR_GHZ(1)) && (x % SR_GHZ(1) != 0)) {
return g_strdup_printf("%llu.%llu G%s",
x / SR_GHZ(1), x % SR_GHZ(1), unit);
} else if ((x >= SR_MHZ(1)) && (x % SR_MHZ(1) == 0)) {
return g_strdup_printf("%llu M%s",
x / SR_MHZ(1), unit);
} else if ((x >= SR_MHZ(1)) && (x % SR_MHZ(1) != 0)) {
return g_strdup_printf("%llu.%llu M%s",
x / SR_MHZ(1), x % SR_MHZ(1), unit);
} else if ((x >= SR_KHZ(1)) && (x % SR_KHZ(1) == 0)) {
return g_strdup_printf("%llu k%s",
x / SR_KHZ(1), unit);
} else if ((x >= SR_KHZ(1)) && (x % SR_KHZ(1) != 0)) {
return g_strdup_printf("%llu.%llu K%s",
x / SR_KHZ(1), x % SR_KHZ(1), unit);
} else {
return g_strdup_printf("%llu %s", x, unit);
}
sr_err("%s: Error creating SI units string.", __func__);
return NULL;
}
/**
* Convert a numeric value value to its "natural" string representation.
* in IEC units
*
* E.g. a value of 1024, with units set to "B", would be converted
* to "1 kB", 16384 to "16 kB".
*
* @param x The value to convert.
* @param unit The unit to append to the string, or NULL if the string
* has no units.
*
* @return A g_try_malloc()ed string representation of the samplerate value,
* or NULL upon errors. The caller is responsible to g_free() the
* memory.
*/
SR_API char *sr_iec_string_u64(uint64_t x, const char *unit)
{
if (unit == NULL)
unit = "";
if ((x >= SR_GB(1)) && (x % SR_GB(1) == 0)) {
return g_strdup_printf("%llu G%s", x / SR_GB(1), unit);
} else if ((x >= SR_GB(1)) && (x % SR_GB(1) != 0)) {
return g_strdup_printf("%llu.%llu G%s",
x / SR_GB(1), x % SR_GB(1), unit);
} else if ((x >= SR_MB(1)) && (x % SR_MB(1) == 0)) {
return g_strdup_printf("%llu M%s",
x / SR_MB(1), unit);
} else if ((x >= SR_MB(1)) && (x % SR_MB(1) != 0)) {
return g_strdup_printf("%llu.%llu M%s",
x / SR_MB(1), x % SR_MB(1), unit);
} else if ((x >= SR_KB(1)) && (x % SR_KB(1) == 0)) {
return g_strdup_printf("%llu k%s",
x / SR_KB(1), unit);
} else if ((x >= SR_KB(1)) && (x % SR_KB(1) != 0)) {
return g_strdup_printf("%llu.%llu K%s",
x / SR_KB(1), x % SR_KB(1), unit);
} else {
return g_strdup_printf("%llu %s", x, unit);
}
sr_err("%s: Error creating SI units string.", __func__);
return NULL;
}
/**
* Convert a numeric samplerate value to its "natural" string representation.
*
* E.g. a value of 3000000 would be converted to "3 MHz", 20000 to "20 kHz",
* 31500 would become "31.5 kHz".
*
* @param samplerate The samplerate in Hz.
*
* @return A g_try_malloc()ed string representation of the samplerate value,
* or NULL upon errors. The caller is responsible to g_free() the
* memory.
*/
SR_API char *sr_samplerate_string(uint64_t samplerate)
{
return sr_si_string_u64(samplerate, "Hz");
}
/**
* Convert a numeric samplecount value to its "natural" string representation.
*
* E.g. a value of 16384 would be converted to "16 K"
*
* @param samplecount.
*
* @return A g_try_malloc()ed string representation of the samplecount value,
* or NULL upon errors. The caller is responsible to g_free() the
* memory.
*/
SR_API char *sr_samplecount_string(uint64_t samplecount)
{
return sr_si_string_u64(samplecount, " Samples");
}
/**
* Convert a numeric frequency value to the "natural" string representation
* of its period.
*
* E.g. a value of 3000000 would be converted to "3 us", 20000 to "50 ms".
*
* @param frequency The frequency in Hz.
*
* @return A g_try_malloc()ed string representation of the frequency value,
* or NULL upon errors. The caller is responsible to g_free() the
* memory.
*/
SR_API char *sr_period_string(uint64_t frequency)
{
char *o;
int r;
/* Allocate enough for a uint64_t as string + " ms". */
if (!(o = g_try_malloc0(30 + 1))) {
sr_err("%s: o malloc failed", __func__);
return NULL;
}
if (frequency >= SR_GHZ(1))
r = snprintf(o, 30, "%llu ns", frequency / 1000000000);
else if (frequency >= SR_MHZ(1))
r = snprintf(o, 30, "%llu us", frequency / 1000000);
else if (frequency >= SR_KHZ(1))
r = snprintf(o, 30, "%llu ms", frequency / 1000);
else
r = snprintf(o, 30, "%llu s", frequency);
if (r < 0) {
/* Something went wrong... */
g_free(o);
return NULL;
}
return o;
}
/**
* Convert a numeric time(ns) value to the "natural" string representation
* of its period.
*
* E.g. a value of 3000000 would be converted to "3 ms", 20000 to "20 us".
*
* @param time The time in ns.
*
* @return A g_try_malloc()ed string representation of the time value,
* or NULL upon errors. The caller is responsible to g_free() the
* memory.
*/
SR_API char *sr_time_string(uint64_t time)
{
char *o;
int r;
/* Allocate enough for a uint64_t as string + " ms". */
if (!(o = g_try_malloc0(30 + 1))) {
sr_err("%s: o malloc failed", __func__);
return NULL;
}
if (time >= SR_DAY(1))
r = snprintf(o, 30, "%0.2lf day", time * 1.0 / SR_DAY(1));
else if (time >= SR_HOUR(1))
r = snprintf(o, 30, "%0.2lf hour", time * 1.0 / SR_HOUR(1));
else if (time >= SR_MIN(1))
r = snprintf(o, 30, "%0.2lf min", time * 1.0 / SR_MIN(1));
else if (time >= SR_SEC(1))
r = snprintf(o, 30, "%0.2lf s", time * 1.0 / SR_SEC(1));
else if (time >= SR_MS(1))
r = snprintf(o, 30, "%0.2lf ms", time * 1.0 / SR_MS(1));
else if (time >= SR_US(1))
r = snprintf(o, 30, "%0.2lf us", time * 1.0 / SR_US(1));
else
r = snprintf(o, 30, "%llu ns", time);
if (r < 0) {
/* Something went wrong... */
g_free(o);
return NULL;
}
return o;
}
/**
* Convert a numeric voltage value to the "natural" string representation
* of its voltage value. The voltage is specified as a rational number's
* numerator and denominator.
*
* E.g. a value of 300000 would be converted to "300mV", 2 to "2V".
*
* @param v_p The voltage numerator.
* @param v_q The voltage denominator.
*
* @return A g_try_malloc()ed string representation of the voltage value,
* or NULL upon errors. The caller is responsible to g_free() the
* memory.
*/
SR_API char *sr_voltage_string(uint64_t v_p, uint64_t v_q)
{
int r;
char *o;
if (!(o = g_try_malloc0(30 + 1))) {
sr_err("%s: o malloc failed", __func__);
return NULL;
}
if (v_q == 1000)
r = snprintf(o, 30, "%llumV", v_p);
else if (v_q == 1)
r = snprintf(o, 30, "%lluV", v_p);
else
r = snprintf(o, 30, "%gV", (float)v_p / (float)v_q);
if (r < 0) {
/* Something went wrong... */
g_free(o);
return NULL;
}
return o;
}
/**
* Convert a "natural" string representation of a size value to uint64_t.
*
* E.g. a value of "3k" or "3 K" would be converted to 3000, a value
* of "15M" would be converted to 15000000.
*
* Value representations other than decimal (such as hex or octal) are not
* supported. Only 'k' (kilo), 'm' (mega), 'g' (giga) suffixes are supported.
* Spaces (but not other whitespace) between value and suffix are allowed.
*
* @param sizestring A string containing a (decimal) size value.
* @param size Pointer to uint64_t which will contain the string's size value.
*
* @return SR_OK upon success, SR_ERR upon errors.
*/
SR_API int sr_parse_sizestring(const char *sizestring, uint64_t *size)
{
int multiplier, done;
char *s;
*size = strtoull(sizestring, &s, 10);
multiplier = 0;
done = FALSE;
while (s && *s && multiplier == 0 && !done) {
switch (*s) {
case ' ':
break;
case 'k':
case 'K':
multiplier = SR_KHZ(1);
break;
case 'm':
case 'M':
multiplier = SR_MHZ(1);
break;
case 'g':
case 'G':
multiplier = SR_GHZ(1);
break;
default:
done = TRUE;
s--;
}
s++;
}
if (multiplier > 0)
*size *= multiplier;
if (*s && strcasecmp(s, "Hz"))
return SR_ERR;
return SR_OK;
}
/**
* Convert a "natural" string representation of a time value to an
* uint64_t value in milliseconds.
*
* E.g. a value of "3s" or "3 s" would be converted to 3000, a value
* of "15ms" would be converted to 15.
*
* Value representations other than decimal (such as hex or octal) are not
* supported. Only lower-case "s" and "ms" time suffixes are supported.
* Spaces (but not other whitespace) between value and suffix are allowed.
*
* @param timestring A string containing a (decimal) time value.
* @return The string's time value as uint64_t, in milliseconds.
*
* @todo Add support for "m" (minutes) and others.
* @todo Add support for picoseconds?
* @todo Allow both lower-case and upper-case? If no, document it.
*/
SR_API uint64_t sr_parse_timestring(const char *timestring)
{
uint64_t time_msec;
char *s;
/* TODO: Error handling, logging. */
time_msec = strtoull(timestring, &s, 10);
if (time_msec == 0 && s == timestring)
return 0;
if (s && *s) {
while (*s == ' ')
s++;
if (!strcmp(s, "s"))
time_msec *= 1000;
else if (!strcmp(s, "ms"))
; /* redundant */
else
return 0;
}
return time_msec;
}
SR_API gboolean sr_parse_boolstring(const char *boolstr)
{
if (!boolstr)
return FALSE;
if (!g_ascii_strncasecmp(boolstr, "true", 4) ||
!g_ascii_strncasecmp(boolstr, "yes", 3) ||
!g_ascii_strncasecmp(boolstr, "on", 2) ||
!g_ascii_strncasecmp(boolstr, "1", 1))
return TRUE;
return FALSE;
}
SR_API int sr_parse_period(const char *periodstr, uint64_t *p, uint64_t *q)
{
char *s;
*p = strtoull(periodstr, &s, 10);
if (*p == 0 && s == periodstr)
/* No digits found. */
return SR_ERR_ARG;
if (s && *s) {
while (*s == ' ')
s++;
if (!strcmp(s, "fs"))
*q = 1000000000000000ULL;
else if (!strcmp(s, "ps"))
*q = 1000000000000ULL;
else if (!strcmp(s, "ns"))
*q = 1000000000ULL;
else if (!strcmp(s, "us"))
*q = 1000000;
else if (!strcmp(s, "ms"))
*q = 1000;
else if (!strcmp(s, "s"))
*q = 1;
else
/* Must have a time suffix. */
return SR_ERR_ARG;
}
return SR_OK;
}
SR_API int sr_parse_voltage(const char *voltstr, uint64_t *p, uint64_t *q)
{
char *s;
*p = strtoull(voltstr, &s, 10);
if (*p == 0 && s == voltstr)
/* No digits found. */
return SR_ERR_ARG;
if (s && *s) {
while (*s == ' ')
s++;
if (!strcasecmp(s, "mv"))
*q = 1000L;
else if (!strcasecmp(s, "v"))
*q = 1;
else
/* Must have a base suffix. */
return SR_ERR_ARG;
}
return SR_OK;
}
/** @} */