1541 lines
50 KiB
C
Executable File

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
* Copyright (C) 2013 DreamSourceLab <dreamsourcelab@dreamsourcelab.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "libsigrok.h"
#include "libsigrok-internal.h"
#include "dsl.h"
#include "command.h"
#undef min
#define min(a,b) ((a)<(b)?(a):(b))
#undef max
#define max(a,b) ((a)>(b)?(a):(b))
static const unsigned int single_buffer_time = 20;
static const unsigned int total_buffer_time = 100;
static const unsigned int instant_buffer_size = 1024 * 1024;
static struct sr_dev_mode mode_list[] = {
{"LA", LOGIC},
{"DAQ", ANALOG},
{"OSC", DSO},
};
static struct sr_dev_mode pro_mode_list[] = {
{"LA", LOGIC},
};
static const char *opmodes[] = {
"Buffer Mode",
"Stream Mode",
"Internal Test",
"External Test",
"DRAM Loopback Test",
};
static const char *bufoptions[] = {
"Stop immediately",
"Upload captured data",
};
static const char *stream_ch_modes[] = {
"Use 16 Channels (Max 20MHz)",
"Use 12 Channels (Max 25MHz)",
"Use 6 Channels (Max 50MHz)",
"Use 3 Channels (Max 100MHz)",
};
static const uint16_t stream_ch_num[] = {
16,
12,
6,
3,
};
static const char *buffer_ch_modes[] = {
"Use Channels 0~15 (Max 100MHz)",
"Use Channels 0~7 (Max 200MHz)",
"Use Channels 0~3 (Max 400MHz)",
};
static const uint16_t buffer_ch_num[] = {
MAX_LOGIC_PROBES,
MAX_LOGIC_PROBES / 2,
MAX_LOGIC_PROBES / 4,
};
static const char *thresholds[] = {
"1.8/2.5/3.3V Level",
"5.0V Level",
};
static const char *filters[] = {
"None",
"1 Sample Clock",
};
static const char *maxHeights[] = {
"1X",
"2X",
"3X",
"4X",
"5X",
};
static const int32_t hwopts[] = {
SR_CONF_CONN,
};
static const int32_t hwcaps[] = {
SR_CONF_LOGIC_ANALYZER,
SR_CONF_TRIGGER_TYPE,
SR_CONF_SAMPLERATE,
/* These are really implemented in the driver, not the hardware. */
SR_CONF_LIMIT_SAMPLES,
SR_CONF_CONTINUOUS,
};
static const int32_t hwoptions[] = {
SR_CONF_OPERATION_MODE,
SR_CONF_BUFFER_OPTIONS,
SR_CONF_THRESHOLD,
SR_CONF_FILTER,
SR_CONF_MAX_HEIGHT,
SR_CONF_CLOCK_TYPE,
SR_CONF_CLOCK_EDGE,
};
static const int32_t hwoptions_pro[] = {
SR_CONF_OPERATION_MODE,
SR_CONF_BUFFER_OPTIONS,
SR_CONF_VTH,
SR_CONF_FILTER,
SR_CONF_MAX_HEIGHT,
SR_CONF_CLOCK_TYPE,
SR_CONF_CLOCK_EDGE,
};
static const int32_t sessions[] = {
SR_CONF_MAX_HEIGHT,
SR_CONF_OPERATION_MODE,
SR_CONF_BUFFER_OPTIONS,
SR_CONF_CHANNEL_MODE,
SR_CONF_SAMPLERATE,
SR_CONF_LIMIT_SAMPLES,
SR_CONF_CLOCK_TYPE,
SR_CONF_CLOCK_EDGE,
SR_CONF_THRESHOLD,
SR_CONF_FILTER,
SR_CONF_TRIGGER_SLOPE,
SR_CONF_TRIGGER_SOURCE,
SR_CONF_HORIZ_TRIGGERPOS,
SR_CONF_TRIGGER_HOLDOFF,
SR_CONF_TRIGGER_MARGIN,
};
static const int32_t sessions_pro[] = {
SR_CONF_MAX_HEIGHT,
SR_CONF_OPERATION_MODE,
SR_CONF_BUFFER_OPTIONS,
SR_CONF_CHANNEL_MODE,
SR_CONF_SAMPLERATE,
SR_CONF_LIMIT_SAMPLES,
SR_CONF_CLOCK_TYPE,
SR_CONF_CLOCK_EDGE,
SR_CONF_VTH,
SR_CONF_FILTER,
SR_CONF_TRIGGER_SLOPE,
SR_CONF_TRIGGER_SOURCE,
SR_CONF_TRIGGER_CHANNEL,
SR_CONF_HORIZ_TRIGGERPOS,
SR_CONF_TRIGGER_HOLDOFF,
SR_CONF_TRIGGER_MARGIN,
};
static const char *probe_names[] = {
"0", "1", "2", "3", "4", "5", "6", "7",
"8", "9", "10", "11", "12", "13", "14", "15",
NULL,
};
static uint16_t test_sample_value;
static uint16_t test_init = 1;
static const uint64_t samplerates[] = {
SR_KHZ(10),
SR_KHZ(20),
SR_KHZ(50),
SR_KHZ(100),
SR_KHZ(200),
SR_KHZ(500),
SR_MHZ(1),
SR_MHZ(2),
SR_MHZ(5),
SR_MHZ(10),
SR_MHZ(20),
SR_MHZ(25),
SR_MHZ(50),
SR_MHZ(100),
SR_MHZ(200),
SR_MHZ(400),
};
//static const uint64_t samplecounts[] = {
// SR_KB(1),
// SR_KB(2),
// SR_KB(5),
// SR_KB(10),
// SR_KB(20),
// SR_KB(50),
// SR_KB(100),
// SR_KB(200),
// SR_KB(500),
// SR_MB(1),
// SR_MB(2),
// SR_MB(5),
// SR_MB(10),
// SR_MB(16),
//};
static const uint64_t samplecounts[] = {
SR_KB(1),
SR_KB(2),
SR_KB(4),
SR_KB(8),
SR_KB(16),
SR_KB(32),
SR_KB(64),
SR_KB(128),
SR_KB(256),
SR_KB(512),
SR_MB(1),
SR_MB(2),
SR_MB(4),
SR_MB(8),
SR_MB(16),
SR_MB(32),
SR_MB(64),
SR_MB(128),
SR_MB(256),
SR_MB(512),
SR_GB(1),
SR_GB(2),
SR_GB(4),
SR_GB(8),
SR_GB(16),
};
static uint16_t opmodes_show_count = 3;
SR_PRIV struct sr_dev_driver DSLogic_driver_info;
static struct sr_dev_driver *di = &DSLogic_driver_info;
static int counts_size(const struct sr_dev_inst *sdi)
{
struct DSL_context *devc = sdi->priv;
if (strcmp(sdi->model, "DSLogic Basic") == 0)
if (sdi->mode == ANALOG)
return 5;
else if (!devc || devc->op_mode == SR_OP_STREAM)
return ARRAY_SIZE(samplecounts);
else
return 15;
else
if (sdi->mode == ANALOG)
return 15;
else
return ARRAY_SIZE(samplecounts);
}
static void probe_init(struct sr_dev_inst *sdi)
{
int i;
GSList *l;
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
if (sdi->mode == DSO) {
probe->vdiv = 1000;
probe->vfactor = 1;
probe->vpos = 0;
probe->coupling = SR_DC_COUPLING;
probe->trig_value = 0x80;
probe->ms_show = TRUE;
for (i = DSO_MS_BEGIN; i < DSO_MS_END; i++)
probe->ms_en[i] = default_ms_en[i];
}
}
}
static int setup_probes(struct sr_dev_inst *sdi, int num_probes)
{
uint16_t j;
struct sr_channel *probe;
for (j = 0; j < num_probes; j++) {
if (!(probe = sr_channel_new(j, (sdi->mode == LOGIC) ? SR_CHANNEL_LOGIC : ((sdi->mode == DSO) ? SR_CHANNEL_DSO : SR_CHANNEL_ANALOG),
TRUE, probe_names[j])))
return SR_ERR;
sdi->channels = g_slist_append(sdi->channels, probe);
}
probe_init(sdi);
return SR_OK;
}
static int adjust_probes(struct sr_dev_inst *sdi, int num_probes)
{
uint16_t j;
struct sr_channel *probe;
assert(num_probes > 0);
j = g_slist_length(sdi->channels);
while(j < num_probes) {
if (!(probe = sr_channel_new(j, (sdi->mode == LOGIC) ? SR_CHANNEL_LOGIC : ((sdi->mode == DSO) ? SR_CHANNEL_DSO : SR_CHANNEL_ANALOG),
TRUE, probe_names[j])))
return SR_ERR;
sdi->channels = g_slist_append(sdi->channels, probe);
j++;
}
while(j > num_probes) {
sdi->channels = g_slist_delete_link(sdi->channels, g_slist_last(sdi->channels));
j--;
}
return SR_OK;
}
static struct DSL_context *DSLogic_dev_new(const struct sr_dev_inst *sdi)
{
struct DSL_context *devc;
if (!(devc = g_try_malloc(sizeof(struct DSL_context)))) {
sr_err("Device context malloc failed.");
return NULL;
}
devc->channel = NULL;
devc->profile = NULL;
devc->fw_updated = 0;
devc->cur_samplerate = DEFAULT_SAMPLERATE;
devc->limit_samples = DEFAULT_SAMPLELIMIT;
devc->sample_wide = TRUE;
devc->clock_type = FALSE;
devc->clock_edge = FALSE;
devc->rle_mode = FALSE;
devc->instant = FALSE;
devc->op_mode = SR_OP_STREAM;
devc->buf_options = SR_BUF_UPLOAD;
devc->ch_mode = 0;
devc->samplerates_size = 11;
devc->samplecounts_size = counts_size(sdi);
devc->th_level = SR_TH_3V3;
devc->vth = 1.0;
devc->filter = SR_FILTER_NONE;
devc->timebase = 10000;
devc->trigger_slope = DSO_TRIGGER_RISING;
devc->trigger_source = DSO_TRIGGER_AUTO;
devc->trigger_hpos = 0x0;
devc->trigger_hrate = 0;
devc->trigger_holdoff = 0;
devc->zero = FALSE;
devc->stream = (devc->op_mode == SR_OP_STREAM);
devc->mstatus_valid = FALSE;
devc->data_lock = FALSE;
devc->max_height = 0;
devc->dso_bits = 8;
devc->trigger_margin = 8;
devc->trigger_channel = 0;
return devc;
}
static int dev_clear(void)
{
return std_dev_clear(di, NULL);
}
static int init(struct sr_context *sr_ctx)
{
return std_hw_init(sr_ctx, di, LOG_PREFIX);
}
static GSList *scan(GSList *options)
{
struct drv_context *drvc;
struct DSL_context *devc;
struct sr_dev_inst *sdi;
struct sr_usb_dev_inst *usb;
struct sr_config *src;
const struct DSL_profile *prof;
GSList *l, *devices, *conn_devices;
struct libusb_device_descriptor des;
libusb_device **devlist;
int devcnt, num_logic_probes, ret, i, j;
const char *conn;
drvc = di->priv;
conn = NULL;
for (l = options; l; l = l->next) {
src = l->data;
switch (src->key) {
case SR_CONF_CONN:
conn = g_variant_get_string(src->data, NULL);
break;
}
}
if (conn)
conn_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn);
else
conn_devices = NULL;
/* Find all DSLogic compatible devices and upload firmware to them. */
devices = NULL;
libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist);
for (i = 0; devlist[i]; i++) {
if (conn) {
usb = NULL;
for (l = conn_devices; l; l = l->next) {
usb = l->data;
if (usb->bus == libusb_get_bus_number(devlist[i])
&& usb->address == libusb_get_device_address(devlist[i]))
break;
}
if (!l)
/* This device matched none of the ones that
* matched the conn specification. */
continue;
}
if ((ret = libusb_get_device_descriptor( devlist[i], &des)) != 0) {
sr_warn("Failed to get device descriptor: %s.",
libusb_error_name(ret));
continue;
}
prof = NULL;
for (j = 0; supported_DSLogic[j].vid; j++) {
if (des.idVendor == supported_DSLogic[j].vid &&
des.idProduct == supported_DSLogic[j].pid) {
prof = &supported_DSLogic[j];
}
}
/* Skip if the device was not found. */
if (!prof)
continue;
devcnt = g_slist_length(drvc->instances);
sdi = sr_dev_inst_new(LOGIC, devcnt, SR_ST_INITIALIZING,
prof->vendor, prof->model, prof->model_version);
if (!sdi)
return NULL;
sdi->driver = di;
/* Fill in probelist according to this device's profile. */
num_logic_probes = prof->dev_caps & DEV_CAPS_16BIT ? 16 : 8;
if (setup_probes(sdi, num_logic_probes) != SR_OK)
return NULL;
devc = DSLogic_dev_new(sdi);
devc->profile = prof;
sdi->priv = devc;
drvc->instances = g_slist_append(drvc->instances, sdi);
//devices = g_slist_append(devices, sdi);
if (dsl_check_conf_profile(devlist[i])) {
/* Already has the firmware, so fix the new address. */
sr_dbg("Found an DSLogic device.");
sdi->status = SR_ST_INACTIVE;
sdi->inst_type = SR_INST_USB;
sdi->conn = sr_usb_dev_inst_new(libusb_get_bus_number(devlist[i]),
libusb_get_device_address(devlist[i]), NULL);
/* only report device after firmware is ready */
devices = g_slist_append(devices, sdi);
} else {
char *firmware;
if (!(firmware = g_try_malloc(strlen(DS_RES_PATH)+strlen(prof->firmware)+1))) {
sr_err("Firmware path malloc error!");
return NULL;
}
strcpy(firmware, DS_RES_PATH);
strcat(firmware, prof->firmware);
if (ezusb_upload_firmware(devlist[i], USB_CONFIGURATION,
firmware) == SR_OK)
/* Store when this device's FW was updated. */
devc->fw_updated = g_get_monotonic_time();
else
sr_err("Firmware upload failed for "
"device %d.", devcnt);
g_free(firmware);
sdi->inst_type = SR_INST_USB;
sdi->conn = sr_usb_dev_inst_new (libusb_get_bus_number(devlist[i]),
0xff, NULL);
}
}
libusb_free_device_list(devlist, 1);
g_slist_free_full(conn_devices, (GDestroyNotify)sr_usb_dev_inst_free);
return devices;
}
static GSList *dev_list(void)
{
return ((struct drv_context *)(di->priv))->instances;
}
static GSList *dev_mode_list(const struct sr_dev_inst *sdi)
{
GSList *l = NULL;
unsigned int i;
if (strcmp(sdi->model, "DSLogic") == 0) {
for(i = 0; i < ARRAY_SIZE(mode_list); i++) {
l = g_slist_append(l, &mode_list[i]);
}
} else {
for(i = 0; i < ARRAY_SIZE(pro_mode_list); i++) {
l = g_slist_append(l, &pro_mode_list[i]);
}
}
return l;
}
static uint64_t dso_cmd_gen(const struct sr_dev_inst *sdi, struct sr_channel* ch, int id)
{
struct DSL_context *devc;
uint64_t cmd = 0;
int channel_cnt = 0;
GSList *l;
struct sr_channel *en_probe;
devc = sdi->priv;
switch (id) {
case SR_CONF_VDIV:
case SR_CONF_EN_CH:
case SR_CONF_TIMEBASE:
case SR_CONF_COUPLING:
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
if (probe->enabled) {
channel_cnt += probe->index + 0x1;
en_probe = probe;
}
}
if (channel_cnt == 0)
return 0x0;
// --VDBS
if (channel_cnt != 1)
en_probe = ch;
switch(en_probe->vdiv){
case 5: cmd += 0x247000; break;
case 10: cmd += 0x23D000; break;
case 20: cmd += 0x22F000; break;
case 50: cmd += 0x21C800; break;
case 100: cmd += 0x20E800; break;
case 200: cmd += 0x200800; break;
case 500: cmd += 0x2F000; break;
case 1000: cmd += 0x21100; break;
case 2000: cmd += 0x13000; break;
case 5000: cmd += 0x00800; break;
default: cmd += 0x21100; break;
}
// --DC/AC
if (channel_cnt == 1) {
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
if (probe->coupling == SR_AC_COUPLING)
cmd += 0x100000;
break;
}
} else {
if(ch->coupling == SR_AC_COUPLING)
cmd += 0x100000;
}
// --Channel
if(channel_cnt == 1)
cmd += 0xC00000;
else if(ch->index == 0)
cmd += 0x400000;
else if(ch->index == 1)
cmd += 0x800000;
else
cmd += 0x000000;
// if(ch->index == 0)
// cmd += 0x400000;
// else if(ch->index == 1)
// cmd += 0x800000;
// else
// cmd += 0x000000;
// --Header
cmd += 0x55000000;
break;
case SR_CONF_SAMPLERATE:
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
channel_cnt += probe->enabled;
}
cmd += 0x18;
uint32_t divider = (uint32_t)ceil(DSLOGIC_MAX_DSO_SAMPLERATE * 1.0 / devc->cur_samplerate / channel_cnt);
cmd += divider << 8;
break;
case SR_CONF_HORIZ_TRIGGERPOS:
cmd += 0x20;
cmd += devc->trigger_hpos << 8;
break;
case SR_CONF_TRIGGER_SLOPE:
cmd += 0x28;
cmd += devc->trigger_slope << 8;
break;
case SR_CONF_TRIGGER_SOURCE:
cmd += 0x30;
cmd += devc->trigger_source << 8;
break;
case SR_CONF_TRIGGER_VALUE:
cmd += 0x38;
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
cmd += probe->trig_value << (8 * (probe->index + 1));
}
break;
case SR_CONF_TRIGGER_MARGIN:
cmd += 0x40;
cmd += ((uint64_t)devc->trigger_margin << 8);
break;
case SR_CONF_TRIGGER_HOLDOFF:
cmd += 0x58;
cmd += devc->trigger_holdoff << 8;
break;
case SR_CONF_DSO_SYNC:
cmd = 0xa5a5a500;
break;
default:
cmd = 0xFFFFFFFF;
}
return cmd;
}
static int dso_init(const struct sr_dev_inst *sdi)
{
int ret;
GSList *l;
for(l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, probe, SR_CONF_COUPLING));
if (ret != SR_OK) {
sr_err("DSO set coupling of channel %d command failed!", probe->index);
return ret;
}
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, probe, SR_CONF_VDIV));
if (ret != SR_OK) {
sr_err("Set VDIV of channel %d command failed!", probe->index);
return ret;
}
}
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, 0, SR_CONF_SAMPLERATE));
if (ret != SR_OK) {
sr_err("Set Sample Rate command failed!");
return ret;
}
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_HORIZ_TRIGGERPOS));
if (ret != SR_OK) {
sr_err("Set Horiz Trigger Position command failed!");
return ret;
}
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_HOLDOFF));
if (ret != SR_OK) {
sr_err("Set Trigger Holdoff Time command failed!");
return ret;
}
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_SLOPE));
if (ret != SR_OK) {
sr_err("Set Trigger Slope command failed!");
return ret;
}
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_SOURCE));
if (ret != SR_OK) {
sr_err("Set Trigger Source command failed!");
return ret;
}
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_VALUE));
if (ret != SR_OK) {
sr_err("Set Trigger Value command failed!");
return ret;
}
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_MARGIN));
if (ret != SR_OK) {
sr_err("Set Trigger Margin command failed!");
return ret;
}
return ret;
}
static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel *ch,
const struct sr_channel_group *cg)
{
struct DSL_context *devc;
int ret;
ret = dsl_config_get(id, data, sdi, ch, cg);
if (ret != SR_OK) {
switch (id) {
case SR_CONF_OPERATION_MODE:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_string(opmodes[devc->op_mode]);
break;
case SR_CONF_FILTER:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_string(filters[devc->filter]);
break;
case SR_CONF_RLE:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_boolean(devc->rle_mode);
break;
case SR_CONF_TEST:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_boolean((devc->op_mode != SR_OP_BUFFER) &&
(devc->op_mode != SR_OP_STREAM));
break;
case SR_CONF_ACTUAL_SAMPLES:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_uint64(devc->actual_samples);
break;
case SR_CONF_WAIT_UPLOAD:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
if (devc->buf_options == SR_BUF_UPLOAD &&
devc->status == DSL_START) {
devc->status = DSL_ABORT;
dsl_wr_reg(sdi, EEWP_ADDR, bmFORCE_STOP);
*data = g_variant_new_boolean(TRUE);
} else {
*data = g_variant_new_boolean(FALSE);
}
break;
case SR_CONF_BUFFER_OPTIONS:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_string(bufoptions[devc->buf_options]);
break;
case SR_CONF_CHANNEL_MODE:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
if (devc->stream)
*data = g_variant_new_string(stream_ch_modes[devc->ch_mode]);
else
*data = g_variant_new_string(buffer_ch_modes[devc->ch_mode]);
break;
case SR_CONF_MAX_HEIGHT:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_string(maxHeights[devc->max_height]);
break;
case SR_CONF_MAX_HEIGHT_VALUE:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_byte(devc->max_height);
break;
case SR_CONF_THRESHOLD:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_string(thresholds[devc->th_level]);
break;
case SR_CONF_VTH:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_double(devc->vth);
break;
case SR_CONF_ZERO:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
if (sdi->mode == DSO)
*data = g_variant_new_boolean(devc->zero);
else
*data = g_variant_new_boolean(FALSE);
break;
case SR_CONF_STREAM:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_boolean(devc->stream);
break;
case SR_CONF_MAX_DSO_SAMPLERATE:
if (!sdi)
return SR_ERR;
*data = g_variant_new_uint64(DSLOGIC_MAX_DSO_SAMPLERATE);
break;
case SR_CONF_MAX_DSO_SAMPLELIMITS:
if (!sdi)
return SR_ERR;
*data = g_variant_new_uint64(DSLOGIC_MAX_DSO_DEPTH);
break;
case SR_CONF_HW_DEPTH:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_uint64(dsl_channel_depth(sdi));
break;
case SR_CONF_VLD_CH_NUM:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
if (devc->stream)
*data = g_variant_new_int16(stream_ch_num[devc->ch_mode]);
else
*data = g_variant_new_int16(buffer_ch_num[devc->ch_mode]);
break;
default:
return SR_ERR_NA;
}
}
return SR_OK;
}
static int config_set(int id, GVariant *data, struct sr_dev_inst *sdi,
struct sr_channel *ch,
struct sr_channel_group *cg )
{
struct DSL_context *devc;
const char *stropt;
int ret, num_probes;
struct sr_usb_dev_inst *usb;
unsigned int i;
struct drv_context *drvc;
(void)cg;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR;
drvc = di->priv;
devc = sdi->priv;
usb = sdi->conn;
ret = SR_OK;
if (id == SR_CONF_CLOCK_TYPE) {
devc->clock_type = g_variant_get_boolean(data);
} else if (id == SR_CONF_CLOCK_EDGE) {
devc->clock_edge = g_variant_get_boolean(data);
} else if (id == SR_CONF_LIMIT_SAMPLES) {
devc->limit_samples = g_variant_get_uint64(data);
} else if (id == SR_CONF_DATALOCK) {
while(libusb_try_lock_events(drvc->sr_ctx->libusb_ctx));
devc->data_lock = g_variant_get_boolean(data);
libusb_unlock_events(drvc->sr_ctx->libusb_ctx);
} else if (id == SR_CONF_VDIV) {
ch->vdiv = g_variant_get_uint64(data);
if (sdi->mode == DSO) {
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, ch, SR_CONF_VDIV));
}
if (ret == SR_OK)
sr_dbg("%s: setting VDIV of channel %d to %d mv",
__func__, ch->index, ch->vdiv);
else
sr_dbg("%s: setting VDIV of channel %d to %d mv failed",
__func__, ch->index, ch->vdiv);
} else if (id == SR_CONF_FACTOR) {
ch->vfactor = g_variant_get_uint64(data);
sr_dbg("%s: setting Factor of channel %d to %d", __func__,
ch->index, ch->vfactor);
} else if (id == SR_CONF_TIMEBASE) {
devc->timebase = g_variant_get_uint64(data);
} else if (id == SR_CONF_COUPLING) {
ch->coupling = g_variant_get_byte(data);
if (ch->coupling == SR_GND_COUPLING)
ch->coupling = SR_DC_COUPLING;
if (sdi->mode == DSO) {
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, ch, SR_CONF_COUPLING));
}
if (ret == SR_OK)
sr_dbg("%s: setting AC COUPLING of channel %d to %d",
__func__, ch->index, ch->coupling);
else
sr_dbg("%s: setting AC COUPLING of channel %d to %d failed",
__func__, ch->index, ch->coupling);
} else if (id == SR_CONF_TRIGGER_SLOPE) {
devc->trigger_slope = g_variant_get_byte(data);
if (sdi->mode == DSO) {
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_SLOPE));
}
if (ret == SR_OK)
sr_dbg("%s: setting DSO Trigger Slope to %d",
__func__, devc->trigger_slope);
else
sr_dbg("%s: setting DSO Trigger Slope to %d failed",
__func__, devc->trigger_slope);
} else if (id == SR_CONF_TRIGGER_VALUE) {
ch->trig_value = g_variant_get_byte(data);
if (sdi->mode == DSO) {
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, ch, SR_CONF_TRIGGER_VALUE));
}
if (ret == SR_OK)
sr_dbg("%s: setting channel %d Trigger Value to %d",
__func__, ch->index, ch->trig_value);
else
sr_dbg("%s: setting DSO Trigger Value to %d failed",
__func__, ch->index, ch->trig_value);
} else if (id == SR_CONF_HORIZ_TRIGGERPOS) {
if (sdi->mode == DSO) {
devc->trigger_hrate = g_variant_get_byte(data);
//devc->trigger_hpos = devc->trigger_hrate * dsl_en_ch_num(sdi) * devc->limit_samples / 200.0;
/*
* devc->trigger_hpos should be updated before each acquisition
* because the samplelimits may changed
*/
devc->trigger_hpos = devc->trigger_hrate * dsl_en_ch_num(sdi) * devc->limit_samples / 200.0;
if ((ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_HORIZ_TRIGGERPOS))) == SR_OK)
sr_dbg("%s: setting DSO Horiz Trigger Position to %d",
__func__, devc->trigger_hpos);
else
sr_dbg("%s: setting DSO Horiz Trigger Position to %d failed",
__func__, devc->trigger_hpos);
} else {
devc->trigger_hpos = g_variant_get_byte(data) * devc->limit_samples / 100.0;
}
} else if (id == SR_CONF_TRIGGER_HOLDOFF) {
devc->trigger_holdoff = g_variant_get_uint64(data);
if (sdi->mode == DSO) {
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_HOLDOFF));
}
if (ret == SR_OK)
sr_dbg("%s: setting Trigger Holdoff Time to %d",
__func__, devc->trigger_holdoff);
else
sr_dbg("%s: setting Trigger Holdoff Time to %d failed",
__func__, devc->trigger_holdoff);
} else if (id == SR_CONF_TRIGGER_MARGIN) {
devc->trigger_margin = g_variant_get_byte(data);
if (sdi->mode == DSO) {
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_MARGIN));
}
if (ret == SR_OK)
sr_dbg("%s: setting Trigger Margin to %d",
__func__, devc->trigger_margin);
else
sr_dbg("%s: setting Trigger Margin to %d failed",
__func__, devc->trigger_margin);
} else if (id == SR_CONF_SAMPLERATE) {
if ((devc->op_mode != SR_OP_INTERNAL_TEST) &&
(devc->op_mode != SR_OP_EXTERNAL_TEST)) {
devc->cur_samplerate = g_variant_get_uint64(data);
if(sdi->mode == DSO) {
devc->sample_wide = (devc->cur_samplerate <= DSLOGIC_MAX_DSO_SAMPLERATE);
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, 0, SR_CONF_SAMPLERATE));
} else {
devc->sample_wide = (devc->cur_samplerate <= DSLOGIC_MAX_LOGIC_SAMPLERATE);
}
}
} else if (id == SR_CONF_FILTER) {
stropt = g_variant_get_string(data, NULL);
if (!strcmp(stropt, filters[SR_FILTER_NONE])) {
devc->filter = SR_FILTER_NONE;
} else if (!strcmp(stropt, filters[SR_FILTER_1T])) {
devc->filter = SR_FILTER_1T;
} else {
ret = SR_ERR;
}
sr_dbg("%s: setting filter to %d",
__func__, devc->filter);
} else if (id == SR_CONF_RLE) {
devc->rle_mode = g_variant_get_boolean(data);
} else if (id == SR_CONF_INSTANT) {
if (sdi->mode == DSO) {
devc->instant = g_variant_get_boolean(data);
if (dsl_en_ch_num(sdi) != 0) {
if (devc->instant)
devc->limit_samples = DSLOGIC_INSTANT_DEPTH / dsl_en_ch_num(sdi);
else
devc->limit_samples = DSLOGIC_MAX_DSO_DEPTH / dsl_en_ch_num(sdi);
}
}
} else if (id == SR_CONF_DEVICE_MODE) {
sdi->mode = g_variant_get_int16(data);
if (sdi->mode == LOGIC) {
dsl_wr_reg(sdi, EEWP_ADDR, bmSCOPE_CLR);
num_probes = devc->profile->dev_caps & DEV_CAPS_16BIT ? 16 : 8;
} else if (sdi->mode == DSO) {
dsl_wr_reg(sdi, EEWP_ADDR, bmSCOPE_SET);
num_probes = devc->profile->dev_caps & DEV_CAPS_16BIT ? MAX_DSO_PROBES_NUM : 1;
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_DSO_SYNC));
if (ret != SR_OK)
sr_dbg("%s: DSO configuration sync failed", __func__);
devc->cur_samplerate = DSLOGIC_MAX_DSO_SAMPLERATE / num_probes;
devc->limit_samples = DSLOGIC_MAX_DSO_DEPTH / num_probes;
devc->samplerates_size = 15;
} else {
dsl_wr_reg(sdi, EEWP_ADDR, bmSCOPE_CLR);
num_probes = devc->profile->dev_caps & DEV_CAPS_16BIT ? MAX_ANALOG_PROBES_NUM : 1;
devc->op_mode = SR_OP_STREAM;
devc->stream = TRUE;
devc->samplerates_size = 10;
}
devc->samplecounts_size = counts_size(sdi);
sr_dev_probes_free(sdi);
setup_probes(sdi, num_probes);
sr_dbg("%s: setting mode to %d", __func__, sdi->mode);
if (sdi->mode == DSO) {
dso_init(sdi);
}
} else if (id == SR_CONF_OPERATION_MODE) {
stropt = g_variant_get_string(data, NULL);
if (sdi->mode == LOGIC) {
if (!strcmp(stropt, opmodes[SR_OP_BUFFER]) && (devc->op_mode != SR_OP_BUFFER)) {
devc->op_mode = SR_OP_BUFFER;
devc->stream = FALSE;
devc->ch_mode = 0;
devc->samplerates_size = 14;
adjust_probes(sdi, MAX_LOGIC_PROBES);
} else if (!strcmp(stropt, opmodes[SR_OP_STREAM]) && (devc->op_mode != SR_OP_STREAM)) {
devc->op_mode = SR_OP_STREAM;
devc->stream = TRUE;
devc->ch_mode = 0;
devc->samplerates_size = 11;
adjust_probes(sdi, MAX_LOGIC_PROBES);
} else if (!strcmp(stropt, opmodes[SR_OP_INTERNAL_TEST]) && (devc->op_mode != SR_OP_INTERNAL_TEST)) {
devc->op_mode = SR_OP_INTERNAL_TEST;
if (strcmp(sdi->model, "DSLogic Basic") == 0) {
devc->stream = TRUE;
devc->samplerates_size = 10;
} else {
devc->stream = FALSE;
devc->samplerates_size = 14;
}
devc->ch_mode = 0;
adjust_probes(sdi, MAX_LOGIC_PROBES);
devc->limit_samples = DSLOGIC_MAX_LOGIC_DEPTH;
devc->cur_samplerate = DSLOGIC_MAX_LOGIC_SAMPLERATE;
devc->sample_wide = TRUE;
} else if (!strcmp(stropt, opmodes[SR_OP_EXTERNAL_TEST]) && (devc->op_mode != SR_OP_EXTERNAL_TEST)) {
devc->op_mode = SR_OP_EXTERNAL_TEST;
if (strcmp(sdi->model, "DSLogic Basic") == 0) {
devc->stream = TRUE;
devc->samplerates_size = 11;
} else {
devc->stream = FALSE;
devc->samplerates_size = 14;
}
devc->ch_mode = 0;
adjust_probes(sdi, MAX_LOGIC_PROBES);
devc->limit_samples = DSLOGIC_MAX_LOGIC_DEPTH;
devc->cur_samplerate = DSLOGIC_MAX_LOGIC_SAMPLERATE;
devc->sample_wide = TRUE;
} else if (!strcmp(stropt, opmodes[SR_OP_LOOPBACK_TEST]) && (devc->op_mode != SR_OP_LOOPBACK_TEST)) {
devc->op_mode = SR_OP_LOOPBACK_TEST;
devc->stream = FALSE;
devc->ch_mode = 0;
devc->samplerates_size = 14;
adjust_probes(sdi, MAX_LOGIC_PROBES);
devc->limit_samples = DSLOGIC_MAX_LOGIC_DEPTH;
devc->cur_samplerate = DSLOGIC_MAX_LOGIC_SAMPLERATE;
devc->sample_wide = TRUE;
} else {
ret = SR_ERR;
}
if (devc->cur_samplerate > samplerates[devc->samplerates_size-1]) {
devc->cur_samplerate = samplerates[devc->samplerates_size-1];
devc->sample_wide = (devc->cur_samplerate <= DSLOGIC_MAX_DSO_SAMPLERATE);
}
} else if (sdi->mode == ANALOG) {
devc->op_mode = SR_OP_STREAM;
devc->stream = TRUE;
devc->samplerates_size = 10;
}
devc->samplecounts_size = counts_size(sdi);
sr_dbg("%s: setting pattern to %d",
__func__, devc->op_mode);
} else if (id == SR_CONF_BUFFER_OPTIONS) {
stropt = g_variant_get_string(data, NULL);
if (sdi->mode == LOGIC) {
if (!strcmp(stropt, bufoptions[SR_BUF_STOP]))
devc->buf_options = SR_BUF_STOP;
else if (!strcmp(stropt, bufoptions[SR_BUF_UPLOAD]))
devc->buf_options = SR_BUF_UPLOAD;
}
} else if (id == SR_CONF_CHANNEL_MODE) {
stropt = g_variant_get_string(data, NULL);
if (sdi->mode == LOGIC) {
if (devc->stream) {
for (i = 0; i < ARRAY_SIZE(stream_ch_modes); i++)
if (!strcmp(stropt, stream_ch_modes[i])) {
devc->ch_mode = i;
devc->samplerates_size = 11 + i;
adjust_probes(sdi, MAX_LOGIC_PROBES);
break;
}
} else {
for (i = 0; i < ARRAY_SIZE(buffer_ch_modes); i++)
if (!strcmp(stropt, buffer_ch_modes[i])) {
devc->ch_mode = i;
devc->samplerates_size = 14 + i;
adjust_probes(sdi, buffer_ch_num[i]);
break;
}
}
if (devc->cur_samplerate > samplerates[devc->samplerates_size-1]) {
devc->cur_samplerate = samplerates[devc->samplerates_size-1];
devc->sample_wide = (devc->cur_samplerate <= DSLOGIC_MAX_DSO_SAMPLERATE);
}
}
sr_dbg("%s: setting channel mode to %d",
__func__, devc->ch_mode);
} else if (id == SR_CONF_THRESHOLD) {
if (sdi->mode == LOGIC) {
stropt = g_variant_get_string(data, NULL);
if (strcmp(stropt, thresholds[devc->th_level])) {
if (!strcmp(stropt, thresholds[SR_TH_3V3])) {
devc->th_level = SR_TH_3V3;
} else if (!strcmp(stropt, thresholds[SR_TH_5V0])) {
devc->th_level = SR_TH_5V0;
} else {
ret = SR_ERR;
}
char *fpga_bit;
if (!(fpga_bit = g_try_malloc(strlen(DS_RES_PATH)+strlen(devc->profile->fpga_bit33)+1))) {
sr_err("fpag_bit path malloc error!");
return SR_ERR_MALLOC;
}
strcpy(fpga_bit, DS_RES_PATH);
switch(devc->th_level) {
case SR_TH_3V3:
strcat(fpga_bit, devc->profile->fpga_bit33);
break;
case SR_TH_5V0:
strcat(fpga_bit, devc->profile->fpga_bit50);
break;
default:
return SR_ERR;
}
ret = dsl_fpga_config(usb->devhdl, fpga_bit);
g_free(fpga_bit);
if (ret != SR_OK) {
sr_err("Configure FPGA failed!");
}
}
sr_dbg("%s: setting threshold to %d",
__func__, devc->th_level);
}
} else if (id == SR_CONF_VTH) {
devc->vth = g_variant_get_double(data);
ret = dsl_wr_reg(sdi, VTH_ADDR, (uint8_t)(devc->vth/5.0*255));
} else if (id == SR_CONF_MAX_HEIGHT) {
stropt = g_variant_get_string(data, NULL);
for (i = 0; i < ARRAY_SIZE(maxHeights); i++) {
if (!strcmp(stropt, maxHeights[i])) {
devc->max_height = i;
break;
}
}
sr_dbg("%s: setting Signal Max Height to %d",
__func__, devc->max_height);
} else if (id == SR_CONF_EN_CH) {
ch->enabled = g_variant_get_boolean(data);
if (sdi->mode == DSO) {
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, ch, SR_CONF_EN_CH));
uint16_t channel_cnt = 0;
GSList *l;
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
channel_cnt += probe->enabled;
}
if (channel_cnt != 0)
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, 0, SR_CONF_SAMPLERATE));
}
if (ret == SR_OK)
sr_dbg("%s: setting ENABLE of channel %d to %d",
__func__, ch->index, ch->enabled);
else
sr_dbg("%s: setting ENABLE of channel %d to %d",
__func__, ch->index, ch->enabled);
} else if (id == SR_CONF_VPOS) {
ch->vpos = g_variant_get_double(data);
sr_dbg("%s: setting VPOS of channel %d to %lf", __func__,
ch->index, ch->vpos);
} else if (id == SR_CONF_TRIGGER_SOURCE) {
devc->trigger_source = g_variant_get_byte(data);
if (sdi->mode == DSO) {
ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_TRIGGER_SOURCE));
}
if (ret == SR_OK)
sr_dbg("%s: setting DSO Trigger Source to %d",
__func__, devc->trigger_source);
else
sr_dbg("%s: setting DSO Trigger Source to %d failed",
__func__, devc->trigger_source);
} else if (id == SR_CONF_STREAM) {
devc->stream = g_variant_get_boolean(data);
} else {
ret = SR_ERR_NA;
}
return ret;
}
static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct DSL_context *devc;
GVariant *gvar;
GVariantBuilder gvb;
//(void)sdi;
(void)cg;
devc = sdi->priv;
switch (key) {
case SR_CONF_SCAN_OPTIONS:
// *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
// hwopts, ARRAY_SIZE(hwopts), sizeof(int32_t));
*data = g_variant_new_from_data(G_VARIANT_TYPE("ai"),
hwopts, ARRAY_SIZE(hwopts)*sizeof(int32_t), TRUE, NULL, NULL);
break;
case SR_CONF_DEVICE_OPTIONS:
// *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
// hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t));
*data = g_variant_new_from_data(G_VARIANT_TYPE("ai"),
hwcaps, ARRAY_SIZE(hwcaps)*sizeof(int32_t), TRUE, NULL, NULL);
break;
case SR_CONF_DEVICE_CONFIGS:
// *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
// hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t));
if (strcmp(sdi->model, "DSLogic") == 0)
*data = g_variant_new_from_data(G_VARIANT_TYPE("ai"),
hwoptions, ARRAY_SIZE(hwoptions)*sizeof(int32_t), TRUE, NULL, NULL);
else
*data = g_variant_new_from_data(G_VARIANT_TYPE("ai"),
hwoptions_pro, ARRAY_SIZE(hwoptions_pro)*sizeof(int32_t), TRUE, NULL, NULL);
break;
case SR_CONF_DEVICE_SESSIONS:
if (strcmp(sdi->model, "DSLogic") == 0)
*data = g_variant_new_from_data(G_VARIANT_TYPE("ai"),
sessions, ARRAY_SIZE(sessions)*sizeof(int32_t), TRUE, NULL, NULL);
else
*data = g_variant_new_from_data(G_VARIANT_TYPE("ai"),
sessions_pro, ARRAY_SIZE(sessions_pro)*sizeof(int32_t), TRUE, NULL, NULL);
break;
case SR_CONF_SAMPLERATE:
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
// gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates,
// ARRAY_SIZE(samplerates), sizeof(uint64_t));
gvar = g_variant_new_from_data(G_VARIANT_TYPE("at"),
samplerates, devc->samplerates_size*sizeof(uint64_t), TRUE, NULL, NULL);
g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_LIMIT_SAMPLES:
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
gvar = g_variant_new_from_data(G_VARIANT_TYPE("at"),
samplecounts, devc->samplecounts_size*sizeof(uint64_t), TRUE, NULL, NULL);
g_variant_builder_add(&gvb, "{sv}", "samplecounts", gvar);
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_TRIGGER_TYPE:
*data = g_variant_new_string(TRIGGER_TYPE);
break;
case SR_CONF_OPERATION_MODE:
*data = g_variant_new_strv(opmodes, opmodes_show_count);
break;
case SR_CONF_BUFFER_OPTIONS:
*data = g_variant_new_strv(bufoptions, ARRAY_SIZE(bufoptions));
break;
case SR_CONF_CHANNEL_MODE:
if (devc->stream)
*data = g_variant_new_strv(stream_ch_modes, ARRAY_SIZE(stream_ch_modes));
else if (devc->op_mode != SR_OP_BUFFER)
*data = g_variant_new_strv(buffer_ch_modes, 1);
else
*data = g_variant_new_strv(buffer_ch_modes, ARRAY_SIZE(buffer_ch_modes));
break;
case SR_CONF_THRESHOLD:
*data = g_variant_new_strv(thresholds, ARRAY_SIZE(thresholds));
break;
case SR_CONF_FILTER:
*data = g_variant_new_strv(filters, ARRAY_SIZE(filters));
break;
case SR_CONF_MAX_HEIGHT:
*data = g_variant_new_strv(maxHeights, ARRAY_SIZE(maxHeights));
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int dev_open(struct sr_dev_inst *sdi)
{
gboolean fpga_done;
int ret;
struct DSL_context *devc;
devc = sdi->priv;
if ((ret = dsl_dev_open(di, sdi, &fpga_done)) == SR_OK) {
// set threshold
ret = dsl_wr_reg(sdi, VTH_ADDR, (uint8_t)(devc->vth/5.0*255));
}
return ret;
}
static int dev_close(struct sr_dev_inst *sdi)
{
int ret = dsl_dev_close(sdi);
return ret;
}
static int cleanup(void)
{
int ret;
struct drv_context *drvc;
if (!(drvc = di->priv))
return SR_OK;
ret = dev_clear();
g_free(drvc);
di->priv = NULL;
return ret;
}
static void remove_sources(struct DSL_context *devc)
{
int i;
sr_err("%s: remove fds from polling", __func__);
/* Remove fds from polling. */
for (i = 0; devc->usbfd[i] != -1; i++)
sr_source_remove(devc->usbfd[i]);
g_free(devc->usbfd);
}
static int receive_data(int fd, int revents, const struct sr_dev_inst *sdi)
{
int completed = 0;
struct timeval tv;
struct drv_context *drvc;
struct DSL_context *devc;
struct sr_usb_dev_inst *usb;
struct ctl_rd_cmd rd_cmd;
uint8_t hw_info;
int ret;
(void)fd;
(void)revents;
drvc = di->priv;
devc = sdi->priv;
usb = sdi->conn;
tv.tv_sec = tv.tv_usec = 0;
libusb_handle_events_timeout_completed(drvc->sr_ctx->libusb_ctx, &tv, &completed);
// overflow check
if (devc->stream && devc->trf_completed) {
rd_cmd.header.dest = DSL_CTL_HW_STATUS;
rd_cmd.header.size = 1;
hw_info = 0;
rd_cmd.data = &hw_info;
if ((ret = command_ctl_rd(usb->devhdl, rd_cmd)) != SR_OK)
sr_err("Failed to get hardware infos.");
else
devc->overflow = (hw_info & bmSYS_OVERFLOW) != 0;
}
if (devc->status == DSL_FINISH) {
/* Remove polling */
remove_sources(devc);
}
devc->trf_completed = 0;
return TRUE;
}
static int dev_acquisition_start(struct sr_dev_inst *sdi, void *cb_data)
{
(void)cb_data;
struct DSL_context *devc;
struct sr_usb_dev_inst *usb;
struct drv_context *drvc;
const struct libusb_pollfd **lupfd;
unsigned int i;
int ret;
struct ctl_wr_cmd wr_cmd;
test_init = 1;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
drvc = di->priv;
devc = sdi->priv;
usb = sdi->conn;
//devc->cb_data = cb_data;
devc->cb_data = sdi;
devc->num_samples = 0;
devc->num_bytes = 0;
devc->empty_transfer_count = 0;
devc->status = DSL_INIT;
devc->num_transfers = 0;
devc->submitted_transfers = 0;
devc->actual_samples = devc->limit_samples;
devc->actual_bytes = devc->actual_samples / DSLOGIC_ATOMIC_SAMPLES * dsl_en_ch_num(sdi) * DSLOGIC_ATOMIC_SIZE;
test_sample_value = 0;
devc->abort = FALSE;
devc->mstatus_valid = FALSE;
devc->overflow = FALSE;
/* Configures devc->trigger_* and devc->sample_wide */
if (dsl_configure_probes(sdi) != SR_OK) {
sr_err("%s: Failed to configure probes.", __func__);
return SR_ERR;
}
/* Stop Previous GPIF acquisition */
wr_cmd.header.dest = DSL_CTL_STOP;
wr_cmd.header.size = 0;
if ((ret = command_ctl_wr(usb->devhdl, wr_cmd)) != SR_OK) {
sr_err("%s: Stop DSLogic acquisition failed!", __func__);
return ret;
} else {
sr_info("%s: Stop Previous DSLogic acquisition!", __func__);
}
/* Setting FPGA before acquisition start*/
if ((ret = dsl_fpga_arm(sdi)) != SR_OK) {
sr_err("%s: Arm FPGA failed!", __func__);
return ret;
}
/*
* settings must be updated before acquisition
*/
if (sdi->mode == DSO) {
devc->trigger_hpos = devc->trigger_hrate * dsl_en_ch_num(sdi) * devc->limit_samples / 200.0;
if ((ret = dsl_wr_dso(sdi, dso_cmd_gen(sdi, NULL, SR_CONF_HORIZ_TRIGGERPOS))) == SR_OK)
sr_dbg("%s: setting DSO Horiz Trigger Position to %d",
__func__, devc->trigger_hpos);
else
sr_dbg("%s: setting DSO Horiz Trigger Position to %d failed",
__func__, devc->trigger_hpos);
}
/* setup and submit usb transfer */
if ((ret = dsl_start_transfers(devc->cb_data)) != SR_OK) {
sr_err("%s: Could not submit usb transfer"
"(%d)%d", __func__, ret, errno);
return ret;
}
/* setup callback function for data transfer */
lupfd = libusb_get_pollfds(drvc->sr_ctx->libusb_ctx);
for (i = 0; lupfd[i]; i++);
if (!(devc->usbfd = g_try_malloc(sizeof(struct libusb_pollfd) * (i + 1))))
return SR_ERR;
for (i = 0; lupfd[i]; i++) {
sr_source_add(lupfd[i]->fd, lupfd[i]->events,
dsl_get_timeout(devc), receive_data, sdi);
devc->usbfd[i] = lupfd[i]->fd;
}
devc->usbfd[i] = -1;
free(lupfd);
wr_cmd.header.dest = DSL_CTL_START;
wr_cmd.header.size = 0;
if ((ret = command_ctl_wr(usb->devhdl, wr_cmd)) != SR_OK) {
devc->status = DSL_ERROR;
devc->abort = TRUE;
return ret;
}
devc->status = DSL_START;
/* Send header packet to the session bus. */
//std_session_send_df_header(cb_data, LOG_PREFIX);
std_session_send_df_header(sdi, LOG_PREFIX);
return SR_OK;
}
static int dev_acquisition_stop(const struct sr_dev_inst *sdi, void *cb_data)
{
int ret = dsl_dev_acquisition_stop(sdi, cb_data);
return ret;
}
static int dev_status_get(const struct sr_dev_inst *sdi, struct sr_status *status, int begin, int end)
{
int ret = dsl_dev_status_get(sdi, status, begin, end);
return ret;
}
SR_PRIV struct sr_dev_driver DSLogic_driver_info = {
.name = "DSLogic",
.longname = "DSLogic (generic driver for DSLogic LA)",
.api_version = 1,
.init = init,
.cleanup = cleanup,
.scan = scan,
.dev_list = dev_list,
.dev_mode_list = dev_mode_list,
.dev_clear = dev_clear,
.config_get = config_get,
.config_set = config_set,
.config_list = config_list,
.dev_open = dev_open,
.dev_close = dev_close,
.dev_status_get = dev_status_get,
.dev_acquisition_start = dev_acquisition_start,
.dev_acquisition_stop = dev_acquisition_stop,
.priv = NULL,
};