1215 lines
41 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2010 Uwe Hermann <uwe@hermann-uwe.de>
* Copyright (C) 2011 Olivier Fauchon <olivier@aixmarseille.com>
* Copyright (C) 2012 Alexandru Gagniuc <mr.nuke.me@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libsigrok.h"
#include "libsigrok-internal.h"
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <math.h>
#ifdef _WIN32
#include <io.h>
#include <fcntl.h>
#define pipe(fds) _pipe(fds, 4096, _O_BINARY)
#endif
/* Message logging helpers with subsystem-specific prefix string. */
#define LOG_PREFIX "demo: "
#define sr_log(l, s, args...) sr_log(l, LOG_PREFIX s, ## args)
#define sr_spew(s, args...) sr_spew(LOG_PREFIX s, ## args)
#define sr_dbg(s, args...) sr_dbg(LOG_PREFIX s, ## args)
#define sr_info(s, args...) sr_info(LOG_PREFIX s, ## args)
#define sr_warn(s, args...) sr_warn(LOG_PREFIX s, ## args)
#define sr_err(s, args...) sr_err(LOG_PREFIX s, ## args)
/* TODO: Number of probes should be configurable. */
#define NUM_PROBES 16
#define DEMONAME "Demo device"
/* The size of chunks to send through the session bus. */
/* TODO: Should be configurable. */
#define BUFSIZE 512*1024
#define DSO_BUFSIZE 10*1024
#define PERIOD 4000
#define PI 3.14159265
#define CONST_LEN 50
#define DEMO_MAX_LOGIC_DEPTH SR_MB(100)
#define DEMO_MAX_LOGIC_SAMPLERATE SR_MHZ(400)
#define DEMO_MAX_DSO_DEPTH SR_KB(20)
#define DEMO_MAX_DSO_SAMPLERATE SR_MHZ(200)
#define DEMO_MAX_DSO_PROBES_NUM 2
/* Supported patterns which we can generate */
enum {
PATTERN_SINE = 0,
PATTERN_SQUARE = 1,
PATTERN_TRIANGLE = 2,
PATTERN_SAWTOOTH = 3,
PATTERN_RANDOM = 4,
};
static const char *pattern_strings[] = {
"Sine",
"Square",
"Triangle",
"Sawtooth",
"Random",
};
static const char *maxHeights[] = {
"1X",
"2X",
"3X",
"4X",
"5X",
};
static struct sr_dev_mode mode_list[] = {
{"LA", LOGIC},
{"DAQ", ANALOG},
{"OSC", DSO},
};
/* Private, per-device-instance driver context. */
struct dev_context {
struct sr_dev_inst *sdi;
int pipe_fds[2];
GIOChannel *channel;
uint64_t cur_samplerate;
uint64_t limit_samples;
uint64_t limit_samples_show;
uint64_t limit_msec;
uint8_t sample_generator;
uint64_t samples_counter;
void *cb_data;
int64_t starttime;
int stop;
uint64_t timebase;
gboolean instant;
gboolean data_lock;
uint8_t max_height;
uint8_t dso_bits;
uint64_t samples_not_sent;
uint16_t *buf;
uint64_t pre_index;
struct sr_status mstatus;
int trigger_stage;
uint16_t trigger_mask;
uint16_t trigger_value;
uint16_t trigger_edge;
uint8_t trigger_slope;
uint8_t trigger_source;
};
static const int hwcaps[] = {
SR_CONF_LOGIC_ANALYZER,
SR_CONF_DEMO_DEV,
SR_CONF_SAMPLERATE,
SR_CONF_PATTERN_MODE,
SR_CONF_LIMIT_SAMPLES,
SR_CONF_LIMIT_MSEC,
SR_CONF_CONTINUOUS,
};
static const int hwoptions[] = {
SR_CONF_PATTERN_MODE,
SR_CONF_MAX_HEIGHT,
};
static const int32_t sessions[] = {
SR_CONF_SAMPLERATE,
SR_CONF_LIMIT_SAMPLES,
SR_CONF_PATTERN_MODE,
};
static const int const_dc = 1.95 / 10 * 255;
static const int sinx[] = {
0, 2, 3, 5, 6, 8, 9, 11, 12, 14, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28,
30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 41, 42, 43, 44, 45, 45, 46, 47, 47,
48, 48, 49, 49, 49, 49, 50, 50, 50, 50, 50, 50, 50, 50, 50, 49, 49, 49, 48, 48,
47, 47, 46, 46, 45, 44, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 31, 30,
29, 28, 26, 25, 24, 22, 21, 19, 18, 16, 15, 13, 12, 10, 9, 7, 6, 4, 2, 1,
-1, -2, -4, -6, -7, -9, -10, -12, -13, -15, -16, -18, -19, -21, -22, -24, -25, -26, -28, -29,
-30, -31, -33, -34, -35, -36, -37, -38, -39, -40, -41, -42, -43, -44, -44, -45, -46, -46, -47, -47,
-48, -48, -49, -49, -49, -50, -50, -50, -50, -50, -50, -50, -50, -50, -49, -49, -49, -49, -48, -48,
-47, -47, -46, -45, -45, -44, -43, -42, -41, -41, -40, -39, -38, -37, -35, -34, -33, -32, -31, -30,
-28, -27, -26, -24, -23, -21, -20, -18, -17, -16, -14, -12, -11, -9, -8, -6, -5, -3, -2, 0,
};
static const int sqrx[] = {
50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50,
50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50,
50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50,
50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50,
50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50,
-50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50,
-50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50,
-50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50,
-50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50,
-50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50, -50,
};
static const int trix[] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41,
40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21,
20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,
0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19,
-20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -36, -37, -38, -39,
-40, -41, -42, -43, -44, -45, -46, -47, -48, -49, -50, -49, -48, -47, -46, -45, -44, -43, -42, -41,
-40, -39, -38, -37, -36, -35, -34, -33, -32, -31, -30, -29, -28, -27, -26, -25, -24, -23, -22, -21,
-20, -19, -18, -17, -16, -15, -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1,
};
static const int sawx[] = {
0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,
10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19,
20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29,
30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39,
40, 40, 41, 41, 42, 42, 43, 43, 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 49, 50,
-50, -49, -48, -48, -47, -47, -46, -46, -45, -45, -44, -44, -43, -43, -42, -42, -41, -41, -40, -40,
-39, -39, -38, -38, -37, -37, -36, -36, -35, -35, -34, -34, -33, -33, -32, -32, -31, -31, -30, -30,
-29, -29, -28, -28, -27, -27, -26, -26, -25, -25, -24, -24, -23, -23, -22, -22, -21, -21, -20, -20,
-19, -19, -18, -18, -17, -17, -16, -16, -15, -15, -14, -14, -13, -13, -12, -12, -11, -11, -10, -10,
-9, -9, -8, -8, -7, -7, -6, -6, -5, -5, -4, -4, -3, -3, -2, -2, -1, -1, 0, 0,
};
static const int ranx[] = {
-4, 47, -49, -1, -3, 6, -29, 26, 1, 14, -39, -38, 36, 17, 26, -37, -2, 27, -20, -15,
-49, -46, 36, 16, 29, 23, -30, -3, 28, -2, -6, 46, 43, 50, -42, 30, 48, -50, -38, -30,
7, -36, -20, -24, -10, -34, -24, 3, -48, 46, -11, 22, 19, 28, 39, -49, -31, 34, 2, -29,
9, 35, 8, 10, 38, 30, 17, 48, -3, -6, -28, 46, -19, 18, -43, -9, -31, -32, -41, 16,
-10, 46, -4, 4, -32, -43, -45, -39, -33, 28, 24, -17, -43, 42, -7, 36, -44, -5, 9, 39,
17, -40, 12, 16, -42, -1, 2, -9, 50, -8, 27, 27, 14, 8, -18, 12, -8, 26, -8, 12,
-35, 49, 35, 2, -26, -24, -31, 33, 15, -47, 34, 46, -1, -12, 14, 32, -25, -31, -35, -18,
-48, -21, -5, 1, -27, -14, 12, 49, -11, 33, 31, 35, -36, 19, 20, 44, 29, -48, 14, -43,
1, 30, -12, 44, 20, 49, 29, -43, 42, 30, -34, 24, 20, -40, 33, -12, 13, -45, 45, -24,
-41, 36, -8, 46, 47, -34, 28, -39, 7, -32, 38, -27, 28, -3, -8, 43, -37, -24, 6, 3,
};
static const uint64_t samplerates[] = {
SR_HZ(100),
SR_HZ(200),
SR_HZ(500),
SR_KHZ(1),
SR_KHZ(2),
SR_KHZ(5),
SR_KHZ(10),
SR_KHZ(20),
SR_KHZ(50),
SR_KHZ(100),
SR_KHZ(200),
SR_KHZ(500),
SR_MHZ(1),
SR_MHZ(2),
SR_MHZ(5),
SR_MHZ(10),
SR_MHZ(20),
SR_MHZ(50),
SR_MHZ(100),
SR_MHZ(200),
SR_MHZ(400),
};
//static const uint64_t samplecounts[] = {
// SR_KB(1),
// SR_KB(2),
// SR_KB(4),
// SR_KB(8),
// SR_KB(16),
// SR_KB(32),
// SR_KB(64),
// SR_KB(128),
// SR_KB(256),
// SR_KB(512),
// SR_MB(1),
// SR_MB(2),
// SR_MB(4),
// SR_MB(8),
// SR_MB(16),
// SR_MB(32),
// SR_MB(64),
// SR_MB(128),
//};
static const uint64_t samplecounts[] = {
SR_KB(1),
SR_KB(2),
SR_KB(5),
SR_KB(10),
SR_KB(20),
SR_KB(50),
SR_KB(100),
SR_KB(200),
SR_KB(500),
SR_MB(1),
SR_MB(2),
SR_MB(5),
SR_MB(10),
SR_MB(20),
SR_MB(50),
SR_MB(100),
};
/* We name the probes 0-7 on our demo driver. */
static const char *probe_names[NUM_PROBES + 1] = {
"CH0", "CH1", "CH2", "CH3",
"CH4", "CH5", "CH6", "CH7",
"CH8", "CH9", "CH10", "CH11",
"CH12", "CH13", "CH14", "CH15",
NULL,
};
static const gboolean default_ms_en[] = {
FALSE, /* DSO_MS_BEGIN */
TRUE, /* DSO_MS_FREQ */
FALSE, /* DSO_MS_PERD */
TRUE, /* DSO_MS_VMAX */
TRUE, /* DSO_MS_VMIN */
FALSE, /* DSO_MS_VRMS */
FALSE, /* DSO_MS_VMEA */
FALSE, /* DSO_MS_VP2P */
};
/* Private, per-device-instance driver context. */
/* TODO: struct context as with the other drivers. */
/* List of struct sr_dev_inst, maintained by dev_open()/dev_close(). */
SR_PRIV struct sr_dev_driver demo_driver_info;
static struct sr_dev_driver *di = &demo_driver_info;
extern struct ds_trigger *trigger;
static int hw_dev_acquisition_stop(const struct sr_dev_inst *sdi, void *cb_data);
static int clear_instances(void)
{
/* Nothing needed so far. */
return SR_OK;
}
static int hw_init(struct sr_context *sr_ctx)
{
return std_hw_init(sr_ctx, di, LOG_PREFIX);
}
static GSList *hw_scan(GSList *options)
{
struct sr_dev_inst *sdi;
struct sr_channel *probe;
struct drv_context *drvc;
struct dev_context *devc;
GSList *devices;
uint16_t i;
(void)options;
drvc = di->priv;
devices = NULL;
sdi = sr_dev_inst_new(LOGIC, 0, SR_ST_INITIALIZING, DEMONAME, NULL, NULL);
if (!sdi) {
sr_err("Device instance creation failed.");
return NULL;
}
sdi->driver = di;
devices = g_slist_append(devices, sdi);
drvc->instances = g_slist_append(drvc->instances, sdi);
if (!(devc = g_try_malloc(sizeof(struct dev_context)))) {
sr_err("Device context malloc failed.");
return NULL;
}
devc->sdi = sdi;
devc->cur_samplerate = SR_MHZ(1);
devc->limit_samples = SR_MB(1);
devc->limit_samples_show = devc->limit_samples;
devc->limit_msec = 0;
devc->sample_generator = PATTERN_SINE;
devc->timebase = 500;
devc->data_lock = FALSE;
devc->max_height = 0;
devc->dso_bits = 8;
sdi->priv = devc;
if (sdi->mode == LOGIC) {
for (i = 0; probe_names[i]; i++) {
if (!(probe = sr_channel_new(i, SR_CHANNEL_LOGIC, TRUE,
probe_names[i])))
return NULL;
sdi->channels = g_slist_append(sdi->channels, probe);
}
} else if (sdi->mode == DSO) {
for (i = 0; i < DS_MAX_DSO_PROBES_NUM; i++) {
if (!(probe = sr_channel_new(i, SR_CHANNEL_DSO, TRUE,
probe_names[i])))
return NULL;
sdi->channels = g_slist_append(sdi->channels, probe);
}
} else if (sdi->mode == ANALOG) {
for (i = 0; i < DS_MAX_ANALOG_PROBES_NUM; i++) {
if (!(probe = sr_channel_new(i, SR_CHANNEL_ANALOG, TRUE,
probe_names[i])))
return NULL;
sdi->channels = g_slist_append(sdi->channels, probe);
}
}
return devices;
}
static GSList *hw_dev_list(void)
{
return ((struct drv_context *)(di->priv))->instances;
}
static GSList *hw_dev_mode_list(const struct sr_dev_inst *sdi)
{
(void)sdi;
GSList *l = NULL;
unsigned int i;
for(i = 0; i < ARRAY_SIZE(mode_list); i++) {
l = g_slist_append(l, &mode_list[i]);
}
return l;
}
static int hw_dev_open(struct sr_dev_inst *sdi)
{
//(void)sdi;
struct dev_context *const devc = sdi->priv;
sdi->status = SR_ST_ACTIVE;
if (pipe(devc->pipe_fds)) {
/* TODO: Better error message. */
sr_err("%s: pipe() failed", __func__);
return SR_ERR;
}
devc->channel = g_io_channel_unix_new(devc->pipe_fds[0]);
g_io_channel_set_flags(devc->channel, G_IO_FLAG_NONBLOCK, NULL);
/* Set channel encoding to binary (default is UTF-8). */
g_io_channel_set_encoding(devc->channel, NULL, NULL);
/* Make channels to unbuffered. */
g_io_channel_set_buffered(devc->channel, FALSE);
return SR_OK;
}
static int hw_dev_close(struct sr_dev_inst *sdi)
{
//(void)sdi;
struct dev_context *const devc = sdi->priv;
if (sdi->status == SR_ST_ACTIVE && devc->channel) {
g_io_channel_shutdown(devc->channel, FALSE, NULL);
g_io_channel_unref(devc->channel);
devc->channel = NULL;
}
sdi->status = SR_ST_INACTIVE;
return SR_OK;
}
static int hw_cleanup(void)
{
GSList *l;
struct sr_dev_inst *sdi;
struct drv_context *drvc;
int ret = SR_OK;
if (!(drvc = di->priv))
return SR_OK;
/* Properly close and free all devices. */
for (l = drvc->instances; l; l = l->next) {
if (!(sdi = l->data)) {
/* Log error, but continue cleaning up the rest. */
sr_err("%s: sdi was NULL, continuing", __func__);
ret = SR_ERR_BUG;
continue;
}
sr_dev_inst_free(sdi);
}
g_slist_free(drvc->instances);
drvc->instances = NULL;
return ret;
}
static unsigned int en_ch_num(const struct sr_dev_inst *sdi)
{
GSList *l;
unsigned int channel_en_cnt = 0;
for (l = sdi->channels; l; l = l->next) {
struct sr_channel *probe = (struct sr_channel *)l->data;
channel_en_cnt += probe->enabled;
}
return channel_en_cnt;
}
static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel *ch,
const struct sr_channel_group *cg)
{
(void) cg;
struct dev_context *const devc = sdi->priv;
switch (id) {
case SR_CONF_SAMPLERATE:
*data = g_variant_new_uint64(devc->cur_samplerate);
break;
case SR_CONF_LIMIT_SAMPLES:
*data = g_variant_new_uint64(devc->limit_samples_show);
break;
case SR_CONF_LIMIT_MSEC:
*data = g_variant_new_uint64(devc->limit_msec);
break;
case SR_CONF_DEVICE_MODE:
*data = g_variant_new_int16(sdi->mode);
break;
case SR_CONF_TEST:
*data = g_variant_new_boolean(FALSE);
break;
case SR_CONF_INSTANT:
*data = g_variant_new_boolean(devc->instant);
break;
case SR_CONF_PATTERN_MODE:
*data = g_variant_new_string(pattern_strings[devc->sample_generator]);
break;
case SR_CONF_MAX_HEIGHT:
*data = g_variant_new_string(maxHeights[devc->max_height]);
break;
case SR_CONF_MAX_HEIGHT_VALUE:
*data = g_variant_new_byte(devc->max_height);
break;
case SR_CONF_VPOS:
*data = g_variant_new_double(ch->vpos);
break;
case SR_CONF_VDIV:
*data = g_variant_new_uint64(ch->vdiv);
break;
case SR_CONF_FACTOR:
*data = g_variant_new_uint64(ch->vfactor);
break;
case SR_CONF_TIMEBASE:
*data = g_variant_new_uint64(devc->timebase);
break;
case SR_CONF_COUPLING:
*data = g_variant_new_byte(ch->coupling);
break;
case SR_CONF_TRIGGER_VALUE:
*data = g_variant_new_byte(ch->trig_value);
break;
case SR_CONF_EN_CH:
*data = g_variant_new_boolean(ch->enabled);
break;
case SR_CONF_DATALOCK:
*data = g_variant_new_boolean(devc->data_lock);
break;
case SR_CONF_MAX_DSO_SAMPLERATE:
*data = g_variant_new_uint64(DEMO_MAX_DSO_SAMPLERATE);
break;
case SR_CONF_MAX_DSO_SAMPLELIMITS:
*data = g_variant_new_uint64(DEMO_MAX_DSO_DEPTH);
break;
case SR_CONF_HW_DEPTH:
*data = g_variant_new_uint64(DEMO_MAX_LOGIC_DEPTH);
break;
case SR_CONF_DSO_BITS:
*data = g_variant_new_byte(devc->dso_bits);
break;
case SR_CONF_VLD_CH_NUM:
*data = g_variant_new_int16(NUM_PROBES);
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int config_set(int id, GVariant *data, struct sr_dev_inst *sdi,
struct sr_channel *ch,
struct sr_channel_group *cg)
{
uint16_t i, j;
int ret;
const char *stropt;
struct sr_channel *probe;
uint64_t tmp_u64;
(void) cg;
struct dev_context *const devc = sdi->priv;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
if (id == SR_CONF_SAMPLERATE) {
devc->cur_samplerate = g_variant_get_uint64(data);
devc->samples_counter = 0;
devc->pre_index = 0;
sr_dbg("%s: setting samplerate to %" PRIu64, __func__,
devc->cur_samplerate);
ret = SR_OK;
} else if (id == SR_CONF_LIMIT_SAMPLES) {
devc->limit_msec = 0;
devc->limit_samples = g_variant_get_uint64(data);
devc->limit_samples_show = devc->limit_samples;
if (sdi->mode == DSO && en_ch_num(sdi) == 1) {
devc->limit_samples /= 2;
}
sr_dbg("%s: setting limit_samples to %" PRIu64, __func__,
devc->limit_samples);
ret = SR_OK;
} else if (id == SR_CONF_LIMIT_MSEC) {
devc->limit_msec = g_variant_get_uint64(data);
devc->limit_samples = 0;
devc->limit_samples_show = devc->limit_samples;
sr_dbg("%s: setting limit_msec to %" PRIu64, __func__,
devc->limit_msec);
ret = SR_OK;
} else if (id == SR_CONF_DEVICE_MODE) {
sdi->mode = g_variant_get_int16(data);
ret = SR_OK;
if (sdi->mode == LOGIC) {
sr_dev_probes_free(sdi);
for (i = 0; probe_names[i]; i++) {
if (!(probe = sr_channel_new(i, SR_CHANNEL_LOGIC, TRUE,
probe_names[i])))
ret = SR_ERR;
else
sdi->channels = g_slist_append(sdi->channels, probe);
}
devc->cur_samplerate = SR_MHZ(1);
devc->limit_samples = SR_MB(1);
devc->limit_samples_show = devc->limit_samples;
} else if (sdi->mode == DSO) {
sr_dev_probes_free(sdi);
for (i = 0; i < DEMO_MAX_DSO_PROBES_NUM; i++) {
if (!(probe = sr_channel_new(i, SR_CHANNEL_DSO, TRUE,
probe_names[i])))
ret = SR_ERR;
else {
probe->vdiv = 1000;
probe->vfactor = 1;
probe->coupling = SR_AC_COUPLING;
probe->trig_value = 0x80;
probe->vpos = (probe->index == 0 ? 0.5 : -0.5)*probe->vdiv;
sdi->channels = g_slist_append(sdi->channels, probe);
probe->ms_show = TRUE;
for (j = DSO_MS_BEGIN; j < DSO_MS_END; j++)
probe->ms_en[j] = default_ms_en[j];
}
}
devc->cur_samplerate = DEMO_MAX_DSO_SAMPLERATE / DEMO_MAX_DSO_PROBES_NUM;
devc->limit_samples = DEMO_MAX_DSO_DEPTH / DEMO_MAX_DSO_PROBES_NUM;
devc->limit_samples_show = devc->limit_samples;
} else if (sdi->mode == ANALOG) {
sr_dev_probes_free(sdi);
for (i = 0; i < DS_MAX_ANALOG_PROBES_NUM; i++) {
if (!(probe = sr_channel_new(i, SR_CHANNEL_ANALOG, TRUE,
probe_names[i])))
ret = SR_ERR;
else
sdi->channels = g_slist_append(sdi->channels, probe);
}
devc->cur_samplerate = SR_HZ(100);
devc->limit_samples = SR_KB(1);
devc->limit_samples_show = devc->limit_samples;
} else {
ret = SR_ERR;
}
sr_dbg("%s: setting mode to %d", __func__, sdi->mode);
}else if (id == SR_CONF_PATTERN_MODE) {
stropt = g_variant_get_string(data, NULL);
ret = SR_OK;
if (!strcmp(stropt, pattern_strings[PATTERN_SINE])) {
devc->sample_generator = PATTERN_SINE;
} else if (!strcmp(stropt, pattern_strings[PATTERN_SQUARE])) {
devc->sample_generator = PATTERN_SQUARE;
} else if (!strcmp(stropt, pattern_strings[PATTERN_TRIANGLE])) {
devc->sample_generator = PATTERN_TRIANGLE;
} else if (!strcmp(stropt, pattern_strings[PATTERN_SAWTOOTH])) {
devc->sample_generator = PATTERN_SAWTOOTH;
} else if (!strcmp(stropt, pattern_strings[PATTERN_RANDOM])) {
devc->sample_generator = PATTERN_RANDOM;
} else {
ret = SR_ERR;
}
sr_dbg("%s: setting pattern to %d",
__func__, devc->sample_generator);
} else if (id == SR_CONF_MAX_HEIGHT) {
stropt = g_variant_get_string(data, NULL);
ret = SR_OK;
for (i = 0; i < ARRAY_SIZE(maxHeights); i++) {
if (!strcmp(stropt, maxHeights[i])) {
devc->max_height = i;
break;
}
}
sr_dbg("%s: setting Signal Max Height to %d",
__func__, devc->max_height);
} else if (id == SR_CONF_INSTANT) {
devc->instant = g_variant_get_boolean(data);
sr_dbg("%s: setting INSTANT mode to %d", __func__,
devc->instant);
ret = SR_OK;
} else if (id == SR_CONF_HORIZ_TRIGGERPOS) {
ret = SR_OK;
} else if (id == SR_CONF_TRIGGER_HOLDOFF) {
ret = SR_OK;
} else if (id == SR_CONF_TRIGGER_MARGIN) {
ret = SR_OK;
} else if (id == SR_CONF_EN_CH) {
ch->enabled = g_variant_get_boolean(data);
sr_dbg("%s: setting ENABLE of channel %d to %d", __func__,
ch->index, ch->enabled);
ret = SR_OK;
} else if (id == SR_CONF_DATALOCK) {
devc->data_lock = g_variant_get_boolean(data);
sr_dbg("%s: setting data lock to %d", __func__,
devc->data_lock);
ret = SR_OK;
} else if (id == SR_CONF_VDIV) {
tmp_u64 = g_variant_get_uint64(data);
ch->vpos = (tmp_u64 * 1.0 / ch->vdiv) * ch->vpos;
ch->vdiv = tmp_u64;
sr_dbg("%s: setting VDIV of channel %d to %" PRIu64, __func__,
ch->index, ch->vdiv);
ret = SR_OK;
} else if (id == SR_CONF_FACTOR) {
ch->vfactor = g_variant_get_uint64(data);
sr_dbg("%s: setting FACTOR of channel %d to %" PRIu64, __func__,
ch->index, ch->vfactor);
ret = SR_OK;
} else if (id == SR_CONF_VPOS) {
//ch->vpos = g_variant_get_double(data);
sr_dbg("%s: setting VPOS of channel %d to %lf", __func__,
ch->index, ch->vpos);
ret = SR_OK;
} else if (id == SR_CONF_TIMEBASE) {
devc->timebase = g_variant_get_uint64(data);
sr_dbg("%s: setting TIMEBASE to %" PRIu64, __func__,
devc->timebase);
ret = SR_OK;
} else if (id == SR_CONF_COUPLING) {
ch->coupling = g_variant_get_byte(data);
sr_dbg("%s: setting AC COUPLING of channel %d to %d", __func__,
ch->index, ch->coupling);
ret = SR_OK;
} else if (id == SR_CONF_TRIGGER_SOURCE) {
devc->trigger_source = g_variant_get_byte(data);
sr_dbg("%s: setting Trigger Source to %d",
__func__, devc->trigger_source);
ret = SR_OK;
} else if (id == SR_CONF_TRIGGER_SLOPE) {
devc->trigger_slope = g_variant_get_byte(data);
sr_dbg("%s: setting Trigger Slope to %d",
__func__, devc->trigger_slope);
ret = SR_OK;
} else if (id == SR_CONF_TRIGGER_VALUE) {
ch->trig_value = g_variant_get_byte(data);
sr_dbg("%s: setting channel %d Trigger Value to %d",
__func__, ch->index, ch->trig_value);
ret = SR_OK;
} else {
ret = SR_ERR_NA;
}
return ret;
}
static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
GVariant *gvar;
GVariantBuilder gvb;
(void)sdi;
(void)cg;
switch (key) {
case SR_CONF_DEVICE_OPTIONS:
// *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
// hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t));
*data = g_variant_new_from_data(G_VARIANT_TYPE("ai"),
hwcaps, ARRAY_SIZE(hwcaps)*sizeof(int32_t), TRUE, NULL, NULL);
break;
case SR_CONF_DEVICE_CONFIGS:
// *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
// hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t));
*data = g_variant_new_from_data(G_VARIANT_TYPE("ai"),
hwoptions, ARRAY_SIZE(hwoptions)*sizeof(int32_t), TRUE, NULL, NULL);
break;
case SR_CONF_DEVICE_SESSIONS:
*data = g_variant_new_from_data(G_VARIANT_TYPE("ai"),
sessions, ARRAY_SIZE(sessions)*sizeof(int32_t), TRUE, NULL, NULL);
break;
case SR_CONF_SAMPLERATE:
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
// gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates,
// ARRAY_SIZE(samplerates), sizeof(uint64_t));
gvar = g_variant_new_from_data(G_VARIANT_TYPE("at"),
samplerates, ARRAY_SIZE(samplerates)*sizeof(uint64_t), TRUE, NULL, NULL);
g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_LIMIT_SAMPLES:
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
gvar = g_variant_new_from_data(G_VARIANT_TYPE("at"),
samplecounts, ARRAY_SIZE(samplecounts)*sizeof(uint64_t), TRUE, NULL, NULL);
g_variant_builder_add(&gvb, "{sv}", "samplecounts", gvar);
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_PATTERN_MODE:
*data = g_variant_new_strv(pattern_strings, ARRAY_SIZE(pattern_strings));
break;
case SR_CONF_MAX_HEIGHT:
*data = g_variant_new_strv(maxHeights, ARRAY_SIZE(maxHeights));
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static void samples_generator(uint16_t *buf, uint64_t size,
const struct sr_dev_inst *sdi,
struct dev_context *devc)
{
uint64_t i, pre0_i, pre1_i;
GSList *l;
struct sr_channel *probe;
int offset;
unsigned int start_rand;
const uint64_t span = DEMO_MAX_DSO_SAMPLERATE / devc->cur_samplerate;
const uint64_t len = ARRAY_SIZE(sinx) - 1;
const int *pre_buf;
uint16_t tmp_u16 = 0;
unsigned int ch_num = en_ch_num(sdi) ? en_ch_num(sdi) : 1;
switch (devc->sample_generator) {
case PATTERN_SINE: /* Sine */
pre_buf = sinx;
break;
case PATTERN_SQUARE:
pre_buf = sqrx;
break;
case PATTERN_TRIANGLE:
pre_buf = trix;
break;
case PATTERN_SAWTOOTH:
pre_buf = sawx;
break;
case PATTERN_RANDOM:
pre_buf = ranx;
break;
default:
pre_buf = sinx;
break;
}
if (devc->samples_counter == devc->limit_samples &&
size != devc->limit_samples) {
for (i = 0; i < devc->limit_samples; i++)
*(buf + i) = *(buf + ((i + size)%devc->limit_samples));
} else if (sdi->mode == LOGIC) {
for (i = 0; i < size; i++) {
//index = (i/10/g_slist_length(sdi->channels)+start_rand)%len;
//*(buf + i) = (uint16_t)(((const_dc+pre_buf[index]) << 8) + (const_dc+pre_buf[index]));
tmp_u16 = 0;
if (i < ch_num*4)
*(buf + i) = tmp_u16;
else if (i % 4 == 0) {
start_rand = rand() % (ch_num * 4);
if (start_rand == (i/4 % ch_num))
tmp_u16 = 0xffff;
*(buf + i) = tmp_u16 ? ~*(buf + i - ch_num*4) : *(buf + i - ch_num*4);
} else {
*(buf + i) = *(buf + i - 1);
}
}
} else if (sdi->mode == ANALOG) {
for (i = 0; i < size; i++) {
if (rand() % (devc->limit_samples / 100) == 0)
*(buf + i) = 0x4000 + rand() % 0x8000;
else if (rand() % (devc->limit_samples / 1000) == 0)
*(buf + i) = 0x7000 + rand() % 0x2000;
else
*(buf + i) = 0x8000;
}
} else {
if (devc->pre_index == 0) {
devc->mstatus.ch0_max = 0;
devc->mstatus.ch0_min = 255;
devc->mstatus.ch1_max = 0;
devc->mstatus.ch1_min = 255;
devc->mstatus.ch0_period = 0;
devc->mstatus.ch0_pcnt = 1;
devc->mstatus.ch1_period = 0;
devc->mstatus.ch1_pcnt = 1;
}
memset(buf+devc->pre_index, 0, size*sizeof(uint16_t));
for (l = sdi->channels; l; l = l->next) {
start_rand = devc->pre_index == 0 ? rand()%len : 0;
probe = (struct sr_channel *)l->data;
offset = ceil((0.5 - (probe->vpos/probe->vdiv/10.0)) * 255);
//offset = 128;
pre0_i = devc->pre_index;
pre1_i = devc->pre_index;
for (i = devc->pre_index; i < devc->pre_index + size; i++) {
if (probe->coupling == SR_DC_COUPLING) {
*(buf + i) += (uint8_t)(offset + (1000.0/probe->vdiv) * (pre_buf[(i*span+start_rand)%len] - const_dc)) << (probe->index * 8);
} else if (probe->coupling == SR_AC_COUPLING) {
*(buf + i) += (uint8_t)(offset + (1000.0/probe->vdiv) * pre_buf[(i*span+start_rand)%len]) << (probe->index * 8);
} else {
*(buf + i) += offset << (probe->index * 8);
}
if (probe->index == 0) {
devc->mstatus.ch0_max = MAX(devc->mstatus.ch0_max, (*(buf + i) & 0x00ff));
devc->mstatus.ch0_min = MIN(devc->mstatus.ch0_min, (*(buf + i) & 0x00ff));
if (i > devc->pre_index &&
pre_buf[(i*span+start_rand)%len] < 0 &&
pre_buf[((i-1)*span+start_rand)%len] > 0) {
devc->mstatus.ch0_period = 2*(i - pre0_i)*pow(10, 8)/DEMO_MAX_DSO_SAMPLERATE;
pre0_i = i;
}
} else {
devc->mstatus.ch1_max = MAX(devc->mstatus.ch1_max, ((*(buf + i) & 0xff00) >> 8));
devc->mstatus.ch1_min = MIN(devc->mstatus.ch1_min, ((*(buf + i) & 0xff00) >> 8));
if (i > devc->pre_index &&
pre_buf[(i*span+start_rand)%len] < 0 &&
pre_buf[((i-1)*span+start_rand)%len] > 0) {
devc->mstatus.ch1_period = 2*(i - pre1_i)*pow(10, 8)/DEMO_MAX_DSO_SAMPLERATE;
pre1_i = i;
}
}
}
}
for (l = sdi->channels; l; l = l->next) {
probe = (struct sr_channel *)l->data;
if (!probe->enabled) {
devc->mstatus.ch1_max = MAX(devc->mstatus.ch0_max, devc->mstatus.ch1_max);
devc->mstatus.ch1_min = MIN(devc->mstatus.ch0_min, devc->mstatus.ch1_min);
devc->mstatus.ch0_max = MAX(devc->mstatus.ch0_max, devc->mstatus.ch1_max);
devc->mstatus.ch0_min = MIN(devc->mstatus.ch0_min, devc->mstatus.ch1_min);
break;
}
}
}
}
/* Callback handling data */
static int receive_data(int fd, int revents, const struct sr_dev_inst *sdi)
{
struct dev_context *devc = sdi->priv;
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
struct sr_datafeed_dso dso;
struct sr_datafeed_analog analog;
double samples_elaspsed;
uint64_t samples_to_send = 0, sending_now;
int64_t time, elapsed;
static uint16_t last_sample = 0;
uint16_t cur_sample;
uint64_t i;
(void)fd;
(void)revents;
packet.status = SR_PKT_OK;
/* How many "virtual" samples should we have collected by now? */
time = g_get_monotonic_time();
elapsed = time - devc->starttime;
devc->starttime = time;
//expected_samplenum = ceil(elapsed / 1000000.0 * devc->cur_samplerate);
/* Of those, how many do we still have to send? */
samples_elaspsed = elapsed / 1000000.0 * devc->cur_samplerate;
if (devc->limit_samples) {
if (sdi->mode == DSO && !devc->instant) {
samples_to_send = ceil(samples_elaspsed);
samples_to_send = MIN(samples_to_send,
devc->limit_samples - devc->pre_index);
} else if (sdi->mode == ANALOG) {
samples_to_send = ceil(samples_elaspsed * g_slist_length(sdi->channels));
samples_to_send = MIN(samples_to_send,
devc->limit_samples * g_slist_length(sdi->channels) - devc->pre_index);
} else {
samples_to_send = ceil(samples_elaspsed);
samples_to_send += devc->samples_not_sent;
if (samples_to_send < 64) {
devc->samples_not_sent = samples_to_send;
return TRUE;
} else
devc->samples_not_sent = samples_to_send & 63;
samples_to_send = samples_to_send & ~63;
samples_to_send = MIN(samples_to_send,
devc->limit_samples - devc->samples_counter);
}
}
if (samples_to_send > 0 && !devc->stop) {
sending_now = MIN(samples_to_send, (sdi->mode == DSO ) ? DSO_BUFSIZE : BUFSIZE);
samples_generator(devc->buf, sending_now, sdi, devc);
if (devc->trigger_stage != 0) {
for (i = 0; i < sending_now; i++) {
if (devc->trigger_edge == 0) {
if ((*(devc->buf + i) | devc->trigger_mask) ==
(devc->trigger_value | devc->trigger_mask)) {
devc->trigger_stage = 0;
break;
}
} else {
cur_sample = *(devc->buf + i);
if (((last_sample & devc->trigger_edge) ==
(~devc->trigger_value & devc->trigger_edge)) &&
((cur_sample | devc->trigger_mask) ==
(devc->trigger_value | devc->trigger_mask)) &&
((cur_sample & devc->trigger_edge) ==
(devc->trigger_value & devc->trigger_edge))) {
devc->trigger_stage = 0;
break;
}
last_sample = cur_sample;
}
}
if (devc->trigger_stage == 0) {
struct ds_trigger_pos demo_trigger_pos;
demo_trigger_pos.real_pos = i;
packet.type = SR_DF_TRIGGER;
packet.payload = &demo_trigger_pos;
sr_session_send(sdi, &packet);
}
}
if (sdi->mode == ANALOG)
devc->samples_counter += sending_now/g_slist_length(sdi->channels);
else
devc->samples_counter += sending_now;
if (sdi->mode == DSO && !devc->instant &&
devc->samples_counter > devc->limit_samples)
devc->samples_counter = devc->limit_samples;
if (devc->trigger_stage == 0){
//samples_to_send -= sending_now;
if (sdi->mode == LOGIC) {
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = sending_now * (NUM_PROBES >> 3);
logic.format = LA_CROSS_DATA;
logic.data = devc->buf;
} else if (sdi->mode == DSO) {
packet.type = SR_DF_DSO;
packet.payload = &dso;
dso.probes = sdi->channels;
if (devc->instant)
dso.num_samples = sending_now;
else
dso.num_samples = devc->samples_counter;
if (en_ch_num(sdi) == 1)
dso.num_samples *= 2;
dso.mq = SR_MQ_VOLTAGE;
dso.unit = SR_UNIT_VOLT;
dso.mqflags = SR_MQFLAG_AC;
dso.data = devc->buf;
}else {
packet.type = SR_DF_ANALOG;
packet.payload = &analog;
analog.probes = sdi->channels;
analog.num_samples = sending_now / g_slist_length(sdi->channels);
analog.mq = SR_MQ_VOLTAGE;
analog.unit = SR_UNIT_VOLT;
analog.mqflags = SR_MQFLAG_AC;
analog.data = (float *)devc->buf;
}
if (sdi->mode == DSO && !devc->instant) {
devc->pre_index += sending_now;
if (devc->pre_index >= devc->limit_samples)
devc->pre_index = 0;
}
sr_session_send(sdi, &packet);
devc->mstatus.trig_hit = (devc->trigger_stage == 0);
devc->mstatus.captured_cnt0 = devc->samples_counter;
devc->mstatus.captured_cnt1 = devc->samples_counter >> 8;
devc->mstatus.captured_cnt2 = devc->samples_counter >> 16;
devc->mstatus.captured_cnt3 = devc->samples_counter >> 32;
}
}
if ((sdi->mode != DSO || devc->instant) && devc->limit_samples &&
devc->samples_counter >= devc->limit_samples) {
sr_info("Requested number of samples reached.");
hw_dev_acquisition_stop(sdi, NULL);
return TRUE;
}
return TRUE;
}
static int hw_dev_acquisition_start(struct sr_dev_inst *sdi,
void *cb_data)
{
struct dev_context *const devc = sdi->priv;
(void)cb_data;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
//devc->cb_data = cb_data;
devc->samples_counter = 0;
devc->pre_index = 0;
devc->mstatus.captured_cnt0 = 0;
devc->mstatus.captured_cnt1 = 0;
devc->mstatus.captured_cnt2 = 0;
devc->mstatus.captured_cnt3 = 0;
devc->stop = FALSE;
devc->samples_not_sent = 0;
/*
* trigger setting
*/
if (!trigger->trigger_en || sdi->mode != LOGIC) {
devc->trigger_stage = 0;
} else {
devc->trigger_mask = ds_trigger_get_mask0(TriggerStages);
devc->trigger_value = ds_trigger_get_value0(TriggerStages);
devc->trigger_edge = ds_trigger_get_edge0(TriggerStages);
if (devc->trigger_edge != 0)
devc->trigger_stage = 2;
else
devc->trigger_stage = 1;
}
/*
* Setting two channels connected by a pipe is a remnant from when the
* demo driver generated data in a thread, and collected and sent the
* data in the main program loop.
* They are kept here because it provides a convenient way of setting
* up a timeout-based polling mechanism.
*/
sr_session_source_add_channel(devc->channel, G_IO_IN | G_IO_ERR,
50, receive_data, sdi);
/* Send header packet to the session bus. */
//std_session_send_df_header(cb_data, LOG_PREFIX);
std_session_send_df_header(sdi, LOG_PREFIX);
if (!(devc->buf = g_try_malloc(((sdi->mode == DSO ) ? DSO_BUFSIZE : BUFSIZE)*sizeof(uint16_t)))) {
sr_err("buf for receive_data malloc failed.");
return FALSE;
}
/* We use this timestamp to decide how many more samples to send. */
devc->starttime = g_get_monotonic_time();
return SR_OK;
}
static int hw_dev_acquisition_stop(const struct sr_dev_inst *sdi, void *cb_data)
{
(void)cb_data;
struct dev_context *const devc = sdi->priv;
struct sr_datafeed_packet packet;
if (devc->stop)
return SR_OK;
sr_dbg("Stopping acquisition.");
devc->stop = TRUE;
sr_session_source_remove_channel(devc->channel);
g_free(devc->buf);
/* Send last packet. */
packet.type = SR_DF_END;
packet.status = SR_PKT_OK;
sr_session_send(sdi, &packet);
return SR_OK;
}
static int hw_dev_status_get(const struct sr_dev_inst *sdi, struct sr_status *status, int begin, int end)
{
(void)begin;
(void)end;
if (sdi) {
struct dev_context *const devc = sdi->priv;
*status = devc->mstatus;
return SR_OK;
} else {
return SR_ERR;
}
}
SR_PRIV struct sr_dev_driver demo_driver_info = {
.name = "virtual-demo",
.longname = "Demo driver and pattern generator",
.api_version = 1,
.init = hw_init,
.cleanup = hw_cleanup,
.scan = hw_scan,
.dev_list = hw_dev_list,
.dev_mode_list = hw_dev_mode_list,
.dev_clear = clear_instances,
.config_get = config_get,
.config_set = config_set,
.config_list = config_list,
.dev_open = hw_dev_open,
.dev_close = hw_dev_close,
.dev_status_get = hw_dev_status_get,
.dev_acquisition_start = hw_dev_acquisition_start,
.dev_acquisition_stop = hw_dev_acquisition_stop,
.priv = NULL,
};