2016-07-20 08:59:39 +08:00

351 lines
12 KiB
Python
Executable File

##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2014 Angus Gratton <gus@projectgus.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
import sigrokdecode as srd
import re
'''
OUTPUT_PYTHON format:
Packet:
[<ptype>, <pdata>]
<ptype>:
- 'AP_READ' (AP read)
- 'DP_READ' (DP read)
- 'AP_WRITE' (AP write)
- 'DP_WRITE' (DP write)
- 'LINE_RESET' (line reset sequence)
<pdata>:
- tuple of address, ack state, data for the given sequence
'''
swd_states = [
'IDLE', # Idle/unknown
'REQUEST', # Request phase (first 8 bits)
'ACK', # Ack phase (next 3 bits)
'READ', # Reading phase (next 32 bits for reads)
'WRITE', # Writing phase (next 32 bits for write)
'DPARITY', # Data parity phase
]
# Regexes for matching SWD data out of bitstring ('1' / '0' characters) format
RE_SWDSWITCH = re.compile(bin(0xE79E)[:1:-1] + '$')
RE_SWDREQ = re.compile(r'1(?P<apdp>.)(?P<rw>.)(?P<addr>..)(?P<parity>.)01$')
RE_IDLE = re.compile('0' * 50 + '$')
# Sample edges
RISING = 1
FALLING = 0
ADDR_DP_SELECT = 0x8
ADDR_DP_CTRLSTAT = 0x4
BIT_SELECT_CTRLSEL = 1
BIT_CTRLSTAT_ORUNDETECT = 1
ANNOTATIONS = ['reset', 'enable', 'read', 'write', 'ack', 'data', 'parity']
class Decoder(srd.Decoder):
api_version = 2
id = 'swd'
name = 'SWD'
longname = 'Serial Wire Debug'
desc = 'Two-wire protocol for debug access to ARM CPUs.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['swd']
channels = (
{'id': 'swclk', 'name': 'SWCLK', 'desc': 'Master clock'},
{'id': 'swdio', 'name': 'SWDIO', 'desc': 'Data input/output'},
)
options = (
{'id': 'strict_start',
'desc': 'Wait for a line reset before starting to decode',
'default': 'no', 'values': ('yes', 'no')},
)
annotations = (
('reset', 'RESET'),
('enable', 'ENABLE'),
('read', 'READ'),
('write', 'WRITE'),
('ack', 'ACK'),
('data', 'DATA'),
('parity', 'PARITY'),
)
def __init__(self):
# SWD data/clock state
self.state = 'UNKNOWN'
self.oldclk = -1
self.sample_edge = RISING
self.ack = None # Ack state of the current phase
self.ss_req = 0 # Start sample of current req
self.turnaround = 0 # Number of turnaround edges to ignore before continuing
self.bits = '' # Bits from SWDIO are accumulated here, matched against expected sequences
self.samplenums = [] # Sample numbers that correspond to the samples in self.bits
self.linereset_count = 0
# SWD debug port state
self.data = None
self.addr = None
self.rw = None # Are we inside an SWD read or a write?
self.ctrlsel = 0 # 'ctrlsel' is bit 0 in the SELECT register.
self.orundetect = 0 # 'orundetect' is bit 0 in the CTRLSTAT register.
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
self.out_python = self.register(srd.OUTPUT_PYTHON)
if self.options['strict_start'] == 'no':
self.state = 'REQ' # No need to wait for a LINE RESET.
def putx(self, ann, length, data):
'''Output annotated data.'''
ann = ANNOTATIONS.index(ann)
try:
ss = self.samplenums[-length]
except IndexError:
ss = self.samplenums[0]
if self.state == 'REQ':
self.ss_req = ss
es = self.samplenum
self.put(ss, es, self.out_ann, [ann, [data]])
def putp(self, ptype, pdata):
self.put(self.ss_req, self.samplenum, self.out_python, [ptype, pdata])
def put_python_data(self):
'''Emit Python data item based on current SWD packet contents.'''
ptype = {
('AP', 'R'): 'AP_READ',
('AP', 'W'): 'AP_WRITE',
('DP', 'R'): 'DP_READ',
('DP', 'W'): 'DP_WRITE',
}[(self.apdp, self.rw)]
self.putp(ptype, (self.addr, self.data, self.ack))
def decode(self, ss, es, data):
for (self.samplenum, (clk, dio)) in data:
data.itercnt += 1
if clk == self.oldclk:
continue # Not a clock edge.
self.oldclk = clk
# Count rising edges with DIO held high,
# as a line reset (50+ high edges) can happen from any state.
if clk == RISING:
if dio == 1:
self.linereset_count += 1
else:
if self.linereset_count >= 50:
self.putx('reset', self.linereset_count, 'LINERESET')
self.putp('LINE_RESET', None)
self.reset_state()
self.linereset_count = 0
# Otherwise, we only care about either rising or falling edges
# (depending on sample_edge, set according to current state).
if clk != self.sample_edge:
continue
# Turnaround bits get skipped.
if self.turnaround > 0:
self.turnaround -= 1
continue
self.bits += str(dio)
self.samplenums.append(self.samplenum)
{
'UNKNOWN': self.handle_unknown_edge,
'REQ': self.handle_req_edge,
'ACK': self.handle_ack_edge,
'DATA': self.handle_data_edge,
'DPARITY': self.handle_dparity_edge,
}[self.state]()
def next_state(self):
'''Step to the next SWD state, reset internal counters accordingly.'''
self.bits = ''
self.samplenums = []
self.linereset_count = 0
if self.state == 'UNKNOWN':
self.state = 'REQ'
self.sample_edge = RISING
self.turnaround = 0
elif self.state == 'REQ':
self.state = 'ACK'
self.sample_edge = FALLING
self.turnaround = 1
elif self.state == 'ACK':
self.state = 'DATA'
self.sample_edge = RISING if self.rw == 'W' else FALLING
self.turnaround = 0 if self.rw == 'R' else 2
elif self.state == 'DATA':
self.state = 'DPARITY'
elif self.state == 'DPARITY':
self.put_python_data()
self.state = 'REQ'
self.sample_edge = RISING
self.turnaround = 1 if self.rw == 'R' else 0
def reset_state(self):
'''Line reset (or equivalent), wait for a new pending SWD request.'''
if self.state != 'REQ': # Emit a Python data item.
self.put_python_data()
# Clear state.
self.bits = ''
self.samplenums = []
self.linereset_count = 0
self.turnaround = 0
self.sample_edge = RISING
self.data = ''
self.ack = None
self.state = 'REQ'
def handle_unknown_edge(self):
'''
Clock edge in the UNKNOWN state.
In the unknown state, clock edges get ignored until we see a line
reset (which is detected in the decode method, not here.)
'''
pass
def handle_req_edge(self):
'''Clock edge in the REQ state (waiting for SWD r/w request).'''
# Check for a JTAG->SWD enable sequence.
m = re.search(RE_SWDSWITCH, self.bits)
if m is not None:
self.putx('enable', 16, 'JTAG->SWD')
self.reset_state()
return
# Or a valid SWD Request packet.
m = re.search(RE_SWDREQ, self.bits)
if m is not None:
calc_parity = sum([int(x) for x in m.group('rw') + m.group('apdp') + m.group('addr')]) % 2
parity = '' if str(calc_parity) == m.group('parity') else 'E'
self.rw = 'R' if m.group('rw') == '1' else 'W'
self.apdp = 'AP' if m.group('apdp') == '1' else 'DP'
self.addr = int(m.group('addr')[::-1], 2) << 2
self.putx('read' if self.rw == 'R' else 'write', 8, self.get_address_description())
self.next_state()
return
def handle_ack_edge(self):
'''Clock edge in the ACK state (waiting for complete ACK sequence).'''
if len(self.bits) < 3:
return
if self.bits == '100':
self.putx('ack', 3, 'OK')
self.ack = 'OK'
self.next_state()
elif self.bits == '001':
self.putx('ack', 3, 'FAULT')
self.ack = 'FAULT'
if self.orundetect == 1:
self.next_state()
else:
self.reset_state()
self.turnaround = 1
elif self.bits == '010':
self.putx('ack', 3, 'WAIT')
self.ack = 'WAIT'
if self.orundetect == 1:
self.next_state()
else:
self.reset_state()
self.turnaround = 1
elif self.bits == '111':
self.putx('ack', 3, 'NOREPLY')
self.ack = 'NOREPLY'
self.reset_state()
else:
self.putx('ack', 3, 'ERROR')
self.ack = 'ERROR'
self.reset_state()
def handle_data_edge(self):
'''Clock edge in the DATA state (waiting for 32 bits to clock past).'''
if len(self.bits) < 32:
return
self.data = 0
self.dparity = 0
for x in range(32):
if self.bits[x] == '1':
self.data += (1 << x)
self.dparity += 1
self.dparity = self.dparity % 2
self.putx('data', 32, '0x%08x' % self.data)
self.next_state()
def handle_dparity_edge(self):
'''Clock edge in the DPARITY state (clocking in parity bit).'''
if str(self.dparity) != self.bits:
self.putx('parity', 1, str(self.dparity) + self.bits) # PARITY ERROR
elif self.rw == 'W':
self.handle_completed_write()
self.next_state()
def handle_completed_write(self):
'''
Update internal state of the debug port based on a completed
write operation.
'''
if self.apdp != 'DP':
return
elif self.addr == ADDR_DP_SELECT:
self.ctrlsel = self.data & BIT_SELECT_CTRLSEL
elif self.addr == ADDR_DP_CTRLSTAT and self.ctrlsel == 0:
self.orundetect = self.data & BIT_CTRLSTAT_ORUNDETECT
def get_address_description(self):
'''
Return a human-readable description of the currently selected address,
for annotated results.
'''
if self.apdp == 'DP':
if self.rw == 'R':
# Tables 2-4 & 2-5 in ADIv5.2 spec ARM document IHI 0031C
return {
0: 'IDCODE',
0x4: 'R CTRL/STAT' if self.ctrlsel == 0 else 'R DLCR',
0x8: 'RESEND',
0xC: 'RDBUFF'
}[self.addr]
elif self.rw == 'W':
# Tables 2-4 & 2-5 in ADIv5.2 spec ARM document IHI 0031C
return {
0: 'W ABORT',
0x4: 'W CTRL/STAT' if self.ctrlsel == 0 else 'W DLCR',
0x8: 'W SELECT',
0xC: 'W RESERVED'
}[self.addr]
elif self.apdp == 'AP':
if self.rw == 'R':
return 'R AP%x' % self.addr
elif self.rw == 'W':
return 'W AP%x' % self.addr
# Any legitimate operations shouldn't fall through to here, probably
# a decoder bug.
return '? %s%s%x' % (self.rw, self.apdp, self.addr)