/** * @file lv_port_disp_templ.c * */ /*Copy this file as "lv_port_disp.c" and set this value to "1" to enable content*/ #if 0 /********************* * INCLUDES *********************/ #include "lv_port_disp_templ.h" /********************* * DEFINES *********************/ /********************** * TYPEDEFS **********************/ /********************** * STATIC PROTOTYPES **********************/ static void disp_init(void); static void disp_flush(lv_disp_t * disp, const lv_area_t * area, lv_color_t * color_p); #if USE_LV_GPU static void mem_blend(lv_color_t * dest, const lv_color_t * src, uint32_t length, lv_opa_t opa); static void mem_fill(lv_color_t * dest, uint32_t length, lv_color_t color); #endif /********************** * STATIC VARIABLES **********************/ /********************** * MACROS **********************/ /********************** * GLOBAL FUNCTIONS **********************/ void lv_port_disp_init(void) { /*------------------------- * Initialize your display * -----------------------*/ disp_init(); /*----------------------------- * Create a buffer for drawing *----------------------------*/ /* LittlevGL requires a buffer where it draw the objects. The buffer's has to be greater than 1 display row * * There are three buffering configurations: * 1. Create ONE buffer some rows: LittlevGL will draw the display's content here and writes it to your display * 2. Create TWO buffer some rows: LittlevGL will draw the display's content to a buffer and writes it your display. * You should use DMA to write the buffer's content to the display. * It will enable LittlevGL to draw the next part of the screen to the other buffer while * the data is being sent form the first buffer. It makes rendering and flushing parallel. * 3. Create TWO screen buffer: Similar to 2) but the buffer have to be screen sized. When LittlevGL is ready it will give the * whole frame to display. This way you only need to change the frame buffer's address instead of * copying the pixels. * */ /* Example for 1) */ static lv_disp_buf_t disp_buf_1; static lv_color_t buf1_1[LV_HOR_RES_MAX * 10]; /*A buffer for 10 rows*/ lv_disp_buf_init(&disp_buf_1, buf1_1, NULL, LV_HOR_RES_MAX * 10); /*Initialize the display buffer*/ /* Example for 2) */ static lv_disp_buf_t disp_buf_2; static lv_color_t buf2_1[LV_HOR_RES_MAX * 10]; /*A buffer for 10 rows*/ static lv_color_t buf2_2[LV_HOR_RES_MAX * 10]; /*An other buffer for 10 rows*/ lv_disp_buf_init(&disp_buf_2, buf2_1, buf2_2, LV_HOR_RES_MAX * 10); /*Initialize the display buffer*/ /* Example for 3) */ static lv_disp_buf_t disp_buf_3; static lv_color_t buf3_1[LV_HOR_RES_MAX * LV_VER_RES_MAX]; /*A screen sized buffer*/ static lv_color_t buf3_2[LV_HOR_RES_MAX * LV_VER_RES_MAX]; /*An other screen sized buffer*/ lv_disp_buf_init(&disp_buf_3, buf3_1, buf3_2, LV_HOR_RES_MAX * LV_VER_RES_MAX); /*Initialize the display buffer*/ /*----------------------------------- * Register the display in LittlevGL *----------------------------------*/ lv_disp_drv_t disp_drv; /*Descriptor of a display driver*/ lv_disp_drv_init(&disp_drv); /*Basic initialization*/ /*Set up the functions to access to your display*/ /*Used to copy the buffer's content to the display*/ disp_drv.flush_cb = disp_flush; /*Set a display buffer*/ disp_drv.buffer = &disp_buf_2; #if USE_LV_GPU /*Optionally add functions to access the GPU. (Only in buffered mode, LV_VDB_SIZE != 0)*/ /*Blend two color array using opacity*/ disp_drv.mem_blend = mem_blend; /*Fill a memory array with a color*/ disp_drv.mem_fill = mem_fill; #endif /*Finally register the driver*/ lv_disp_drv_register(&disp_drv); } /********************** * STATIC FUNCTIONS **********************/ /* Initialize your display and the required peripherals. */ static void disp_init(void) { /*You code here*/ } /* Flush the content of the internal buffer the specific area on the display * You can use DMA or any hardware acceleration to do this operation in the background but * 'lv_disp_flush_ready()' has to be called when finished. */ static void disp_flush(lv_disp_t * disp, const lv_area_t * area, lv_color_t * color_p) { /*The most simple case (but also the slowest) to put all pixels to the screen one-by-one*/ int32_t x; int32_t y; for(y = area->y1; y <= area->y2; y++) { for(x = area->x1; x <= area->x2; x++) { /* Put a pixel to the display. For example: */ /* put_px(x, y, *color_p)*/ color_p++; } } /* IMPORTANT!!! * Inform the graphics library that you are ready with the flushing*/ lv_disp_flush_ready(disp); } /*OPTIONAL: GPU INTERFACE*/ #if USE_LV_GPU /* If your MCU has hardware accelerator (GPU) then you can use it to blend to memories using opacity * It can be used only in buffered mode (LV_VDB_SIZE != 0 in lv_conf.h)*/ static void mem_blend(lv_color_t * dest, const lv_color_t * src, uint32_t length, lv_opa_t opa) { /*It's an example code which should be done by your GPU*/ uint32_t i; for(i = 0; i < length; i++) { dest[i] = lv_color_mix(dest[i], src[i], opa); } } /* If your MCU has hardware accelerator (GPU) then you can use it to fill a memory with a color * It can be used only in buffered mode (LV_VDB_SIZE != 0 in lv_conf.h)*/ static void mem_fill(lv_color_t * dest, uint32_t length, lv_color_t color) { /*It's an example code which should be done by your GPU*/ uint32_t i; for(i = 0; i < length; i++) { dest[i] = color; } } #endif /*USE_LV_GPU*/ #endif